slab.c 121 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

124 125
#include <trace/events/kmem.h>

Linus Torvalds's avatar
Linus Torvalds committed
126
/*
127
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
148
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
149 150 151 152 153 154 155

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
156
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
157
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158
			 SLAB_CACHE_DMA | \
159
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
160
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
162
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
163
#else
164
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
165
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
166
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
168
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

190
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
191 192
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
193 194
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
211
	struct rcu_head head;
212
	struct kmem_cache *cachep;
213
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
214 215
};

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
254
	spinlock_t lock;
255
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
256 257 258 259
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
260 261
};

Andrew Morton's avatar
Andrew Morton committed
262 263 264
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
265 266 267 268
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
269
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
270 271 272
};

/*
273
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
274 275
 */
struct kmem_list3 {
276 277 278 279 280
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
281
	unsigned int colour_next;	/* Per-node cache coloring */
282 283 284
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
285 286
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
287 288
};

289 290 291
/*
 * Need this for bootstrapping a per node allocator.
 */
292
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
294
#define	CACHE_CACHE 0
295 296
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
297

298 299 300 301
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
302
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
303
static void cache_reap(struct work_struct *unused);
304

305
/*
Andrew Morton's avatar
Andrew Morton committed
306 307
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
308
 */
309
static __always_inline int index_of(const size_t size)
310
{
311 312
	extern void __bad_size(void);

313 314 315 316 317 318 319 320
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
321
#include <linux/kmalloc_sizes.h>
322
#undef CACHE
323
		__bad_size();
324
	} else
325
		__bad_size();
326 327 328
	return 0;
}

329 330
static int slab_early_init = 1;

331 332
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
333

Pekka Enberg's avatar
Pekka Enberg committed
334
static void kmem_list3_init(struct kmem_list3 *parent)
335 336 337 338 339 340
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
341
	parent->colour_next = 0;
342 343 344 345 346
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
347 348 349 350
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
351 352
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
353 354
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
355 356 357 358
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
359 360 361 362 363

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
364 365 366
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
367
 *
Adrian Bunk's avatar
Adrian Bunk committed
368
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
369 370 371 372 373 374 375 376 377 378
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
379
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
380 381 382 383 384
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
385 386
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
387
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
388
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
389 390 391 392 393
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
394 395 396 397 398 399 400 401 402
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
403
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
404 405 406
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
407
#define	STATS_INC_NODEFREES(x)	do { } while (0)
408
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
409
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
410 411 412 413 414 415 416 417
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
418 419
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
420
 * 0		: objp
421
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
422 423
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
424
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
425
 * 		redzone word.
426 427
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
428 429
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
430
 */
431
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
432
{
433
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
434 435
}

436
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
437
{
438
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
439 440
}

441
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
442 443
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
444 445
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
446 447
}

448
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
449 450 451
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
452 453
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
454
					      REDZONE_ALIGN);
455 456
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
457 458
}

459
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
460 461
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
462
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
463 464 465 466
}

#else

467 468
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
469 470
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
471 472 473 474
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

475
#ifdef CONFIG_TRACING
476 477 478 479 480 481 482
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
483
/*
484 485
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
486
 */
487 488 489
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
490
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
491

Andrew Morton's avatar
Andrew Morton committed
492 493 494 495
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
496
 */
497 498 499 500 501 502 503
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
504
	page = compound_head(page);
505
	BUG_ON(!PageSlab(page));
506 507 508 509 510 511 512 513 514 515
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
516
	BUG_ON(!PageSlab(page));
517 518
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
519

520 521
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
522
	struct page *page = virt_to_head_page(obj);
523 524 525 526 527
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
528
	struct page *page = virt_to_head_page(obj);
529 530 531
	return page_get_slab(page);
}

532 533 534 535 536 537
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

538 539 540 541 542 543 544 545
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547 548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 550
}

Andrew Morton's avatar
Andrew Morton committed
551 552 553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
571
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
572 573 574 575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
577
static struct arraycache_init initarray_generic =
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
579 580

/* internal cache of cache description objs */
581
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582
static struct kmem_cache cache_cache = {
583
	.nodelists = cache_cache_nodelists,
584 585 586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.buffer_size = sizeof(struct kmem_cache),
588
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
589 590
};

591 592
#define BAD_ALIEN_MAGIC 0x01020304ul

593 594 595 596 597 598 599 600 601
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
602
	LATE,
603 604 605 606 607 608 609 610 611 612 613
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

614 615 616 617 618 619 620 621
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
622 623 624 625
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
626
 */
627 628 629
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

675
static void init_node_lock_keys(int q)
676
{
677 678
	struct cache_sizes *s = malloc_sizes;

679
	if (g_cpucache_up < LATE)
680 681 682 683 684 685 686
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
687
			continue;
688 689 690

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
691 692
	}
}
693 694 695 696 697 698 699 700

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
701
#else
702 703 704 705
static void init_node_lock_keys(int q)
{
}

706
static inline void init_lock_keys(void)
707 708
{
}
709 710 711 712 713 714 715 716

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
717 718
#endif

719
/*
720
 * Guard access to the cache-chain.
721
 */
Ingo Molnar's avatar
Ingo Molnar committed
722
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
723 724
static struct list_head cache_chain;

725
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
726

727
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
728 729 730 731
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
732 733
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
734 735 736 737 738
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
739 740 741
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
742
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
743
#endif
744 745 746
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
747 748 749 750
	while (size > csizep->cs_size)
		csizep++;

	/*
751
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
752 753 754
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
755
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
756 757
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
758
#endif
Linus Torvalds's avatar
Linus Torvalds committed
759 760 761
	return csizep->cs_cachep;
}

762
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
763 764 765 766
{
	return __find_general_cachep(size, gfpflags);
}

767
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
768
{
769 770
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
771

Andrew Morton's avatar
Andrew Morton committed
772 773 774
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
775 776 777 778 779 780 781
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
831 832
}

833
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
834

Andrew Morton's avatar
Andrew Morton committed
835 836
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
837 838
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
839
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
840 841 842
	dump_stack();
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

859 860 861 862 863 864 865 866 867 868 869
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

870 871 872 873 874 875 876
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
877
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
878 879 880 881 882

static void init_reap_node(int cpu)
{
	int node;

883
	node = next_node(cpu_to_mem(cpu), node_online_map);
884
	if (node == MAX_NUMNODES)
885
		node = first_node(node_online_map);
886

887
	per_cpu(slab_reap_node, cpu) = node;
888 889 890 891
}

static void next_reap_node(void)
{
892
	int node = __this_cpu_read(slab_reap_node);
893 894 895 896

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
897
	__this_cpu_write(slab_reap_node, node);
898 899 900 901 902 903 904
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
905 906 907 908 909 910 911
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
912
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
913
{
914
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
915 916 917 918 919 920

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
921
	if (keventd_up() && reap_work->work.func == NULL) {
922
		init_reap_node(cpu);
923
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
924 925
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
926 927 928
	}
}

929
static struct array_cache *alloc_arraycache(int node, int entries,
930
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
931
{
932
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
933 934
	struct array_cache *nc = NULL;

935
	nc = kmalloc_node(memsize, gfp, node);
936 937
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
938
	 * However, when such objects are allocated or transferred to another
939 940 941 942 943
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
944 945 946 947 948
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
949
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
950 951 952 953
	}
	return nc;
}

954 955 956 957 958 959 960 961 962 963
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
964
	int nr = min3(from->avail, max, to->limit - to->avail);
965 966 967 968 969 970 971 972 973 974 975 976

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

977 978 979 980 981
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

982
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1002
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1003 1004 1005 1006 1007 1008 1009
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1010
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1011
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1012

1013
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1014 1015
{
	struct array_cache **ac_ptr;
1016
	int memsize = sizeof(void *) * nr_node_ids;
1017 1018 1019 1020
	int i;

	if (limit > 1)
		limit = 12;
1021
	ac_ptr = kzalloc_node(memsize, gfp, node);
1022 1023
	if (ac_ptr) {
		for_each_node(i) {
1024
			if (i == node || !node_online(i))
1025
				continue;
1026
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1027
			if (!ac_ptr[i]) {
1028
				for (i--; i >= 0; i--)
1029 1030 1031 1032 1033 1034 1035 1036 1037
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1038
static void free_alien_cache(struct array_cache **ac_ptr)
1039 1040 1041 1042 1043 1044
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1045
	    kfree(ac_ptr[i]);
1046 1047 1048
	kfree(ac_ptr);
}

1049
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1050
				struct array_cache *ac, int node)
1051 1052 1053 1054 1055
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1056 1057 1058 1059 1060
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1061 1062
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1063

1064
		free_block(cachep, ac->entry, ac->avail, node);
1065 1066 1067 1068 1069
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1070 1071 1072 1073 1074
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1075
	int node = __this_cpu_read(slab_reap_node);
1076 1077 1078

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1079 1080

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081 1082 1083 1084 1085 1086
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1087 1088
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1089
{
1090
	int i = 0;
1091 1092 1093 1094
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1095
		ac = alien[i];
1096 1097 1098 1099 1100 1101 1102
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1103

1104
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1105 1106 1107 1108 1109
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1110 1111
	int node;

1112
	node = numa_mem_id();
1113 1114 1115 1116 1117

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1118
	if (likely(slabp->nodeid == node))
1119 1120
		return 0;

1121
	l3 = cachep->nodelists[node];
1122 1123 1124
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1125
		spin_lock(&alien->lock);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1139 1140
#endif

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1187 1188 1189 1190
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1191
	int node = cpu_to_mem(cpu);
1192
	const struct cpumask *mask = cpumask_of_node(node);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1214
		if (!cpumask_empty(mask)) {
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1253
{
1254
	struct kmem_cache *cachep;
1255
	struct kmem_list3 *l3 = NULL;
1256
	int node = cpu_to_mem(cpu);
1257
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1258

