hpet.c 29.3 KB
Newer Older
1
#include <linux/clocksource.h>
2
#include <linux/clockchips.h>
3
#include <linux/interrupt.h>
4
#include <linux/export.h>
5
#include <linux/delay.h>
6
#include <linux/errno.h>
7
#include <linux/i8253.h>
8
#include <linux/slab.h>
9 10
#include <linux/hpet.h>
#include <linux/init.h>
11
#include <linux/cpu.h>
12 13
#include <linux/pm.h>
#include <linux/io.h>
14

15
#include <asm/cpufeature.h>
16
#include <asm/irqdomain.h>
17
#include <asm/fixmap.h>
18
#include <asm/hpet.h>
19
#include <asm/time.h>
20

21
#define HPET_MASK			CLOCKSOURCE_MASK(32)
22

23 24
/* FSEC = 10^-15
   NSEC = 10^-9 */
25
#define FSEC_PER_NSEC			1000000L
26

27 28 29 30 31 32
#define HPET_DEV_USED_BIT		2
#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
#define HPET_DEV_VALID			0x8
#define HPET_DEV_FSB_CAP		0x1000
#define HPET_DEV_PERI_CAP		0x2000

33 34 35
#define HPET_MIN_CYCLES			128
#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))

36 37 38
/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
39
unsigned long				hpet_address;
40
u8					hpet_blockid; /* OS timer block num */
41
bool					hpet_msi_disable;
42

43
#ifdef CONFIG_PCI_MSI
44
static unsigned int			hpet_num_timers;
45
#endif
46
static void __iomem			*hpet_virt_address;
47

48
struct hpet_dev {
49 50 51 52 53 54
	struct clock_event_device	evt;
	unsigned int			num;
	int				cpu;
	unsigned int			irq;
	unsigned int			flags;
	char				name[10];
55 56
};

57 58 59 60 61
inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
{
	return container_of(evtdev, struct hpet_dev, evt);
}

62
inline unsigned int hpet_readl(unsigned int a)
63 64 65 66
{
	return readl(hpet_virt_address + a);
}

67
static inline void hpet_writel(unsigned int d, unsigned int a)
68 69 70 71
{
	writel(d, hpet_virt_address + a);
}

72 73
#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
74
#endif
75

76 77 78 79 80 81 82 83 84 85 86
static inline void hpet_set_mapping(void)
{
	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}

static inline void hpet_clear_mapping(void)
{
	iounmap(hpet_virt_address);
	hpet_virt_address = NULL;
}

87 88 89
/*
 * HPET command line enable / disable
 */
90 91 92
bool boot_hpet_disable;
bool hpet_force_user;
static bool hpet_verbose;
93

94
static int __init hpet_setup(char *str)
95
{
96 97 98 99 100
	while (str) {
		char *next = strchr(str, ',');

		if (next)
			*next++ = 0;
101
		if (!strncmp("disable", str, 7))
102
			boot_hpet_disable = true;
103
		if (!strncmp("force", str, 5))
104
			hpet_force_user = true;
105
		if (!strncmp("verbose", str, 7))
106
			hpet_verbose = true;
107
		str = next;
108 109 110 111 112
	}
	return 1;
}
__setup("hpet=", hpet_setup);

113 114
static int __init disable_hpet(char *str)
{
115
	boot_hpet_disable = true;
116 117 118 119
	return 1;
}
__setup("nohpet", disable_hpet);

120 121
static inline int is_hpet_capable(void)
{
122
	return !boot_hpet_disable && hpet_address;
123 124 125 126 127
}

/*
 * HPET timer interrupt enable / disable
 */
128
static bool hpet_legacy_int_enabled;
129 130 131 132 133 134 135 136

