util.c 48.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Wireless utility functions
 *
Johannes Berg's avatar
Johannes Berg committed
5
 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6
 * Copyright 2013-2014  Intel Mobile Communications GmbH
Luca Coelho's avatar
Luca Coelho committed
7
 * Copyright 2017	Intel Deutschland GmbH
8
 * Copyright (C) 2018 Intel Corporation
9
 */
10
#include <linux/export.h>
Johannes Berg's avatar
Johannes Berg committed
11
#include <linux/bitops.h>
12
#include <linux/etherdevice.h>
13
#include <linux/slab.h>
14
#include <linux/ieee80211.h>
Johannes Berg's avatar
Johannes Berg committed
15
#include <net/cfg80211.h>
16
#include <net/ip.h>
17
#include <net/dsfield.h>
18
#include <linux/if_vlan.h>
19
#include <linux/mpls.h>
20
#include <linux/gcd.h>
21
#include <linux/bitfield.h>
22
#include "core.h"
23 24
#include "rdev-ops.h"

25

26 27
struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
28
			    u32 basic_rates, int bitrate)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
{
	struct ieee80211_rate *result = &sband->bitrates[0];
	int i;

	for (i = 0; i < sband->n_bitrates; i++) {
		if (!(basic_rates & BIT(i)))
			continue;
		if (sband->bitrates[i].bitrate > bitrate)
			continue;
		result = &sband->bitrates[i];
	}

	return result;
}
EXPORT_SYMBOL(ieee80211_get_response_rate);

45 46
u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
			      enum nl80211_bss_scan_width scan_width)
47 48 49 50 51 52 53 54 55
{
	struct ieee80211_rate *bitrates;
	u32 mandatory_rates = 0;
	enum ieee80211_rate_flags mandatory_flag;
	int i;

	if (WARN_ON(!sband))
		return 1;

56
	if (sband->band == NL80211_BAND_2GHZ) {
57 58 59 60 61 62
		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
		else
			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
	} else {
63
		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
64
	}
65 66 67 68 69 70 71 72 73

	bitrates = sband->bitrates;
	for (i = 0; i < sband->n_bitrates; i++)
		if (bitrates[i].flags & mandatory_flag)
			mandatory_rates |= BIT(i);
	return mandatory_rates;
}
EXPORT_SYMBOL(ieee80211_mandatory_rates);

74
int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
75
{
76 77
	/* see 802.11 17.3.8.3.2 and Annex J
	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
78 79 80
	if (chan <= 0)
		return 0; /* not supported */
	switch (band) {
81
	case NL80211_BAND_2GHZ:
82 83 84 85
		if (chan == 14)
			return 2484;
		else if (chan < 14)
			return 2407 + chan * 5;
86
		break;
87
	case NL80211_BAND_5GHZ:
88 89
		if (chan >= 182 && chan <= 196)
			return 4000 + chan * 5;
90
		else
91 92
			return 5000 + chan * 5;
		break;
93
	case NL80211_BAND_60GHZ:
94
		if (chan < 7)
95 96 97 98
			return 56160 + chan * 2160;
		break;
	default:
		;
99
	}
100
	return 0; /* not supported */
101 102 103 104 105
}
EXPORT_SYMBOL(ieee80211_channel_to_frequency);

int ieee80211_frequency_to_channel(int freq)
{
106
	/* see 802.11 17.3.8.3.2 and Annex J */
107 108
	if (freq == 2484)
		return 14;
109
	else if (freq < 2484)
110
		return (freq - 2407) / 5;
111 112
	else if (freq >= 4910 && freq <= 4980)
		return (freq - 4000) / 5;
113
	else if (freq <= 45000) /* DMG band lower limit */
114
		return (freq - 5000) / 5;
115
	else if (freq >= 58320 && freq <= 70200)
116 117 118
		return (freq - 56160) / 2160;
	else
		return 0;
119 120 121
}
EXPORT_SYMBOL(ieee80211_frequency_to_channel);

122
struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
123
{
124
	enum nl80211_band band;
125 126 127
	struct ieee80211_supported_band *sband;
	int i;

128
	for (band = 0; band < NUM_NL80211_BANDS; band++) {
129 130 131 132 133 134 135 136 137 138 139 140 141
		sband = wiphy->bands[band];

		if (!sband)
			continue;

		for (i = 0; i < sband->n_channels; i++) {
			if (sband->channels[i].center_freq == freq)
				return &sband->channels[i];
		}
	}

	return NULL;
}
142
EXPORT_SYMBOL(ieee80211_get_channel);
143

144
static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
145 146 147
{
	int i, want;