1259 1260 1261 1262 1263 1264
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1265 1266 1267
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1279
					cachep->batchcount, GFP_KERNEL);
1280 1281 1282 1283 1284
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1285
				0xbaadf00d, GFP_KERNEL);
1286 1287
			if (!shared) {
				kfree(nc);
Linus Torvalds's avatar
Linus Torvalds committed
1288
				goto bad;
1289
			}
1290 1291
		}
		if (use_alien_caches) {
1292
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1293 1294 1295
			if (!alien) {
				kfree(shared);
				kfree(nc);
1296
				goto bad;
1297
			}
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1312
#ifdef CONFIG_NUMA
1313 1314 1315
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1316
		}
1317 1318 1319 1320
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1321 1322
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1323
	}
1324 1325
	init_node_lock_keys(node);

1326 1327
	return 0;
bad:
1328
	cpuup_canceled(cpu);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1341
		mutex_lock(&cache_chain_mutex);
1342
		err = cpuup_prepare(cpu);
1343
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1344 1345
		break;
	case CPU_ONLINE:
1346
	case CPU_ONLINE_FROZEN:
Linus Torvalds's avatar
Linus Torvalds committed
1347 1348 1349
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1350
  	case CPU_DOWN_PREPARE:
1351
  	case CPU_DOWN_PREPARE_FROZEN:
1352 1353 1354 1355 1356 1357
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1358
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1359
		/* Now the cache_reaper is guaranteed to be not running. */
1360
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1361 1362
  		break;
  	case CPU_DOWN_FAILED:
1363
  	case CPU_DOWN_FAILED_FROZEN:
1364 1365
		start_cpu_timer(cpu);
  		break;
Linus Torvalds's avatar
Linus Torvalds committed
1366
	case CPU_DEAD:
1367
	case CPU_DEAD_FROZEN:
1368 1369 1370 1371 1372 1373 1374 1375
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
Simon Arlott's avatar
Simon Arlott committed
1376
		/* fall through */
1377
#endif
Linus Torvalds's avatar
Linus Torvalds committed
1378
	case CPU_UP_CANCELED:
1379
	case CPU_UP_CANCELED_FROZEN:
1380
		mutex_lock(&cache_chain_mutex);
1381
		cpuup_canceled(cpu);
Ingo Molnar's avatar
Ingo Molnar committed
1382
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1383 1384
		break;
	}
1385
	return notifier_from_errno(err);
Linus Torvalds's avatar
Linus Torvalds committed
1386 1387
}

1388 1389 1390
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
Linus Torvalds's avatar
Linus Torvalds committed
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1452
	return notifier_from_errno(ret);
1453 1454 1455
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1456 1457 1458
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1459 1460
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1461 1462 1463
{
	struct kmem_list3 *ptr;

1464
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1465 1466 1467
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1468 1469 1470 1471 1472
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1473 1474 1475 1476
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

Andrew Morton's avatar
Andrew Morton committed
1493 1494 1495
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
Linus Torvalds's avatar
Linus Torvalds committed
1496 1497 1498 1499 1500 1501
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1502
	int i;
1503
	int order;
1504
	int node;
1505

1506
	if (num_possible_nodes() == 1)
1507 1508
		use_alien_caches = 0;

1509 1510 1511 1512 1513
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1514
	set_up_list3s(&cache_cache, CACHE_CACHE);
Linus Torvalds's avatar
Linus Torvalds committed
1515 1516 1517

	/*
	 * Fragmentation resistance on low memory - only use bigger
1518 1519
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
1520
	 */
1521
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1522
		slab_max_order = SLAB_MAX_ORDER_HI;
Linus Torvalds's avatar
Linus Torvalds committed
1523 1524 1525

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
Andrew Morton's avatar
Andrew Morton committed
1526 1527 1528
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1529 1530 1531
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
Linus Torvalds's avatar
Linus Torvalds committed
1532
	 * 2) Create the first kmalloc cache.
1533
	 *    The struct kmem_cache for the new cache is allocated normally.
1534 1535 1536
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
Linus Torvalds's avatar
Linus Torvalds committed
1537 1538
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1539 1540 1541
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds's avatar
Linus Torvalds committed
1542 1543
	 */

1544
	node = numa_mem_id();
1545

Linus Torvalds's avatar
Linus Torvalds committed
1546 1547 1548 1549 1550
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1551
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
Linus Torvalds's avatar
Linus Torvalds committed
1552

Eric Dumazet's avatar
Eric Dumazet committed
1553
	/*
1554
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
Eric Dumazet's avatar
Eric Dumazet committed
1555
	 */
1556 1557
	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *);
Eric Dumazet's avatar
Eric Dumazet committed
1558 1559 1560
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
Andrew Morton's avatar
Andrew Morton committed
1561 1562
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1563 1564
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
Linus Torvalds's avatar
Linus Torvalds committed
1565

1566 1567 1568 1569 1570 1571
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1572
	BUG_ON(!cache_cache.num);
1573
	cache_cache.gfporder = order;
1574 1575 1576
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
Linus Torvalds's avatar
Linus Torvalds committed
1577 1578 1579 1580 1581

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

Andrew Morton's avatar
Andrew Morton committed
1582 1583 1584 1585
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1586 1587 1588
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Morton's avatar
Andrew Morton committed
1589 1590 1591
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1592
					NULL);
1593

Andrew Morton's avatar
Andrew Morton committed
1594
	if (INDEX_AC != INDEX_L3) {
1595
		sizes[INDEX_L3].cs_cachep =
Andrew Morton's avatar
Andrew Morton committed
1596 1597 1598 1599
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1600
				NULL);
Andrew Morton's avatar
Andrew Morton committed
1601
	}
1602

1603 1604
	slab_early_init = 0;

Linus Torvalds's avatar
Linus Torvalds committed
1605
	while (sizes->cs_size != ULONG_MAX) {
1606 1607
		/*
		 * For performance, all the general caches are L1 aligned.
Linus Torvalds's avatar
Linus Torvalds committed
1608 1609 1610
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1611 1612
		 * allow tighter packing of the smaller caches.
		 */
Andrew Morton's avatar
Andrew Morton committed
1613
		if (!sizes->cs_cachep) {
1614
			sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Morton's avatar
Andrew Morton committed
1615 1616 1617
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1618
					NULL);
Andrew Morton's avatar
Andrew Morton committed
1619
		}
1620 1621 1622
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
Andrew Morton's avatar
Andrew Morton committed
1623 1624 1625 1626
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1627
					NULL);
1628
#endif
Linus Torvalds's avatar
Linus Torvalds committed
1629 1630 1631 1632 1633
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1634
		struct array_cache *ptr;
1635

1636
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1637

1638 1639
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
1640
		       sizeof(struct arraycache_init));
1641 1642 1643 1644 1645
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

Linus Torvalds's avatar
Linus Torvalds committed
1646
		cache_cache.array[smp_processor_id()] = ptr;
1647

1648
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1649

1650
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1651
		       != &initarray_generic.cache);
1652
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1653
		       sizeof(struct arraycache_init));
1654 1655 1656 1657 1658
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1659
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1660
		    ptr;
Linus Torvalds's avatar
Linus Torvalds committed
1661
	}
1662 1663
	/* 5) Replace the bootstrap kmem_list3's */
	{
1664 1665
		int nid;

1666
		for_each_online_node(nid) {
1667
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1668

1669
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1670
				  &initkmem_list3[SIZE_AC + nid], nid);
1671 1672 1673

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1674
					  &initkmem_list3[SIZE_L3 + nid], nid);
1675 1676 1677
			}
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
1678

1679 1680 1681 1682 1683 1684 1685
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1686 1687
	g_cpucache_up = LATE;

1688 1689 1690
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1691 1692 1693 1694 1695 1696
	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1697

Linus Torvalds's avatar
Linus Torvalds committed
1698 1699 1700
	/* Done! */
	g_cpucache_up = FULL;

Andrew Morton's avatar
Andrew Morton committed
1701 1702 1703
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
Linus Torvalds's avatar
Linus Torvalds committed
1704 1705 1706
	 */
	register_cpu_notifier(&cpucache_notifier);

1707 1708 1709 1710 1711 1712 1713 1714
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

Andrew Morton's avatar
Andrew Morton committed
1715 1716 1717
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
Linus Torvalds's avatar
Linus Torvalds committed
1718 1719 1720 1721 1722 1723 1724
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

Andrew Morton's avatar
Andrew Morton committed
1725 1726
	/*
	 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds's avatar
Linus Torvalds committed
1727
	 */
1728
	for_each_online_cpu(cpu)
Andrew Morton's avatar
Andrew Morton committed
1729
		start_cpu_timer(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
1730 1731 1732 1733
	return 0;
}
__initcall(cpucache_init);

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
		cachep->name, cachep->buffer_size, cachep->gfporder);

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1780 1781 1782 1783 1784 1785 1786
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1787
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds's avatar
Linus Torvalds committed
1788 1789
{
	struct page *page;
1790
	int nr_pages;
Linus Torvalds's avatar
Linus Torvalds committed
1791 1792
	int i;

1793
#ifndef CONFIG_MMU
1794 1795 1796
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1797
	 */
1798
	flags |= __GFP_COMP;
1799
#endif
1800

1801
	flags |= cachep->gfpflags;
1802 1803
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1804

Linus Torvalds's avatar
Linus Torvalds committed
1805
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1806 1807 1808
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
Linus Torvalds's avatar
Linus Torvalds committed
1809
		return NULL;
1810
	}
Linus Torvalds's avatar
Linus Torvalds committed
1811

1812
	nr_pages = (1 << cachep->gfporder);
Linus Torvalds's avatar
Linus Torvalds committed
1813
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1814 1815 1816 1817 1818
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1819 1820
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
Pekka Enberg's avatar
Pekka Enberg committed
1821

1822 1823 1824 1825 1826 1827 1828 1829
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
Pekka Enberg's avatar
Pekka Enberg committed
1830

1831
	return page_address(page);
Linus Torvalds's avatar
Linus Torvalds committed
1832 1833 1834 1835 1836
}