/**
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
	return is_hpet_capable() && hpet_legacy_int_enabled;
}
137
EXPORT_SYMBOL_GPL(is_hpet_enabled);
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static void _hpet_print_config(const char *function, int line)
{
	u32 i, timers, l, h;
	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
	l = hpet_readl(HPET_ID);
	h = hpet_readl(HPET_PERIOD);
	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
	l = hpet_readl(HPET_CFG);
	h = hpet_readl(HPET_STATUS);
	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
	l = hpet_readl(HPET_COUNTER);
	h = hpet_readl(HPET_COUNTER+4);
	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);

	for (i = 0; i < timers; i++) {
		l = hpet_readl(HPET_Tn_CFG(i));
		h = hpet_readl(HPET_Tn_CFG(i)+4);
		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_CMP(i));
		h = hpet_readl(HPET_Tn_CMP(i)+4);
		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_ROUTE(i));
		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
		       i, l, h);
	}
}

#define hpet_print_config()					\
do {								\
	if (hpet_verbose)					\
173
		_hpet_print_config(__func__, __LINE__);	\
174 175
} while (0)

176 177 178 179 180
/*
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET
181

Venki Pallipadi's avatar
Venki Pallipadi committed
182
static void hpet_reserve_msi_timers(struct hpet_data *hd);
183

184
static void hpet_reserve_platform_timers(unsigned int id)
185 186
{
	struct hpet __iomem *hpet = hpet_virt_address;
187 188
	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
	unsigned int nrtimers, i;
189 190 191 192
	struct hpet_data hd;

	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

193 194 195 196
	memset(&hd, 0, sizeof(hd));
	hd.hd_phys_address	= hpet_address;
	hd.hd_address		= hpet;
	hd.hd_nirqs		= nrtimers;
197 198 199 200 201
	hpet_reserve_timer(&hd, 0);

#ifdef CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif
202

203 204 205 206 207
	/*
	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
	 * don't bother configuring *any* comparator interrupts.
	 */
208 209 210
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;

Ingo Molnar's avatar
Ingo Molnar committed
211
	for (i = 2; i < nrtimers; timer++, i++) {
212 213
		hd.hd_irq[i] = (readl(&timer->hpet_config) &
			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
Ingo Molnar's avatar
Ingo Molnar committed
214
	}
215

216
	hpet_reserve_msi_timers(&hd);
217

218
	hpet_alloc(&hd);
219

220 221
}
#else
222
static void hpet_reserve_platform_timers(unsigned int id) { }
223 224 225 226 227
#endif

/*
 * Common hpet info
 */
228
static unsigned long hpet_freq;
229

230
static struct clock_event_device hpet_clockevent;
231

232
static void hpet_stop_counter(void)
233
{
234
	u32 cfg = hpet_readl(HPET_CFG);
235 236
	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
237 238 239 240
}

static void hpet_reset_counter(void)
{
241 242
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);
243 244 245 246
}

static void hpet_start_counter(void)
{
247
	unsigned int cfg = hpet_readl(HPET_CFG);
248 249 250 251
	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

252 253 254
static void hpet_restart_counter(void)
{
	hpet_stop_counter();
255
	hpet_reset_counter();
256 257 258
	hpet_start_counter();
}

259 260
static void hpet_resume_device(void)
{
261
	force_hpet_resume();
262 263
}

264
static void hpet_resume_counter(struct clocksource *cs)
265 266
{
	hpet_resume_device();
267
	hpet_restart_counter();
268 269
}

270
static void hpet_enable_legacy_int(void)
271
{
272
	unsigned int cfg = hpet_readl(HPET_CFG);
273 274 275

	cfg |= HPET_CFG_LEGACY;
	hpet_writel(cfg, HPET_CFG);
276
	hpet_legacy_int_enabled = true;
277 278
}

279 280 281 282 283 284 285 286 287
static void hpet_legacy_clockevent_register(void)
{
	/* Start HPET legacy interrupts */
	hpet_enable_legacy_int();

	/*
	 * Start hpet with the boot cpu mask and make it
	 * global after the IO_APIC has been initialized.
	 */
288
	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 290
	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 292 293 294
	global_clock_event = &hpet_clockevent;
	printk(KERN_DEBUG "hpet clockevent registered\n");
}

295
static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296
{
297
	unsigned int cfg, cmp, now;
298 299
	uint64_t delta;

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	hpet_stop_counter();
	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
	delta >>= evt->shift;
	now = hpet_readl(HPET_COUNTER);
	cmp = now + (unsigned int)delta;
	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
	       HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(timer));
	hpet_writel(cmp, HPET_Tn_CMP(timer));
	udelay(1);
	/*
	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
	 * bit is automatically cleared after the first write.
	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
	 * Publication # 24674)
	 */
	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
	hpet_start_counter();
	hpet_print_config();

	return 0;
}

static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
{
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(timer));

	return 0;
}

static int hpet_shutdown(struct clock_event_device *evt, int timer)
{
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_Tn_CFG(timer));

	return 0;
}

static int hpet_resume(struct clock_event_device *evt, int timer)
{
	if (!timer) {
		hpet_enable_legacy_int();
	} else {
		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

355
		irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356
		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357
		disable_hardirq(hdev->irq);
358 359
		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
		enable_irq(hdev->irq);
360
	}
361 362 363
	hpet_print_config();

	return 0;
364 365
}

366 367
static int hpet_next_event(unsigned long delta,
			   struct clock_event_device *evt, int timer)
368
{
369
	u32 cnt;
370
	s32 res;
371 372

	cnt = hpet_readl(HPET_COUNTER);
373
	cnt += (u32) delta;
374
	hpet_writel(cnt, HPET_Tn_CMP(timer));
375

376
	/*
377 378 379 380 381 382
	 * HPETs are a complete disaster. The compare register is
	 * based on a equal comparison and neither provides a less
	 * than or equal functionality (which would require to take
	 * the wraparound into account) nor a simple count down event
	 * mode. Further the write to the comparator register is
	 * delayed internally up to two HPET clock cycles in certain
383 384 385 386 387 388
	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
	 * longer delays. We worked around that by reading back the
	 * compare register, but that required another workaround for
	 * ICH9,10 chips where the first readout after write can
	 * return the old stale value. We already had a minimum
	 * programming delta of 5us enforced, but a NMI or SMI hitting
389 390 391 392
	 * between the counter readout and the comparator write can
	 * move us behind that point easily. Now instead of reading
	 * the compare register back several times, we make the ETIME
	 * decision based on the following: Return ETIME if the
393
	 * counter value after the write is less than HPET_MIN_CYCLES
394
	 * away from the event or if the counter is already ahead of
395 396
	 * the event. The minimum programming delta for the generic
	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397
	 */
398
	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399

400
	return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 402
}

403
static int hpet_legacy_shutdown(struct clock_event_device *evt)
404
{
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	return hpet_shutdown(evt, 0);
}

static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
{
	return hpet_set_oneshot(evt, 0);
}

static int hpet_legacy_set_periodic(struct clock_event_device *evt)
{
	return hpet_set_periodic(evt, 0);
}

static int hpet_legacy_resume(struct clock_event_device *evt)
{
	return hpet_resume(evt, 0);
421 422 423 424 425 426 427 428
}

static int hpet_legacy_next_event(unsigned long delta,
			struct clock_event_device *evt)
{
	return hpet_next_event(delta, evt, 0);
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*
 * The hpet clock event device
 */
static struct clock_event_device hpet_clockevent = {
	.name			= "hpet",
	.features		= CLOCK_EVT_FEAT_PERIODIC |
				  CLOCK_EVT_FEAT_ONESHOT,
	.set_state_periodic	= hpet_legacy_set_periodic,
	.set_state_oneshot	= hpet_legacy_set_oneshot,
	.set_state_shutdown	= hpet_legacy_shutdown,
	.tick_resume		= hpet_legacy_resume,
	.set_next_event		= hpet_legacy_next_event,
	.irq			= 0,
	.rating			= 50,
};