/*
 * Interface to system's page release.
 */
1837
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds's avatar
Linus Torvalds committed
1838
{
1839
	unsigned long i = (1 << cachep->gfporder);
Linus Torvalds's avatar
Linus Torvalds committed
1840 1841 1842
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1843
	kmemcheck_free_shadow(page, cachep->gfporder);
Pekka Enberg's avatar
Pekka Enberg committed
1844

1845 1846 1847 1848 1849 1850
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds's avatar
Linus Torvalds committed
1851
	while (i--) {
Nick Piggin's avatar
Nick Piggin committed
1852 1853
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
Linus Torvalds's avatar
Linus Torvalds committed
1854 1855 1856 1857 1858 1859 1860 1861 1862
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
1863
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1864
	struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds's avatar
Linus Torvalds committed
1865 1866 1867 1868 1869 1870 1871 1872 1873

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1874
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1875
			    unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
1876
{
1877
	int size = obj_size(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
1878

1879
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds's avatar
Linus Torvalds committed
1880

1881
	if (size < 5 * sizeof(unsigned long))
Linus Torvalds's avatar
Linus Torvalds committed
1882 1883
		return;

1884 1885 1886 1887
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
1888 1889 1890 1891 1892 1893 1894
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
1895
				*addr++ = svalue;
Linus Torvalds's avatar
Linus Torvalds committed
1896 1897 1898 1899 1900 1901 1902
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
1903
	*addr++ = 0x87654321;
Linus Torvalds's avatar
Linus Torvalds committed
1904 1905 1906
}
#endif

1907
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds's avatar
Linus Torvalds committed
1908
{
1909 1910
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds's avatar
Linus Torvalds committed
1911 1912

	memset(addr, val, size);
1913
	*(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds's avatar
Linus Torvalds committed
1914 1915 1916 1917 1918
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
1919 1920 1921
	unsigned char error = 0;
	int bad_count = 0;

1922
	printk(KERN_ERR "%03x: ", offset);
1923 1924 1925 1926 1927 1928
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1929 1930
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
1945 1946 1947 1948 1949
}
#endif

#if DEBUG

1950
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds's avatar
Linus Torvalds committed
1951 1952 1953 1954 1955
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1956
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
Andrew Morton's avatar
Andrew Morton committed
1957 1958
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
1959 1960 1961 1962
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
Andrew Morton's avatar
Andrew Morton committed
1963
			*dbg_userword(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
1964
		print_symbol("(%s)",
Andrew Morton's avatar
Andrew Morton committed
1965
				(unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
1966 1967
		printk("\n");
	}
1968 1969
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
1970
	for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds's avatar
Linus Torvalds committed
1971 1972
		int limit;
		limit = 16;
1973 1974
		if (i + limit > size)
			limit = size - i;
Linus Torvalds's avatar
Linus Torvalds committed
1975 1976 1977 1978
		dump_line(realobj, i, limit);
	}
}

1979
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
1980 1981 1982 1983 1984
{
	char *realobj;
	int size, i;
	int lines = 0;

1985 1986
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
1987

1988
	for (i = 0; i < size; i++) {
Linus Torvalds's avatar
Linus Torvalds committed
1989
		char exp = POISON_FREE;
1990
		if (i == size - 1)
Linus Torvalds's avatar
Linus Torvalds committed
1991 1992 1993 1994 1995 1996
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1997
				printk(KERN_ERR
1998 1999
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
2000 2001 2002
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
2003
			i = (i / 16) * 16;
Linus Torvalds's avatar
Linus Torvalds committed
2004
			limit = 16;
2005 2006
			if (i + limit > size)
				limit = size - i;
Linus Torvalds's avatar
Linus Torvalds committed
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2019
		struct slab *slabp = virt_to_slab(objp);
2020
		unsigned int objnr;
Linus Torvalds's avatar
Linus Torvalds committed
2021

2022
		objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds's avatar
Linus Torvalds committed
2023
		if (objnr) {
2024
			objp = index_to_obj(cachep, slabp, objnr - 1);
2025
			realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
2026
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2027
			       realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
2028 2029
			print_objinfo(cachep, objp, 2);
		}
2030
		if (objnr + 1 < cachep->num) {
2031
			objp = index_to_obj(cachep, slabp, objnr + 1);
2032
			realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
2033
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2034
			       realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
2035 2036 2037 2038 2039 2040
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2041
#if DEBUG
2042
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds's avatar
Linus Torvalds committed
2043 2044 2045
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2046
		void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds's avatar
Linus Torvalds committed
2047 2048 2049

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Morton's avatar
Andrew Morton committed
2050 2051
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
2052
				kernel_map_pages(virt_to_page(objp),
Andrew Morton's avatar
Andrew Morton committed
2053
					cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds's avatar
Linus Torvalds committed
2054 2055 2056 2057 2058 2059 2060 2061 2062
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
2063
					   "was overwritten");
Linus Torvalds's avatar
Linus Torvalds committed
2064 2065
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
2066
					   "was overwritten");
Linus Torvalds's avatar
Linus Torvalds committed
2067 2068
		}
	}
2069
}
Linus Torvalds's avatar
Linus Torvalds committed
2070
#else
2071
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2072 2073
{
}
Linus Torvalds's avatar
Linus Torvalds committed
2074 2075
#endif

2076 2077 2078 2079 2080
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2081
 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Morton's avatar
Andrew Morton committed
2082 2083
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2084
 */
2085
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2086 2087 2088
{
	void *addr = slabp->s_mem - slabp->colouroff;

2089
	slab_destroy_debugcheck(cachep, slabp);
Linus Torvalds's avatar
Linus Torvalds committed
2090 2091 2092
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

2093
		slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds's avatar
Linus Torvalds committed
2094 2095 2096 2097 2098
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2099 2100
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds's avatar
Linus Torvalds committed
2101 2102 2103
	}
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2125
/**
2126 2127 2128 2129 2130 2131 2132
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2133 2134 2135 2136 2137
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
Andrew Morton's avatar
Andrew Morton committed
2138
static size_t calculate_slab_order(struct kmem_cache *cachep,
2139
			size_t size, size_t align, unsigned long flags)
2140
{
2141
	unsigned long offslab_limit;
2142
	size_t left_over = 0;
2143
	int gfporder;
2144

2145
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2146 2147 2148
		unsigned int num;
		size_t remainder;

2149
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2150 2151
		if (!num)
			continue;
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2165

2166
		/* Found something acceptable - save it away */
2167
		cachep->num = num;
2168
		cachep->gfporder = gfporder;
2169 2170
		left_over = remainder;

2171 2172 2173 2174 2175 2176 2177 2178
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2179 2180 2181 2182
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2183
		if (gfporder >= slab_max_order)
2184 2185
			break;

2186 2187 2188
		/*
		 * Acceptable internal fragmentation?
		 */
Andrew Morton's avatar
Andrew Morton committed
2189
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2190 2191 2192 2193 2194
			break;
	}
	return left_over;
}

2195
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2196
{
2197
	if (g_cpucache_up == FULL)
2198
		return enable_cpucache(cachep, gfp);
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2220
			kmalloc(sizeof(struct arraycache_init), gfp);
2221 2222 2223 2224 2225 2226

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2227
			for_each_online_node(node) {
2228 2229
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2230
						gfp, node);
2231 2232 2233 2234 2235
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2236
	cachep->nodelists[numa_mem_id()]->next_reap =
2237 2238 2239 2240 2241 2242 2243 2244 2245
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2246
	return 0;
2247 2248
}

Linus Torvalds's avatar
Linus Torvalds committed
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2259
 * The @ctor is run when new pages are allocated by the cache.
Linus Torvalds's avatar
Linus Torvalds committed
2260 2261
 *
 * @name must be valid until the cache is destroyed. This implies that
Andrew Morton's avatar
Andrew Morton committed
2262 2263
 * the module calling this has to destroy the cache before getting unloaded.
 *
Linus Torvalds's avatar
Linus Torvalds committed
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2276
struct kmem_cache *
Linus Torvalds's avatar
Linus Torvalds committed
2277
kmem_cache_create (const char *name, size_t size, size_t align,
2278
	unsigned long flags, void (*ctor)(void *))
Linus Torvalds's avatar
Linus Torvalds committed
2279 2280
{
	size_t left_over, slab_size, ralign;
2281
	struct kmem_cache *cachep = NULL, *pc;
2282
	gfp_t gfp;
Linus Torvalds's avatar
Linus Torvalds committed
2283 2284 2285 2286

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
Andrew Morton's avatar
Andrew Morton committed
2287
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2288
	    size > KMALLOC_MAX_SIZE) {
2289
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
Andrew Morton's avatar
Andrew Morton committed
2290
				name);
2291 2292
		BUG();
	}
Linus Torvalds's avatar
Linus Torvalds committed
2293

2294
	/*
2295
	 * We use cache_chain_mutex to ensure a consistent view of
Rusty Russell's avatar
Rusty Russell committed
2296
	 * cpu_online_mask as well.  Please see cpuup_callback
2297
	 */
2298 2299 2300 2301
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2302

2303
	list_for_each_entry(pc, &cache_chain, next) {
2304 2305 2306 2307 2308 2309 2310 2311
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2312
		res = probe_kernel_address(pc->name, tmp);
2313
		if (res) {
2314 2315
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2316
			       pc->buffer_size);
2317 2318 2319
			continue;
		}

2320
		if (!strcmp(pc->name, name)) {
2321 2322
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2323 2324 2325 2326 2327
			dump_stack();
			goto oops;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
2328 2329 2330 2331 2332 2333 2334 2335 2336
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
David Woodhouse's avatar
David Woodhouse committed
2337 2338
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
2339
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds's avatar
Linus Torvalds committed
2340 2341 2342 2343 2344 2345 2346
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
Andrew Morton's avatar
Andrew Morton committed
2347 2348
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
Linus Torvalds's avatar
Linus Torvalds committed
2349
	 */
2350
	BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds's avatar
Linus Torvalds committed
2351