445 446 447
/*
 * HPET MSI Support
 */
448
#ifdef CONFIG_PCI_MSI
Venki Pallipadi's avatar
Venki Pallipadi committed
449 450 451

static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
static struct hpet_dev	*hpet_devs;
452
static struct irq_domain *hpet_domain;
Venki Pallipadi's avatar
Venki Pallipadi committed
453

454
void hpet_msi_unmask(struct irq_data *data)
455
{
456
	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457
	unsigned int cfg;
458 459 460

	/* unmask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461
	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462 463 464
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

465
void hpet_msi_mask(struct irq_data *data)
466
{
467
	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468
	unsigned int cfg;
469 470 471

	/* mask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472
	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473 474 475
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

476
void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 478 479 480 481
{
	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
}

482
void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 484 485 486 487 488
{
	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
	msg->address_hi = 0;
}

489
static int hpet_msi_shutdown(struct clock_event_device *evt)
490 491
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

	return hpet_shutdown(evt, hdev->num);
}

static int hpet_msi_set_oneshot(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_set_oneshot(evt, hdev->num);
}

static int hpet_msi_set_periodic(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_set_periodic(evt, hdev->num);
}

static int hpet_msi_resume(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_resume(evt, hdev->num);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

static int hpet_msi_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
	return hpet_next_event(delta, evt, hdev->num);
}

static irqreturn_t hpet_interrupt_handler(int irq, void *data)
{
	struct hpet_dev *dev = (struct hpet_dev *)data;
	struct clock_event_device *hevt = &dev->evt;

	if (!hevt->event_handler) {
		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
				dev->num);
		return IRQ_HANDLED;
	}

	hevt->event_handler(hevt);
	return IRQ_HANDLED;
}

static int hpet_setup_irq(struct hpet_dev *dev)
{

	if (request_irq(dev->irq, hpet_interrupt_handler,
543
			IRQF_TIMER | IRQF_NOBALANCING,
544
			dev->name, dev))
545 546 547
		return -1;

	disable_irq(dev->irq);
548
	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549 550
	enable_irq(dev->irq);

551 552 553
	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
			 dev->name, dev->irq);

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	return 0;
}

/* This should be called in specific @cpu */
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
{
	struct clock_event_device *evt = &hdev->evt;

	WARN_ON(cpu != smp_processor_id());
	if (!(hdev->flags & HPET_DEV_VALID))
		return;

	hdev->cpu = cpu;
	per_cpu(cpu_hpet_dev, cpu) = hdev;
	evt->name = hdev->name;
	hpet_setup_irq(hdev);
	evt->irq = hdev->irq;

	evt->rating = 110;
	evt->features = CLOCK_EVT_FEAT_ONESHOT;
574
	if (hdev->flags & HPET_DEV_PERI_CAP) {
575
		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576 577
		evt->set_state_periodic = hpet_msi_set_periodic;
	}
578

579 580 581
	evt->set_state_shutdown = hpet_msi_shutdown;
	evt->set_state_oneshot = hpet_msi_set_oneshot;
	evt->tick_resume = hpet_msi_resume;
582
	evt->set_next_event = hpet_msi_next_event;
583
	evt->cpumask = cpumask_of(hdev->cpu);
584 585 586

	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
					0x7FFFFFFF);
587 588 589 590 591 592 593 594
}

#ifdef CONFIG_HPET
/* Reserve at least one timer for userspace (/dev/hpet) */
#define RESERVE_TIMERS 1
#else
#define RESERVE_TIMERS 0
#endif
Venki Pallipadi's avatar
Venki Pallipadi committed
595 596

static void hpet_msi_capability_lookup(unsigned int start_timer)
597 598 599 600
{
	unsigned int id;
	unsigned int num_timers;
	unsigned int num_timers_used = 0;
601
	int i, irq;
602

603 604 605
	if (hpet_msi_disable)
		return;

606 607
	if (boot_cpu_has(X86_FEATURE_ARAT))
		return;
608 609 610 611
	id = hpet_readl(HPET_ID);

	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
	num_timers++; /* Value read out starts from 0 */
612
	hpet_print_config();
613

614 615 616 617
	hpet_domain = hpet_create_irq_domain(hpet_blockid);
	if (!hpet_domain)
		return;

618 619 620 621 622 623 624 625
	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
	if (!hpet_devs)
		return;

	hpet_num_timers = num_timers;

	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626
		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627 628 629 630 631

		/* Only consider HPET timer with MSI support */
		if (!(cfg & HPET_TN_FSB_CAP))
			continue;

632 633 634 635 636 637
		hdev->flags = 0;
		if (cfg & HPET_TN_PERIODIC_CAP)
			hdev->flags |= HPET_DEV_PERI_CAP;
		sprintf(hdev->name, "hpet%d", i);
		hdev->num = i;

638
		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639
		if (irq <= 0)
640 641 642
			continue;

		hdev->irq = irq;
643 644 645 646 647 648 649 650 651 652 653
		hdev->flags |= HPET_DEV_FSB_CAP;
		hdev->flags |= HPET_DEV_VALID;
		num_timers_used++;
		if (num_timers_used == num_possible_cpus())
			break;
	}

	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
		num_timers, num_timers_used);
}

Venki Pallipadi's avatar
Venki Pallipadi committed
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
	int i;

	if (!hpet_devs)
		return;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;

		hd->hd_irq[hdev->num] = hdev->irq;
		hpet_reserve_timer(hd, hdev->num);
	}
}
#endif

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
static struct hpet_dev *hpet_get_unused_timer(void)
{
	int i;

	if (!hpet_devs)
		return NULL;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;
		if (test_and_set_bit(HPET_DEV_USED_BIT,
			(unsigned long *)&hdev->flags))
			continue;
		return hdev;
	}
	return NULL;
}

struct hpet_work_struct {
	struct delayed_work work;
	struct completion complete;
};

static void hpet_work(struct work_struct *w)
{
	struct hpet_dev *hdev;
	int cpu = smp_processor_id();
	struct hpet_work_struct *hpet_work;

	hpet_work = container_of(w, struct hpet_work_struct, work.work);

	hdev = hpet_get_unused_timer();
	if (hdev)
		init_one_hpet_msi_clockevent(hdev, cpu);

	complete(&hpet_work->complete);
}

static int hpet_cpuhp_notify(struct notifier_block *n,
		unsigned long action, void *hcpu)
{
	unsigned long cpu = (unsigned long)hcpu;
	struct hpet_work_struct work;
	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);

	switch (action & 0xf) {
	case CPU_ONLINE:
723
		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
724 725 726 727
		init_completion(&work.complete);
		/* FIXME: add schedule_work_on() */
		schedule_delayed_work_on(cpu, &work.work, 0);
		wait_for_completion(&work.complete);
728
		destroy_delayed_work_on_stack(&work.work);
729 730 731 732 733 734 735 736 737 738 739 740 741
		break;
	case CPU_DEAD:
		if (hdev) {
			free_irq(hdev->irq, hdev);
			hdev->flags &= ~HPET_DEV_USED;
			per_cpu(cpu_hpet_dev, cpu) = NULL;
		}
		break;
	}
	return NOTIFY_OK;
}
#else

Venki Pallipadi's avatar
Venki Pallipadi committed
742 743 744 745 746 747 748
static void hpet_msi_capability_lookup(unsigned int start_timer)
{
	return;
}

#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
749 750 751
{
	return;
}
Venki Pallipadi's avatar
Venki Pallipadi committed
752
#endif
753 754 755 756 757 758 759 760 761

static int hpet_cpuhp_notify(struct notifier_block *n,
		unsigned long action, void *hcpu)
{
	return NOTIFY_OK;
}