Andrew Morton's avatar
Andrew Morton committed
2352 2353
	/*
	 * Check that size is in terms of words.  This is needed to avoid
Linus Torvalds's avatar
Linus Torvalds committed
2354 2355 2356
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2357 2358 2359
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds's avatar
Linus Torvalds committed
2360 2361
	}

Andrew Morton's avatar
Andrew Morton committed
2362 2363
	/* calculate the final buffer alignment: */

Linus Torvalds's avatar
Linus Torvalds committed
2364 2365
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Morton's avatar
Andrew Morton committed
2366 2367 2368 2369
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
Linus Torvalds's avatar
Linus Torvalds committed
2370 2371
		 */
		ralign = cache_line_size();
2372
		while (size <= ralign / 2)
Linus Torvalds's avatar
Linus Torvalds committed
2373 2374 2375 2376
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2377 2378

	/*
David Woodhouse's avatar
David Woodhouse committed
2379 2380 2381
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2382
	 */
David Woodhouse's avatar
David Woodhouse committed
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2393

2394
	/* 2) arch mandated alignment */
Linus Torvalds's avatar
Linus Torvalds committed
2395 2396 2397
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2398
	/* 3) caller mandated alignment */
Linus Torvalds's avatar
Linus Torvalds committed
2399 2400 2401
	if (ralign < align) {
		ralign = align;
	}
2402 2403
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2404
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Morton's avatar
Andrew Morton committed
2405
	/*
2406
	 * 4) Store it.
Linus Torvalds's avatar
Linus Torvalds committed
2407 2408 2409
	 */
	align = ralign;

2410 2411 2412 2413 2414
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

Linus Torvalds's avatar
Linus Torvalds committed
2415
	/* Get cache's description obj. */
2416
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
Linus Torvalds's avatar
Linus Torvalds committed
2417
	if (!cachep)
2418
		goto oops;
Linus Torvalds's avatar
Linus Torvalds committed
2419

2420
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
Linus Torvalds's avatar
Linus Torvalds committed
2421
#if DEBUG
2422
	cachep->obj_size = size;
Linus Torvalds's avatar
Linus Torvalds committed
2423

2424 2425 2426 2427
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
2428 2429
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2430 2431
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
Linus Torvalds's avatar
Linus Torvalds committed
2432 2433
	}
	if (flags & SLAB_STORE_USER) {
2434
		/* user store requires one word storage behind the end of
David Woodhouse's avatar
David Woodhouse committed
2435 2436
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
Linus Torvalds's avatar
Linus Torvalds committed
2437
		 */
David Woodhouse's avatar
David Woodhouse committed
2438 2439 2440 2441
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
Linus Torvalds's avatar
Linus Torvalds committed
2442 2443
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2444
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Carsten Otte's avatar
Carsten Otte committed
2445 2446
	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
Linus Torvalds's avatar
Linus Torvalds committed
2447 2448 2449 2450 2451
		size = PAGE_SIZE;
	}
#endif
#endif

2452 2453 2454
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2455 2456
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2457
	 */
2458 2459
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
Linus Torvalds's avatar
Linus Torvalds committed
2460 2461 2462 2463 2464 2465 2466 2467
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2468
	left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds's avatar
Linus Torvalds committed
2469 2470

	if (!cachep->num) {
2471 2472
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
Linus Torvalds's avatar
Linus Torvalds committed
2473 2474
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2475
		goto oops;
Linus Torvalds's avatar
Linus Torvalds committed
2476
	}
2477 2478
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
Linus Torvalds's avatar
Linus Torvalds committed
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2491 2492
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2493 2494 2495 2496 2497 2498 2499 2500 2501

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
Linus Torvalds's avatar
Linus Torvalds committed
2502 2503 2504 2505 2506 2507
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
2508
	cachep->colour = left_over / cachep->colour_off;
Linus Torvalds's avatar
Linus Torvalds committed
2509 2510 2511
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2512
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds's avatar
Linus Torvalds committed
2513
		cachep->gfpflags |= GFP_DMA;
2514
	cachep->buffer_size = size;
2515
	cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds's avatar
Linus Torvalds committed
2516

2517
	if (flags & CFLGS_OFF_SLAB) {
2518
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2519 2520 2521 2522 2523 2524 2525
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2526
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2527
	}
Linus Torvalds's avatar
Linus Torvalds committed
2528 2529 2530
	cachep->ctor = ctor;
	cachep->name = name;

2531
	if (setup_cpu_cache(cachep, gfp)) {
2532 2533 2534 2535
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
Linus Torvalds's avatar
Linus Torvalds committed
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

Linus Torvalds's avatar
Linus Torvalds committed
2547 2548
	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
Andrew Morton's avatar
Andrew Morton committed
2549
oops:
Linus Torvalds's avatar
Linus Torvalds committed
2550 2551
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
2552
		      name);
2553 2554 2555 2556
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
Linus Torvalds's avatar
Linus Torvalds committed
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2572
static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2573 2574 2575
{
#ifdef CONFIG_SMP
	check_irq_off();
2576
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2577 2578
#endif
}
2579

2580
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2581 2582 2583 2584 2585 2586 2587
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

Linus Torvalds's avatar
Linus Torvalds committed
2588 2589 2590 2591
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2592
#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds's avatar
Linus Torvalds committed
2593 2594
#endif

2595 2596 2597 2598
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

Linus Torvalds's avatar
Linus Torvalds committed
2599 2600
static void do_drain(void *arg)
{
Andrew Morton's avatar
Andrew Morton committed
2601
	struct kmem_cache *cachep = arg;
Linus Torvalds's avatar
Linus Torvalds committed
2602
	struct array_cache *ac;
2603
	int node = numa_mem_id();
Linus Torvalds's avatar
Linus Torvalds committed
2604 2605

	check_irq_off();
2606
	ac = cpu_cache_get(cachep);
2607 2608 2609
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2610 2611 2612
	ac->avail = 0;
}

2613
static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2614
{
2615 2616 2617
	struct kmem_list3 *l3;
	int node;

2618
	on_each_cpu(do_drain, cachep, 1);
Linus Torvalds's avatar
Linus Torvalds committed
2619
	check_irq_on();
2620
	for_each_online_node(node) {
2621
		l3 = cachep->nodelists[node];
2622 2623 2624 2625 2626 2627 2628
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2629
			drain_array(cachep, l3, l3->shared, 1, node);
2630
	}
Linus Torvalds's avatar
Linus Torvalds committed
2631 2632
}

2633 2634 2635 2636 2637 2638 2639 2640
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
Linus Torvalds's avatar
Linus Torvalds committed
2641
{
2642 2643
	struct list_head *p;
	int nr_freed;
Linus Torvalds's avatar
Linus Torvalds committed
2644 2645
	struct slab *slabp;

2646 2647
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds's avatar
Linus Torvalds committed
2648

2649
		spin_lock_irq(&l3->list_lock);
2650
		p = l3->slabs_free.prev;
2651 2652 2653 2654
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
Linus Torvalds's avatar
Linus Torvalds committed
2655

2656
		slabp = list_entry(p, struct slab, list);
Linus Torvalds's avatar
Linus Torvalds committed
2657
#if DEBUG
2658
		BUG_ON(slabp->inuse);
Linus Torvalds's avatar
Linus Torvalds committed
2659 2660
#endif
		list_del(&slabp->list);
2661 2662 2663 2664 2665
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2666
		spin_unlock_irq(&l3->list_lock);
2667 2668
		slab_destroy(cache, slabp);
		nr_freed++;
Linus Torvalds's avatar
Linus Torvalds committed
2669
	}
2670 2671
out:
	return nr_freed;
Linus Torvalds's avatar
Linus Torvalds committed
2672 2673
}

2674
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2675
static int __cache_shrink(struct kmem_cache *cachep)
2676 2677 2678 2679 2680 2681 2682 2683 2684
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2685 2686 2687 2688 2689 2690 2691
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2692 2693 2694 2695
	}
	return (ret ? 1 : 0);
}

Linus Torvalds's avatar
Linus Torvalds committed
2696 2697 2698 2699 2700 2701 2702
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2703
int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2704
{
2705
	int ret;
2706
	BUG_ON(!cachep || in_interrupt());
Linus Torvalds's avatar
Linus Torvalds committed
2707

2708
	get_online_cpus();
2709 2710 2711
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2712
	put_online_cpus();
2713
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
2714 2715 2716 2717 2718 2719 2720
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2721
 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds's avatar
Linus Torvalds committed
2722 2723 2724 2725 2726 2727 2728 2729
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
Lucas De Marchi's avatar
Lucas De Marchi committed
2730
 * The caller must guarantee that no one will allocate memory from the cache
Linus Torvalds's avatar
Linus Torvalds committed
2731 2732
 * during the kmem_cache_destroy().
 */
2733
void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2734
{
2735
	BUG_ON(!cachep || in_interrupt());
Linus Torvalds's avatar
Linus Torvalds committed
2736 2737

	/* Find the cache in the chain of caches. */
2738
	get_online_cpus();
Ingo Molnar's avatar
Ingo Molnar committed
2739
	mutex_lock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
2740 2741 2742 2743 2744 2745
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2746
		list_add(&cachep->next, &cache_chain);
Ingo Molnar's avatar
Ingo Molnar committed
2747
		mutex_unlock(&cache_chain_mutex);
2748
		put_online_cpus();
2749
		return;
Linus Torvalds's avatar
Linus Torvalds committed
2750 2751 2752
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2753
		rcu_barrier();
Linus Torvalds's avatar
Linus Torvalds committed
2754

2755
	__kmem_cache_destroy(cachep);
2756
	mutex_unlock(&cache_chain_mutex);
2757
	put_online_cpus();
Linus Torvalds's avatar
Linus Torvalds committed
2758 2759 2760
}
EXPORT_SYMBOL(kmem_cache_destroy);

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2772
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2773 2774
				   int colour_off, gfp_t local_flags,
				   int nodeid)
Linus Torvalds's avatar
Linus Torvalds committed
2775 2776
{
	struct slab *slabp;
2777

Linus Torvalds's avatar
Linus Torvalds committed
2778 2779
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2780
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2781
					      local_flags, nodeid);
2782 2783 2784 2785 2786 2787
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2788 2789
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
Linus Torvalds's avatar
Linus Torvalds committed
2790 2791 2792
		if (!slabp)
			return NULL;
	} else {
2793
		slabp = objp + colour_off;
Linus Torvalds's avatar
Linus Torvalds committed
2794 2795 2796 2797
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
2798
	slabp->s_mem = objp + colour_off;
2799
	slabp->nodeid = nodeid;
2800
	slabp->free = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2801 2802 2803 2804 2805
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
2806
	return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds's avatar
Linus Torvalds committed
2807 2808
}

2809
static void cache_init_objs(struct kmem_cache *cachep,
2810
			    struct slab *slabp)
Linus Torvalds's avatar
Linus Torvalds committed
2811 2812 2813 2814
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2815
		void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds's avatar
Linus Torvalds committed
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
Andrew Morton's avatar
Andrew Morton committed
2828 2829 2830
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
Linus Torvalds's avatar
Linus Torvalds committed
2831 2832
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2833
			cachep->ctor(objp + obj_offset(cachep));
Linus Torvalds's avatar
Linus Torvalds committed
2834 2835 2836 2837

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
2838
					   " end of an object");
Linus Torvalds's avatar
Linus Torvalds committed
2839 2840
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
2841
					   " start of an object");
Linus Torvalds's avatar
Linus Torvalds committed
2842
		}
Andrew Morton's avatar
Andrew Morton committed
2843 2844
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2845
			kernel_map_pages(virt_to_page(objp),
2846
					 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds's avatar
Linus Torvalds committed
2847 2848
#else
		if (cachep->ctor)
2849
			cachep->ctor(objp);
Linus Torvalds's avatar
Linus Torvalds committed
2850
#endif
2851
		slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds's avatar
Linus Torvalds committed
2852
	}
2853
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds's avatar
Linus Torvalds committed
2854 2855
}

2856
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
2857
{
2858 2859 2860 2861 2862 2863
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2864 2865
}

Andrew Morton's avatar
Andrew Morton committed
2866 2867
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2868
{
2869
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

Andrew Morton's avatar
Andrew Morton committed
2883 2884
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2885
{
2886
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2887 2888 2889 2890 2891

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2892
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2893
		printk(KERN_ERR "slab: double free detected in cache "
Andrew Morton's avatar
Andrew Morton committed
2894
				"'%s', objp %p\n", cachep->name, objp);
2895 2896 2897 2898 2899 2900 2901 2902
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2903 2904 2905
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2906
 * virtual address for kfree, ksize, and slab debugging.
2907 2908 2909
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
Linus Torvalds's avatar
Linus Torvalds committed
2910
{
2911
	int nr_pages;
Linus Torvalds's avatar
Linus Torvalds committed
2912 2913
	struct page *page;

2914
	page = virt_to_page(addr);
2915

2916
	nr_pages = 1;
2917
	if (likely(!PageCompound(page)))
2918 2919
		nr_pages <<= cache->gfporder;

Linus Torvalds's avatar
Linus Torvalds committed
2920
	do {
2921 2922
		page_set_cache(page, cache);
		page_set_slab(page, slab);
Linus Torvalds's avatar
Linus Torvalds committed
2923
		page++;
2924
	} while (--nr_pages);
Linus Torvalds's avatar
Linus Torvalds committed
2925 2926 2927 2928 2929 2930
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2931 2932
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
2933
{
2934 2935 2936
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2937
	struct kmem_list3 *l3;
Linus Torvalds's avatar
Linus Torvalds committed
2938

Andrew Morton's avatar
Andrew Morton committed
2939 2940 2941
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
Linus Torvalds's avatar
Linus Torvalds committed
2942
	 */
Christoph Lameter's avatar
Christoph Lameter committed
2943 2944
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
Linus Torvalds's avatar
Linus Torvalds committed
2945

2946
	/* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds's avatar
Linus Torvalds committed
2947
	check_irq_off();
2948 2949
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2950 2951

	/* Get colour for the slab, and cal the next value. */
2952 2953 2954 2955 2956
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2957

2958
	offset *= cachep->colour_off;
Linus Torvalds's avatar
Linus Torvalds committed
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

Andrew Morton's avatar
Andrew Morton committed
2971 2972 2973
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2974
	 */
2975
	if (!objp)
2976
		objp = kmem_getpages(cachep, local_flags, nodeid);
Andrew Morton's avatar
Andrew Morton committed
2977
	if (!objp)
Linus Torvalds's avatar
Linus Torvalds committed
2978 2979 2980
		goto failed;

	/* Get slab management. */
2981
	slabp = alloc_slabmgmt(cachep, objp, offset,
Christoph Lameter's avatar
Christoph Lameter committed
2982
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
Andrew Morton's avatar
Andrew Morton committed
2983
	if (!slabp)
Linus Torvalds's avatar
Linus Torvalds committed
2984 2985
		goto opps1;

2986
	slab_map_pages(cachep, slabp, objp);
Linus Torvalds's avatar
Linus Torvalds committed
2987

2988
	cache_init_objs(cachep, slabp);
Linus Torvalds's avatar
Linus Torvalds committed
2989 2990 2991 2992

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2993
	spin_lock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2994 2995

	/* Make slab active. */
2996
	list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds's avatar
Linus Torvalds committed
2997
	STATS_INC_GROWN(cachep);
2998 2999
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
3000
	return 1;
Andrew Morton's avatar
Andrew Morton committed
3001
opps1:
Linus Torvalds's avatar
Linus Torvalds committed
3002
	kmem_freepages(cachep, objp);
Andrew Morton's avatar
Andrew Morton committed
3003
failed:
Linus Torvalds's avatar
Linus Torvalds committed
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3020 3021
		       (unsigned long)objp);
		BUG();
Linus Torvalds's avatar
Linus Torvalds committed
3022 3023 3024
	}
}

3025 3026
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3027
	unsigned long long redzone1, redzone2;
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3043
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3044 3045 3046
			obj, redzone1, redzone2);
}

3047
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3048
				   void *caller)
Linus Torvalds's avatar
Linus Torvalds committed
3049 3050 3051 3052 3053
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3054 3055
	BUG_ON(virt_to_cache(objp) != cachep);

3056
	objp -= obj_offset(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3057
	kfree_debugcheck(objp);
3058
	page = virt_to_head_page(objp);
Linus Torvalds's avatar
Linus Torvalds committed
3059

3060
	slabp = page_get_slab(page);
Linus Torvalds's avatar
Linus Torvalds committed
3061 3062

	if (cachep->flags & SLAB_RED_ZONE) {
3063
		verify_redzone_free(cachep, objp);
Linus Torvalds's avatar
Linus Torvalds committed
3064 3065 3066 3067 3068 3069
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3070
	objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds's avatar
Linus Torvalds committed
3071 3072

	BUG_ON(objnr >= cachep->num);
3073
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds's avatar
Linus Torvalds committed
3074

3075 3076 3077
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
Linus Torvalds's avatar
Linus Torvalds committed
3078 3079
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Morton's avatar
Andrew Morton committed
3080
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds's avatar
Linus Torvalds committed
3081
			store_stackinfo(cachep, objp, (unsigned long)caller);
3082
			kernel_map_pages(virt_to_page(objp),
3083
					 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds's avatar
Linus Torvalds committed
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3094
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds's avatar
Linus Torvalds committed
3095 3096 3097
{
	kmem_bufctl_t i;
	int entries = 0;
3098

Linus Torvalds's avatar
Linus Torvalds committed
3099 3100 3101 3102 3103 3104 3105
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
Andrew Morton's avatar
Andrew Morton committed
3106 3107
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3108 3109 3110
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3111 3112 3113
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
Linus Torvalds's avatar
Linus Torvalds committed
3114 3115 3116 3117 3118 3119 3120 3121 3122
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3123
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3124 3125 3126 3127
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
3128 3129
	int node;

3130
retry:
Linus Torvalds's avatar
Linus Torvalds committed
3131
	check_irq_off();
3132
	node = numa_mem_id();
3133
	ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3134 3135
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Morton's avatar
Andrew Morton committed
3136 3137 3138 3139
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
Linus Torvalds's avatar
Linus Torvalds committed
3140 3141 3142
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3143
	l3 = cachep->nodelists[node];
3144 3145 3146

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
3147

3148
	/* See if we can refill from the shared array */
3149 3150
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3151
		goto alloc_done;
3152
	}
3153

Linus Torvalds's avatar
Linus Torvalds committed
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3169 3170 3171 3172 3173 3174

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3175
		BUG_ON(slabp->inuse >= cachep->num);
3176

Linus Torvalds's avatar
Linus Torvalds committed
3177 3178 3179 3180 3181
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3182
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3183
							    node);
Linus Torvalds's avatar
Linus Torvalds committed
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

Andrew Morton's avatar
Andrew Morton committed
3195
must_grow:
Linus Torvalds's avatar
Linus Torvalds committed
3196
	l3->free_objects -= ac->avail;
Andrew Morton's avatar
Andrew Morton committed
3197
alloc_done:
3198
	spin_unlock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
3199 3200 3201

	if (unlikely(!ac->avail)) {
		int x;
3202
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3203

Andrew Morton's avatar
Andrew Morton committed
3204
		/* cache_grow can reenable interrupts, then ac could change. */
3205
		ac = cpu_cache_get(cachep);
Andrew Morton's avatar
Andrew Morton committed
3206
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
Linus Torvalds's avatar
Linus Torvalds committed
3207 3208
			return NULL;