#endif

762 763 764
/*
 * Clock source related code
 */
765
static cycle_t read_hpet(struct clocksource *cs)
766 767 768 769 770 771 772 773 774 775
{
	return (cycle_t)hpet_readl(HPET_COUNTER);
}

static struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= HPET_MASK,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
776
	.resume		= hpet_resume_counter,
777
	.archdata	= { .vclock_mode = VCLOCK_HPET },
778 779
};

780
static int hpet_clocksource_register(void)
781
{
782
	u64 start, now;
783
	cycle_t t1;
784 785

	/* Start the counter */
786
	hpet_restart_counter();
787

788
	/* Verify whether hpet counter works */
789
	t1 = hpet_readl(HPET_COUNTER);
790
	start = rdtsc();
791 792 793 794 795 796 797 798 799

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		rep_nop();
800
		now = rdtsc();
801 802
	} while ((now - start) < 200000UL);

803
	if (t1 == hpet_readl(HPET_COUNTER)) {
804 805
		printk(KERN_WARNING
		       "HPET counter not counting. HPET disabled\n");
806
		return -ENODEV;
807 808
	}

809
	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
810 811 812
	return 0;
}

813 814
static u32 *hpet_boot_cfg;

Pavel Machek's avatar
Pavel Machek committed
815 816
/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
817 818 819
 */
int __init hpet_enable(void)
{
820
	u32 hpet_period, cfg, id;
821
	u64 freq;
822
	unsigned int i, last;
823 824 825 826 827 828 829 830 831 832

	if (!is_hpet_capable())
		return 0;

	hpet_set_mapping();

	/*
	 * Read the period and check for a sane value:
	 */
	hpet_period = hpet_readl(HPET_PERIOD);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	/*
	 * AMD SB700 based systems with spread spectrum enabled use a
	 * SMM based HPET emulation to provide proper frequency
	 * setting. The SMM code is initialized with the first HPET
	 * register access and takes some time to complete. During
	 * this time the config register reads 0xffffffff. We check
	 * for max. 1000 loops whether the config register reads a non
	 * 0xffffffff value to make sure that HPET is up and running
	 * before we go further. A counting loop is safe, as the HPET
	 * access takes thousands of CPU cycles. On non SB700 based
	 * machines this check is only done once and has no side
	 * effects.
	 */
	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
		if (i == 1000) {
			printk(KERN_WARNING
			       "HPET config register value = 0xFFFFFFFF. "
			       "Disabling HPET\n");
			goto out_nohpet;
		}
	}

856 857 858
	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
		goto out_nohpet;

859 860 861 862 863 864 865 866
	/*
	 * The period is a femto seconds value. Convert it to a
	 * frequency.
	 */
	freq = FSEC_PER_SEC;
	do_div(freq, hpet_period);
	hpet_freq = freq;

867 868 869 870 871
	/*
	 * Read the HPET ID register to retrieve the IRQ routing
	 * information and the number of channels
	 */
	id = hpet_readl(HPET_ID);
872
	hpet_print_config();
873

874 875
	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;

876 877 878 879 880
#ifdef CONFIG_HPET_EMULATE_RTC
	/*
	 * The legacy routing mode needs at least two channels, tick timer
	 * and the rtc emulation channel.
	 */
881
	if (!last)
882 883 884
		goto out_nohpet;
#endif

885 886 887 888 889 890 891 892
	cfg = hpet_readl(HPET_CFG);
	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
				GFP_KERNEL);
	if (hpet_boot_cfg)
		*hpet_boot_cfg = cfg;
	else
		pr_warn("HPET initial state will not be saved\n");
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
893
	hpet_writel(cfg, HPET_CFG);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	if (cfg)
		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
			cfg);

	for (i = 0; i <= last; ++i) {
		cfg = hpet_readl(HPET_Tn_CFG(i));
		if (hpet_boot_cfg)
			hpet_boot_cfg[i + 1] = cfg;
		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
		hpet_writel(cfg, HPET_Tn_CFG(i));
		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
		if (cfg)
			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
				cfg, i);
	}
	hpet_print_config();