Andrew Morton's avatar
Andrew Morton committed
3209
		if (!ac->avail)		/* objects refilled by interrupt? */
Linus Torvalds's avatar
Linus Torvalds committed
3210 3211 3212
			goto retry;
	}
	ac->touched = 1;
3213
	return ac->entry[--ac->avail];
Linus Torvalds's avatar
Linus Torvalds committed
3214 3215
}

Andrew Morton's avatar
Andrew Morton committed
3216 3217
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3218 3219 3220 3221 3222 3223 3224 3225
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
3226 3227
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
Linus Torvalds's avatar
Linus Torvalds committed
3228
{
3229
	if (!objp)
Linus Torvalds's avatar
Linus Torvalds committed
3230
		return objp;
3231
	if (cachep->flags & SLAB_POISON) {
Linus Torvalds's avatar
Linus Torvalds committed
3232
#ifdef CONFIG_DEBUG_PAGEALLOC
3233
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3234
			kernel_map_pages(virt_to_page(objp),
3235
					 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds's avatar
Linus Torvalds committed
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
Andrew Morton's avatar
Andrew Morton committed
3247 3248 3249 3250
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
3251
			printk(KERN_ERR
3252
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
Andrew Morton's avatar
Andrew Morton committed
3253 3254
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
3255 3256 3257 3258
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3259 3260 3261 3262 3263
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3264
		slabp = page_get_slab(virt_to_head_page(objp));
3265 3266 3267 3268
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3269
	objp += obj_offset(cachep);
3270
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3271
		cachep->ctor(objp);
Tetsuo Handa's avatar
Tetsuo Handa committed
3272 3273
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3274
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
Hugh Dickins's avatar
Hugh Dickins committed
3275
		       objp, (int)ARCH_SLAB_MINALIGN);
3276
	}
Linus Torvalds's avatar
Linus Torvalds committed
3277 3278 3279 3280 3281 3282
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

Akinobu Mita's avatar
Akinobu Mita committed
3283
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3284 3285
{
	if (cachep == &cache_cache)
Akinobu Mita's avatar
Akinobu Mita committed
3286
		return false;
3287

3288
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3289 3290
}

3291
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3292
{
3293
	void *objp;
Linus Torvalds's avatar
Linus Torvalds committed
3294 3295
	struct array_cache *ac;

3296
	check_irq_off();
3297

3298
	ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3299 3300 3301
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3302
		objp = ac->entry[--ac->avail];
Linus Torvalds's avatar
Linus Torvalds committed
3303 3304 3305
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3306 3307 3308 3309 3310
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3311
	}
3312 3313 3314 3315 3316
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3317 3318
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3319 3320 3321
	return objp;
}

3322
#ifdef CONFIG_NUMA
3323
/*
3324
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3325 3326 3327 3328 3329 3330 3331 3332
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3333
	if (in_interrupt() || (flags & __GFP_THISNODE))
3334
		return NULL;
3335
	nid_alloc = nid_here = numa_mem_id();
3336
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3337
		nid_alloc = cpuset_slab_spread_node();
3338 3339 3340
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3341
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3342 3343 3344
	return NULL;
}

3345 3346
/*
 * Fallback function if there was no memory available and no objects on a
3347 3348 3349 3350 3351
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3352
 */
3353
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3354
{
3355 3356
	struct zonelist *zonelist;
	gfp_t local_flags;
3357
	struct zoneref *z;
3358 3359
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3360
	void *obj = NULL;
3361
	int nid;
3362
	unsigned int cpuset_mems_cookie;
3363 3364 3365 3366

	if (flags & __GFP_THISNODE)
		return NULL;

Christoph Lameter's avatar
Christoph Lameter committed
3367
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3368

3369 3370 3371 3372
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);

3373 3374 3375 3376 3377
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3378 3379
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3380

3381
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3382
			cache->nodelists[nid] &&
3383
			cache->nodelists[nid]->free_objects) {
3384 3385
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3386 3387 3388
				if (obj)
					break;
		}
3389 3390
	}

3391
	if (!obj) {
3392 3393 3394 3395 3396 3397
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3398 3399 3400
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3401
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3402 3403
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3420
				/* cache_grow already freed obj */
3421 3422 3423
				obj = NULL;
			}
		}
3424
	}
3425 3426 3427

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3428 3429 3430
	return obj;
}

3431 3432
/*
 * A interface to enable slab creation on nodeid
Linus Torvalds's avatar
Linus Torvalds committed
3433
 */
3434
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Morton's avatar
Andrew Morton committed
3435
				int nodeid)
3436 3437
{
	struct list_head *entry;
3438 3439 3440 3441 3442 3443 3444 3445
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

Andrew Morton's avatar
Andrew Morton committed
3446
retry:
3447
	check_irq_off();
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3467
	obj = slab_get_obj(cachep, slabp, nodeid);
3468 3469 3470 3471 3472
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

Andrew Morton's avatar
Andrew Morton committed
3473
	if (slabp->free == BUFCTL_END)
3474
		list_add(&slabp->list, &l3->slabs_full);
Andrew Morton's avatar
Andrew Morton committed
3475
	else
3476
		list_add(&slabp->list, &l3->slabs_partial);
3477

3478 3479
	spin_unlock(&l3->list_lock);
	goto done;
3480

Andrew Morton's avatar
Andrew Morton committed
3481
must_grow:
3482
	spin_unlock(&l3->list_lock);
3483
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3484 3485
	if (x)
		goto retry;
Linus Torvalds's avatar
Linus Torvalds committed
3486

3487
	return fallback_alloc(cachep, flags);
3488

Andrew Morton's avatar
Andrew Morton committed
3489
done:
3490
	return obj;
3491
}
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3511
	int slab_node = numa_mem_id();
3512

3513
	flags &= gfp_allowed_mask;
3514

3515 3516
	lockdep_trace_alloc(flags);

Akinobu Mita's avatar
Akinobu Mita committed
3517
	if (slab_should_failslab(cachep, flags))
3518 3519
		return NULL;

3520 3521 3522
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

Andrew Morton's avatar
Andrew Morton committed
3523
	if (nodeid == NUMA_NO_NODE)
3524
		nodeid = slab_node;
3525 3526 3527 3528 3529 3530 3531

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3532
	if (nodeid == slab_node) {
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3548 3549
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3550

Pekka Enberg's avatar
Pekka Enberg committed
3551 3552 3553
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3554 3555 3556
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3576 3577
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3598
	flags &= gfp_allowed_mask;
3599

3600 3601
	lockdep_trace_alloc(flags);

Akinobu Mita's avatar
Akinobu Mita committed
3602
	if (slab_should_failslab(cachep, flags))
3603 3604
		return NULL;

3605 3606 3607 3608 3609
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3610 3611
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3612 3613
	prefetchw(objp);

Pekka Enberg's avatar
Pekka Enberg committed
3614 3615 3616
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3617 3618 3619
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3620 3621
	return objp;
}
3622 3623 3624 3625

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3626
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3627
		       int node)
Linus Torvalds's avatar
Linus Torvalds committed
3628 3629
{
	int i;
3630
	struct kmem_list3 *l3;
Linus Torvalds's avatar
Linus Torvalds committed
3631 3632 3633 3634 3635

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3636
		slabp = virt_to_slab(objp);
3637
		l3 = cachep->nodelists[node];
Linus Torvalds's avatar
Linus Torvalds committed
3638
		list_del(&slabp->list);
3639
		check_spinlock_acquired_node(cachep, node);
Linus Torvalds's avatar
Linus Torvalds committed
3640
		check_slabp(cachep, slabp);
3641
		slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds's avatar
Linus Torvalds committed
3642
		STATS_DEC_ACTIVE(cachep);
3643
		l3->free_objects++;
Linus Torvalds's avatar
Linus Torvalds committed
3644 3645 3646 3647
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3648 3649
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3650 3651 3652 3653 3654 3655
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
Linus Torvalds's avatar
Linus Torvalds committed
3656 3657
				slab_destroy(cachep, slabp);
			} else {
3658
				list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds's avatar
Linus Torvalds committed
3659 3660 3661 3662 3663 3664
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3665
			list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds's avatar
Linus Torvalds committed
3666 3667 3668 3669
		}
	}
}

3670
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds's avatar
Linus Torvalds committed
3671 3672
{
	int batchcount;
3673
	struct kmem_list3 *l3;
3674
	int node = numa_mem_id();
Linus Torvalds's avatar
Linus Torvalds committed
3675 3676 3677 3678 3679 3680

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3681
	l3 = cachep->nodelists[node];
3682
	spin_lock(&l3->list_lock);
3683 3684
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
3685
		int max = shared_array->limit - shared_array->avail;
Linus Torvalds's avatar
Linus Torvalds committed
3686 3687 3688
		if (max) {
			if (batchcount > max)
				batchcount = max;
3689
			memcpy(&(shared_array->entry[shared_array->avail]),
3690
			       ac->entry, sizeof(void *) * batchcount);
Linus Torvalds's avatar
Linus Torvalds committed
3691 3692 3693 3694 3695
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3696
	free_block(cachep, ac->entry, batchcount, node);
Andrew Morton's avatar
Andrew Morton committed
3697
free_done:
Linus Torvalds's avatar
Linus Torvalds committed
3698 3699 3700 3701 3702
#if STATS
	{
		int i = 0;
		struct list_head *p;

3703 3704
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
Linus Torvalds's avatar
Linus Torvalds committed
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3716
	spin_unlock(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
3717
	ac->avail -= batchcount;
Andrew Morton's avatar
Andrew Morton committed
3718
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds's avatar
Linus Torvalds committed
3719 3720 3721
}

/*
Andrew Morton's avatar
Andrew Morton committed
3722 3723
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
Linus Torvalds's avatar
Linus Torvalds committed
3724
 */
3725 3726
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
Linus Torvalds's avatar
Linus Torvalds committed
3727
{
3728
	struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3729 3730

	check_irq_off();
3731
	kmemleak_free_recursive(objp, cachep->flags);
3732
	objp = cache_free_debugcheck(cachep, objp, caller);
Linus Torvalds's avatar
Linus Torvalds committed
3733