913 914 915
	if (hpet_clocksource_register())
		goto out_nohpet;

916
	if (id & HPET_ID_LEGSUP) {
917
		hpet_legacy_clockevent_register();
918 919 920
		return 1;
	}
	return 0;
921

922
out_nohpet:
923
	hpet_clear_mapping();
924
	hpet_address = 0;
925 926 927
	return 0;
}

928 929 930 931 932 933 934 935
/*
 * Needs to be late, as the reserve_timer code calls kalloc !
 *
 * Not a problem on i386 as hpet_enable is called from late_time_init,
 * but on x86_64 it is necessary !
 */
static __init int hpet_late_init(void)
{
936 937
	int cpu;

938
	if (boot_hpet_disable)
939 940
		return -ENODEV;

941 942 943 944 945 946 947 948
	if (!hpet_address) {
		if (!force_hpet_address)
			return -ENODEV;

		hpet_address = force_hpet_address;
		hpet_enable();
	}

949 950 951
	if (!hpet_virt_address)
		return -ENODEV;

952 953 954 955 956
	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
		hpet_msi_capability_lookup(2);
	else
		hpet_msi_capability_lookup(0);

957
	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
958
	hpet_print_config();
959

960 961 962
	if (hpet_msi_disable)
		return 0;

963 964 965
	if (boot_cpu_has(X86_FEATURE_ARAT))
		return 0;

966
	cpu_notifier_register_begin();
967 968 969 970 971
	for_each_online_cpu(cpu) {
		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
	}

	/* This notifier should be called after workqueue is ready */
972 973
	__hotcpu_notifier(hpet_cpuhp_notify, -20);
	cpu_notifier_register_done();
974

975 976 977 978
	return 0;
}
fs_initcall(hpet_late_init);

OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
979 980
void hpet_disable(void)
{
981
	if (is_hpet_capable() && hpet_virt_address) {
982
		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
983

984 985 986
		if (hpet_boot_cfg)
			cfg = *hpet_boot_cfg;
		else if (hpet_legacy_int_enabled) {
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
987
			cfg &= ~HPET_CFG_LEGACY;
988
			hpet_legacy_int_enabled = false;
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
989 990 991
		}
		cfg &= ~HPET_CFG_ENABLE;
		hpet_writel(cfg, HPET_CFG);
992 993 994 995 996 997 998 999 1000 1001 1002 1003

		if (!hpet_boot_cfg)
			return;

		id = hpet_readl(HPET_ID);
		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);

		for (id = 0; id <= last; ++id)
			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));

		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
			hpet_writel(*hpet_boot_cfg, HPET_CFG);
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
1004 1005 1006
	}
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#ifdef CONFIG_HPET_EMULATE_RTC

/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
1025
#include <asm/rtc.h>
1026 1027 1028 1029 1030 1031

#define DEFAULT_RTC_INT_FREQ	64
#define DEFAULT_RTC_SHIFT	6
#define RTC_NUM_INTS		1

static unsigned long hpet_rtc_flags;
David Brownell's avatar
David Brownell committed
1032
static int hpet_prev_update_sec;
1033 1034
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
1035
static u32 hpet_t1_cmp;
1036 1037
static u32 hpet_default_delta;
static u32 hpet_pie_delta;
1038 1039
static unsigned long hpet_pie_limit;

1040 1041
static rtc_irq_handler irq_handler;