Pekka Enberg's avatar
Pekka Enberg committed
3734 3735
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3736 3737 3738 3739 3740 3741 3742
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3743
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3744 3745
		return;

Linus Torvalds's avatar
Linus Torvalds committed
3746 3747 3748 3749 3750 3751
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
3752 3753

	ac->entry[ac->avail++] = objp;
Linus Torvalds's avatar
Linus Torvalds committed
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3764
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3765
{
3766 3767
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3768 3769
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
3770 3771

	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
3772 3773 3774
}
EXPORT_SYMBOL(kmem_cache_alloc);

3775
#ifdef CONFIG_TRACING
3776 3777
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3778
{
3779 3780 3781 3782 3783 3784 3785
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
3786
}
3787
EXPORT_SYMBOL(kmem_cache_alloc_trace);
3788 3789
#endif

Linus Torvalds's avatar
Linus Torvalds committed
3790
#ifdef CONFIG_NUMA
3791 3792
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3793 3794 3795
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3796 3797 3798
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
3799 3800

	return ret;
3801
}
Linus Torvalds's avatar
Linus Torvalds committed
3802 3803
EXPORT_SYMBOL(kmem_cache_alloc_node);

3804
#ifdef CONFIG_TRACING
3805 3806 3807 3808
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
3809
{
3810 3811 3812
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
3813
				  __builtin_return_address(0));
3814 3815 3816 3817
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
3818
}
3819
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3820 3821
#endif

3822 3823
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3824
{
3825
	struct kmem_cache *cachep;
3826 3827

	cachep = kmem_find_general_cachep(size, flags);
3828 3829
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3830
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3831
}
3832

3833
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3834 3835 3836 3837 3838
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3839
EXPORT_SYMBOL(__kmalloc_node);
3840 3841

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3842
		int node, unsigned long caller)
3843
{
3844
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3845 3846 3847 3848 3849 3850 3851 3852
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3853
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3854
#endif /* CONFIG_NUMA */
Linus Torvalds's avatar
Linus Torvalds committed
3855 3856

/**
3857
 * __do_kmalloc - allocate memory
Linus Torvalds's avatar
Linus Torvalds committed
3858
 * @size: how many bytes of memory are required.
3859
 * @flags: the type of memory to allocate (see kmalloc).
3860
 * @caller: function caller for debug tracking of the caller
Linus Torvalds's avatar
Linus Torvalds committed
3861
 */
3862 3863
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
Linus Torvalds's avatar
Linus Torvalds committed
3864
{
3865
	struct kmem_cache *cachep;
3866
	void *ret;
Linus Torvalds's avatar
Linus Torvalds committed
3867

3868 3869 3870 3871 3872 3873
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3874 3875
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3876 3877
	ret = __cache_alloc(cachep, flags, caller);

3878 3879
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
3880 3881

	return ret;
3882 3883 3884
}


3885
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3886 3887
void *__kmalloc(size_t size, gfp_t flags)
{
3888
	return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds's avatar
Linus Torvalds committed
3889 3890 3891
}
EXPORT_SYMBOL(__kmalloc);

3892
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3893
{
3894
	return __do_kmalloc(size, flags, (void *)caller);
3895 3896
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3897 3898 3899 3900 3901 3902 3903

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3904 3905
#endif

Linus Torvalds's avatar
Linus Torvalds committed
3906 3907 3908 3909 3910 3911 3912 3913
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3914
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
3915 3916 3917 3918
{
	unsigned long flags;

	local_irq_save(flags);
3919
	debug_check_no_locks_freed(objp, obj_size(cachep));
3920 3921
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3922
	__cache_free(cachep, objp, __builtin_return_address(0));
Linus Torvalds's avatar
Linus Torvalds committed
3923
	local_irq_restore(flags);
3924

3925
	trace_kmem_cache_free(_RET_IP_, objp);
Linus Torvalds's avatar
Linus Torvalds committed
3926 3927 3928 3929 3930 3931 3932
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3933 3934
 * If @objp is NULL, no operation is performed.
 *
Linus Torvalds's avatar
Linus Torvalds committed
3935 3936 3937 3938 3939
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3940
	struct kmem_cache *c;
Linus Torvalds's avatar
Linus Torvalds committed
3941 3942
	unsigned long flags;

3943 3944
	trace_kfree(_RET_IP_, objp);

3945
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
Linus Torvalds's avatar
Linus Torvalds committed
3946 3947 3948
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3949
	c = virt_to_cache(objp);
3950
	debug_check_no_locks_freed(objp, obj_size(c));
3951
	debug_check_no_obj_freed(objp, obj_size(c));
3952
	__cache_free(c, (void *)objp, __builtin_return_address(0));
Linus Torvalds's avatar
Linus Torvalds committed
3953 3954 3955 3956
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3957
unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
3958
{
3959
	return obj_size(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3960 3961 3962
}
EXPORT_SYMBOL(kmem_cache_size);

3963
/*
Simon Arlott's avatar
Simon Arlott committed
3964
 * This initializes kmem_list3 or resizes various caches for all nodes.
3965
 */
3966
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3967 3968 3969
{
	int node;
	struct kmem_list3 *l3;
3970
	struct array_cache *new_shared;
3971
	struct array_cache **new_alien = NULL;
3972

3973
	for_each_online_node(node) {
3974

3975
                if (use_alien_caches) {
3976
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3977 3978 3979
                        if (!new_alien)
                                goto fail;
                }
3980

3981 3982 3983
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3984
				cachep->shared*cachep->batchcount,
3985
					0xbaadf00d, gfp);
3986 3987 3988 3989
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3990
		}
3991

Andrew Morton's avatar
Andrew Morton committed
3992 3993
		l3 = cachep->nodelists[node];
		if (l3) {
3994 3995
			struct array_cache *shared = l3->shared;

3996 3997
			spin_lock_irq(&l3->list_lock);

3998
			if (shared)
3999 4000
				free_block(cachep, shared->entry,
						shared->avail, node);
4001

4002 4003
			l3->shared = new_shared;
			if (!l3->alien) {
4004 4005 4006
				l3->alien = new_alien;
				new_alien = NULL;
			}
4007
			l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Morton's avatar
Andrew Morton committed
4008
					cachep->batchcount + cachep->num;
4009
			spin_unlock_irq(&l3->list_lock);
4010
			kfree(shared);
4011 4012 4013
			free_alien_cache(new_alien);
			continue;
		}
4014
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4015 4016 4017
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4018
			goto fail;
4019
		}
4020 4021 4022

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Morton's avatar
Andrew Morton committed
4023
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4024
		l3->shared = new_shared;
4025
		l3->alien = new_alien;
4026
		l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Morton's avatar
Andrew Morton committed
4027
					cachep->batchcount + cachep->num;
4028 4029
		cachep->nodelists[node] = l3;
	}
4030
	return 0;
4031

Andrew Morton's avatar
Andrew Morton committed
4032
fail:
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4048
	return -ENOMEM;
4049 4050
}

Linus Torvalds's avatar
Linus Torvalds committed
4051
struct ccupdate_struct {
4052
	struct kmem_cache *cachep;
4053
	struct array_cache *new[0];
Linus Torvalds's avatar
Linus Torvalds committed
4054 4055 4056 4057
};

static void do_ccupdate_local(void *info)
{
Andrew Morton's avatar
Andrew Morton committed
4058
	struct ccupdate_struct *new = info;
Linus Torvalds's avatar
Linus Torvalds committed
4059 4060 4061
	struct array_cache *old;

	check_irq_off();
4062
	old = cpu_cache_get(new->cachep);
4063

Linus Torvalds's avatar
Linus Torvalds committed
4064 4065 4066 4067
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4068
/* Always called with the cache_chain_mutex held */
Andrew Morton's avatar
Andrew Morton committed
4069
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4070
				int batchcount, int shared, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
4071
{
4072
	struct ccupdate_struct *new;
4073
	int i;
Linus Torvalds's avatar
Linus Torvalds committed
4074

4075 4076
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4077 4078 4079
	if (!new)
		return -ENOMEM;

4080
	for_each_online_cpu(i) {
4081
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4082
						batchcount, gfp);
4083
		if (!new->new[i]) {
4084
			for (i--; i >= 0; i--)
4085 4086
				kfree(new->new[i]);
			kfree(new);
4087
			return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
4088 4089
		}
	}
4090
	new->cachep = cachep;
Linus Torvalds's avatar
Linus Torvalds committed
4091

4092
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4093

Linus Torvalds's avatar
Linus Torvalds committed
4094 4095 4096
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4097
	cachep->shared = shared;
Linus Torvalds's avatar
Linus Torvalds committed
4098

4099
	for_each_online_cpu(i) {
4100
		struct array_cache *ccold = new->new[i];
Linus Torvalds's avatar
Linus Torvalds committed
4101 4102
		if (!ccold)
			continue;
4103 4104 4105
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
4106 4107
		kfree(ccold);
	}
4108
	kfree(new);
4109
	return alloc_kmemlist(cachep, gfp);
Linus Torvalds's avatar
Linus Torvalds committed
4110 4111
}

4112
/* Called with cache_chain_mutex held always */
4113
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
4114 4115 4116 4117
{
	int err;
	int limit, shared;

Andrew Morton's avatar
Andrew Morton committed
4118 4119
	/*
	 * The head array serves three purposes:
Linus Torvalds's avatar
Linus Torvalds committed
4120 4121
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
Andrew Morton's avatar
Andrew Morton committed
4122
	 * - reduce the number of linked list operations on the slab and
Linus Torvalds's avatar
Linus Torvalds committed
4123 4124 4125 4126
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4127
	if (cachep->buffer_size > 131072)
Linus Torvalds's avatar
Linus Torvalds committed
4128
		limit = 1;
4129
	else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds's avatar
Linus Torvalds committed
4130
		limit = 8;
4131
	else if (cachep->buffer_size > 1024)
Linus Torvalds's avatar
Linus Torvalds committed
4132
		limit = 24;
4133
	else if (cachep->buffer_size > 256)
Linus Torvalds's avatar
Linus Torvalds committed
4134 4135 4136 4137
		limit = 54;
	else
		limit = 120;