1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Check that the hpet counter c1 is ahead of the c2
 */
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
{
	return (s32)(c2 - c1) < 0;
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return -ENODEV;
	if (irq_handler)
		return -EBUSY;

	irq_handler = handler;

	return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return;

	irq_handler = NULL;
	hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for timer 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
1088 1089
	unsigned int cfg, cnt, delta;
	unsigned long flags;
1090 1091 1092 1093 1094 1095 1096 1097 1098

	if (!is_hpet_enabled())
		return 0;

	if (!hpet_default_delta) {
		uint64_t clc;

		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1099
		hpet_default_delta = clc;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	local_irq_save(flags);

	cnt = delta + hpet_readl(HPET_COUNTER);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}
1122
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1123

1124 1125
static void hpet_disable_rtc_channel(void)
{
1126
	u32 cfg = hpet_readl(HPET_T1_CFG);
1127 1128 1129 1130
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_T1_CFG);
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags &= ~bit_mask;
1142 1143 1144
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

1145 1146
	return 1;
}
1147
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	unsigned long oldbits = hpet_rtc_flags;

	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags |= bit_mask;

David Brownell's avatar
David Brownell committed
1158 1159 1160
	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
		hpet_prev_update_sec = -1;

1161 1162 1163 1164 1165
	if (!oldbits)
		hpet_rtc_timer_init();

	return 1;
}
1166
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
			unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_alarm_time.tm_hour = hrs;
	hpet_alarm_time.tm_min = min;
	hpet_alarm_time.tm_sec = sec;

	return 1;
}
1180
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

int hpet_set_periodic_freq(unsigned long freq)
{
	uint64_t clc;

	if (!is_hpet_enabled())
		return 0;

	if (freq <= DEFAULT_RTC_INT_FREQ)
		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
	else {
		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		do_div(clc, freq);
		clc >>= hpet_clockevent.shift;
1195
		hpet_pie_delta = clc;
1196
		hpet_pie_limit = 0;
1197 1198 1199
	}
	return 1;
}
1200
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201 1202 1203 1204 1205

int hpet_rtc_dropped_irq(void)
{
	return is_hpet_enabled();
}
1206
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207 1208 1209

static void hpet_rtc_timer_reinit(void)
{
1210
	unsigned int delta;
1211 1212
	int lost_ints = -1;

1213 1214
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	/*
	 * Increment the comparator value until we are ahead of the
	 * current count.
	 */
	do {
		hpet_t1_cmp += delta;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
		lost_ints++;
1229
	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230 1231 1232 1233 1234

	if (lost_ints) {
		if (hpet_rtc_flags & RTC_PIE)
			hpet_pie_count += lost_ints;
		if (printk_ratelimit())
David Brownell's avatar
David Brownell committed
1235
			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
				lost_ints);
	}
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;

	hpet_rtc_timer_reinit();
1246
	memset(&curr_time, 0, sizeof(struct rtc_time));
1247 1248

	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1249
		get_rtc_time(&curr_time);
1250 1251 1252

	if (hpet_rtc_flags & RTC_UIE &&
	    curr_time.tm_sec != hpet_prev_update_sec) {
David Brownell's avatar
David Brownell committed
1253 1254
		if (hpet_prev_update_sec >= 0)
			rtc_int_flag = RTC_UF;
1255 1256 1257 1258 1259 1260 1261 1262 1263
		hpet_prev_update_sec = curr_time.tm_sec;
	}

	if (hpet_rtc_flags & RTC_PIE &&
	    ++hpet_pie_count >= hpet_pie_limit) {
		rtc_int_flag |= RTC_PF;
		hpet_pie_count = 0;
	}

1264
	if (hpet_rtc_flags & RTC_AIE &&
1265 1266 1267 1268 1269 1270 1271
	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
			rtc_int_flag |= RTC_AF;

	if (rtc_int_flag) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1272 1273
		if (irq_handler)
			irq_handler(rtc_int_flag, dev_id);
1274 1275 1276
	}
	return IRQ_HANDLED;
}
1277
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1278
#endif