Andrew Morton's avatar
Andrew Morton committed
4138 4139
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds's avatar
Linus Torvalds committed
4140 4141 4142 4143 4144 4145 4146 4147
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4148
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds's avatar
Linus Torvalds committed
4149 4150 4151
		shared = 8;

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
4152 4153 4154
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds's avatar
Linus Torvalds committed
4155 4156 4157 4158
	 */
	if (limit > 32)
		limit = 32;
#endif
4159
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
Linus Torvalds's avatar
Linus Torvalds committed
4160 4161
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4162
		       cachep->name, -err);
4163
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
4164 4165
}

4166 4167
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4168 4169
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4170
 */
4171
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4172
			 struct array_cache *ac, int force, int node)
Linus Torvalds's avatar
Linus Torvalds committed
4173 4174 4175
{
	int tofree;

4176 4177
	if (!ac || !ac->avail)
		return;
Linus Torvalds's avatar
Linus Torvalds committed
4178 4179
	if (ac->touched && !force) {
		ac->touched = 0;
4180
	} else {
4181
		spin_lock_irq(&l3->list_lock);
4182 4183 4184 4185 4186 4187 4188 4189 4190
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4191
		spin_unlock_irq(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
4192 4193 4194 4195 4196
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4197
 * @w: work descriptor
Linus Torvalds's avatar
Linus Torvalds committed
4198 4199 4200 4201 4202 4203
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
Andrew Morton's avatar
Andrew Morton committed
4204 4205
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
Linus Torvalds's avatar
Linus Torvalds committed
4206
 */
4207
static void cache_reap(struct work_struct *w)
Linus Torvalds's avatar
Linus Torvalds committed
4208
{
4209
	struct kmem_cache *searchp;
4210
	struct kmem_list3 *l3;
4211
	int node = numa_mem_id();
4212
	struct delayed_work *work = to_delayed_work(w);
Linus Torvalds's avatar
Linus Torvalds committed
4213

4214
	if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds's avatar
Linus Torvalds committed
4215
		/* Give up. Setup the next iteration. */
4216
		goto out;
Linus Torvalds's avatar
Linus Torvalds committed
4217

4218
	list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds's avatar
Linus Torvalds committed
4219 4220
		check_irq_on();

4221 4222 4223 4224 4225
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4226
		l3 = searchp->nodelists[node];
4227

4228
		reap_alien(searchp, l3);
Linus Torvalds's avatar
Linus Torvalds committed
4229

4230
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds's avatar
Linus Torvalds committed
4231

4232 4233 4234 4235
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4236
		if (time_after(l3->next_reap, jiffies))
4237
			goto next;
Linus Torvalds's avatar
Linus Torvalds committed
4238

4239
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds's avatar
Linus Torvalds committed
4240

4241
		drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds's avatar
Linus Torvalds committed
4242

4243
		if (l3->free_touched)
4244
			l3->free_touched = 0;
4245 4246
		else {
			int freed;
Linus Torvalds's avatar
Linus Torvalds committed
4247

4248 4249 4250 4251
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4252
next:
Linus Torvalds's avatar
Linus Torvalds committed
4253 4254 4255
		cond_resched();
	}
	check_irq_on();
Ingo Molnar's avatar
Ingo Molnar committed
4256
	mutex_unlock(&cache_chain_mutex);
4257
	next_reap_node();
4258
out:
Andrew Morton's avatar
Andrew Morton committed
4259
	/* Set up the next iteration */
4260
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds's avatar
Linus Torvalds committed
4261 4262
}

4263
#ifdef CONFIG_SLABINFO
Linus Torvalds's avatar
Linus Torvalds committed
4264

4265
static void print_slabinfo_header(struct seq_file *m)
Linus Torvalds's avatar
Linus Torvalds committed
4266
{
4267 4268 4269 4270
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
4271
#if STATS
4272
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
Linus Torvalds's avatar
Linus Torvalds committed
4273
#else
4274
	seq_puts(m, "slabinfo - version: 2.1\n");
Linus Torvalds's avatar
Linus Torvalds committed
4275
#endif
4276 4277 4278 4279
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
Linus Torvalds's avatar
Linus Torvalds committed
4280
#if STATS
4281
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4282
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4283
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
Linus Torvalds's avatar
Linus Torvalds committed
4284
#endif
4285 4286 4287 4288 4289 4290 4291
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

Ingo Molnar's avatar
Ingo Molnar committed
4292
	mutex_lock(&cache_chain_mutex);
4293 4294
	if (!n)
		print_slabinfo_header(m);
4295 4296

	return seq_list_start(&cache_chain, *pos);
Linus Torvalds's avatar
Linus Torvalds committed
4297 4298 4299 4300
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4301
	return seq_list_next(p, &cache_chain, pos);
Linus Torvalds's avatar
Linus Torvalds committed
4302 4303 4304 4305
}

static void s_stop(struct seq_file *m, void *p)
{
Ingo Molnar's avatar
Ingo Molnar committed
4306
	mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
4307 4308 4309 4310
}

static int s_show(struct seq_file *m, void *p)
{
4311
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4312 4313 4314 4315 4316
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4317
	const char *name;
Linus Torvalds's avatar
Linus Torvalds committed
4318
	char *error = NULL;
4319 4320
	int node;
	struct kmem_list3 *l3;
Linus Torvalds's avatar
Linus Torvalds committed
4321 4322 4323

	active_objs = 0;
	num_slabs = 0;
4324 4325 4326 4327 4328
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4329 4330
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4331

4332
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4333 4334 4335 4336 4337
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4338
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4339 4340 4341 4342 4343 4344 4345
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4346
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4347 4348 4349 4350 4351
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4352 4353
		if (l3->shared)
			shared_avail += l3->shared->avail;
4354

4355
		spin_unlock_irq(&l3->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
4356
	}
4357 4358
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4359
	if (num_objs - active_objs != free_objects && !error)
Linus Torvalds's avatar
Linus Torvalds committed
4360 4361
		error = "free_objects accounting error";

4362
	name = cachep->name;
Linus Torvalds's avatar
Linus Torvalds committed
4363 4364 4365 4366
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4367
		   name, active_objs, num_objs, cachep->buffer_size,
4368
		   cachep->num, (1 << cachep->gfporder));
Linus Torvalds's avatar
Linus Torvalds committed
4369
	seq_printf(m, " : tunables %4u %4u %4u",
4370
		   cachep->limit, cachep->batchcount, cachep->shared);
4371
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4372
		   active_slabs, num_slabs, shared_avail);
Linus Torvalds's avatar
Linus Torvalds committed
4373
#if STATS
4374
	{			/* list3 stats */
Linus Torvalds's avatar
Linus Torvalds committed
4375 4376 4377 4378 4379 4380 4381
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4382
		unsigned long node_frees = cachep->node_frees;
4383
		unsigned long overflows = cachep->node_overflow;
Linus Torvalds's avatar
Linus Torvalds committed
4384

Joe Perches's avatar
Joe Perches committed
4385 4386 4387 4388 4389
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
Linus Torvalds's avatar
Linus Torvalds committed
4390 4391 4392 4393 4394 4395 4396 4397 4398
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4399
			   allochit, allocmiss, freehit, freemiss);
Linus Torvalds's avatar
Linus Torvalds committed
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4420
static const struct seq_operations slabinfo_op = {
4421 4422 4423 4424
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
Linus Torvalds's avatar
Linus Torvalds committed
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4435
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4436
		       size_t count, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
4437
{
4438
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds's avatar
Linus Torvalds committed
4439
	int limit, batchcount, shared, res;
4440
	struct kmem_cache *cachep;
4441

Linus Torvalds's avatar
Linus Torvalds committed
4442 4443 4444 4445
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
4446
	kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds's avatar
Linus Torvalds committed
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
Ingo Molnar's avatar
Ingo Molnar committed
4457
	mutex_lock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
4458
	res = -EINVAL;
4459
	list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds's avatar
Linus Torvalds committed
4460
		if (!strcmp(cachep->name, kbuf)) {
Andrew Morton's avatar
Andrew Morton committed
4461 4462
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4463
				res = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4464
			} else {
4465
				res = do_tune_cpucache(cachep, limit,
4466 4467
						       batchcount, shared,
						       GFP_KERNEL);
Linus Torvalds's avatar
Linus Torvalds committed
4468 4469 4470 4471
			}
			break;
		}
	}
Ingo Molnar's avatar
Ingo Molnar committed
4472
	mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
4473 4474 4475 4476
	if (res >= 0)
		res = count;
	return res;
}
4477

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4491 4492 4493 4494 4495
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4496
	return seq_list_start(&cache_chain, *pos);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4547
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4548

4549
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4550
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4551
		if (modname[0])
4552 4553 4554 4555 4556 4557 4558 4559 4560
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4561
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4586
		list_for_each_entry(slabp, &l3->slabs_full, list)
4587
			handle_slab(n, cachep, slabp);
4588
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4615

4616 4617 4618
	return 0;
}

4619
static const struct seq_operations slabstats_op = {
4620 4621 4622 4623 4624
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4653
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4654 4655
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4656
#endif
4657 4658 4659
	return 0;
}
module_init(slab_proc_init);
Linus Torvalds's avatar
Linus Torvalds committed
4660 4661
#endif

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
Pekka Enberg's avatar
Pekka Enberg committed
4674
size_t ksize(const void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
4675
{
4676 4677
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4678
		return 0;
Linus Torvalds's avatar
Linus Torvalds committed
4679

4680
	return obj_size(virt_to_cache(objp));
Linus Torvalds's avatar
Linus Torvalds committed
4681
}
4682
EXPORT_SYMBOL(ksize);