148
	switch (sband->band) {
149
	case NL80211_BAND_5GHZ:
150 151 152 153 154 155 156 157 158 159 160 161
		want = 3;
		for (i = 0; i < sband->n_bitrates; i++) {
			if (sband->bitrates[i].bitrate == 60 ||
			    sband->bitrates[i].bitrate == 120 ||
			    sband->bitrates[i].bitrate == 240) {
				sband->bitrates[i].flags |=
					IEEE80211_RATE_MANDATORY_A;
				want--;
			}
		}
		WARN_ON(want);
		break;
162
	case NL80211_BAND_2GHZ:
163 164
		want = 7;
		for (i = 0; i < sband->n_bitrates; i++) {
165 166 167 168 169
			switch (sband->bitrates[i].bitrate) {
			case 10:
			case 20:
			case 55:
			case 110:
170 171 172 173
				sband->bitrates[i].flags |=
					IEEE80211_RATE_MANDATORY_B |
					IEEE80211_RATE_MANDATORY_G;
				want--;
174 175 176 177
				break;
			case 60:
			case 120:
			case 240:
178 179 180
				sband->bitrates[i].flags |=
					IEEE80211_RATE_MANDATORY_G;
				want--;
181 182
				/* fall through */
			default:
183 184
				sband->bitrates[i].flags |=
					IEEE80211_RATE_ERP_G;
185 186
				break;
			}
187
		}
188
		WARN_ON(want != 0 && want != 3);
189
		break;
190
	case NL80211_BAND_60GHZ:
191 192 193 194
		/* check for mandatory HT MCS 1..4 */
		WARN_ON(!sband->ht_cap.ht_supported);
		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
		break;
195
	case NUM_NL80211_BANDS:
196
	default:
197 198 199 200 201 202 203
		WARN_ON(1);
		break;
	}
}

void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
{
204
	enum nl80211_band band;
205

206
	for (band = 0; band < NUM_NL80211_BANDS; band++)
207
		if (wiphy->bands[band])
208
			set_mandatory_flags_band(wiphy->bands[band]);
209
}
210

211 212 213 214 215 216 217 218 219
bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
{
	int i;
	for (i = 0; i < wiphy->n_cipher_suites; i++)
		if (cipher == wiphy->cipher_suites[i])
			return true;
	return false;
}

220 221
int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
				   struct key_params *params, int key_idx,
222
				   bool pairwise, const u8 *mac_addr)
223
{
224
	if (key_idx < 0 || key_idx > 5)
225 226
		return -EINVAL;

227 228 229 230 231 232
	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
		return -EINVAL;

	if (pairwise && !mac_addr)
		return -EINVAL;

233 234 235
	switch (params->cipher) {
	case WLAN_CIPHER_SUITE_TKIP:
	case WLAN_CIPHER_SUITE_CCMP:
236 237 238
	case WLAN_CIPHER_SUITE_CCMP_256:
	case WLAN_CIPHER_SUITE_GCMP:
	case WLAN_CIPHER_SUITE_GCMP_256:
239 240 241 242 243 244 245 246 247 248
		/* Disallow pairwise keys with non-zero index unless it's WEP
		 * or a vendor specific cipher (because current deployments use
		 * pairwise WEP keys with non-zero indices and for vendor
		 * specific ciphers this should be validated in the driver or
		 * hardware level - but 802.11i clearly specifies to use zero)
		 */
		if (pairwise && key_idx)
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_AES_CMAC:
249 250 251
	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
252 253 254
		/* Disallow BIP (group-only) cipher as pairwise cipher */
		if (pairwise)
			return -EINVAL;
255 256
		if (key_idx < 4)
			return -EINVAL;
257
		break;
258 259 260 261
	case WLAN_CIPHER_SUITE_WEP40:
	case WLAN_CIPHER_SUITE_WEP104:
		if (key_idx > 3)
			return -EINVAL;
262 263 264
	default:
		break;
	}
265 266 267

	switch (params->cipher) {
	case WLAN_CIPHER_SUITE_WEP40:
268
		if (params->key_len != WLAN_KEY_LEN_WEP40)
269 270 271
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_TKIP:
272
		if (params->key_len != WLAN_KEY_LEN_TKIP)
273 274 275
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_CCMP:
276
		if (params->key_len != WLAN_KEY_LEN_CCMP)
277 278
			return -EINVAL;
		break;
279 280 281 282 283 284 285 286 287 288 289 290
	case WLAN_CIPHER_SUITE_CCMP_256:
		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_GCMP:
		if (params->key_len != WLAN_KEY_LEN_GCMP)
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_GCMP_256:
		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
			return -EINVAL;
		break;
291
	case WLAN_CIPHER_SUITE_WEP104:
292
		if (params->key_len != WLAN_KEY_LEN_WEP104)
293 294 295
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_AES_CMAC:
296
		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
297 298
			return -EINVAL;
		break;
299 300 301 302 303 304 305 306 307 308 309 310
	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
			return -EINVAL;
		break;
	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
			return -EINVAL;
		break;
311
	default:
312 313 314 315 316 317 318 319
		/*
		 * We don't know anything about this algorithm,
		 * allow using it -- but the driver must check
		 * all parameters! We still check below whether
		 * or not the driver supports this algorithm,
		 * of course.
		 */
		break;
320 321
	}

322 323 324 325 326 327 328 329
	if (params->seq) {
		switch (params->cipher) {
		case WLAN_CIPHER_SUITE_WEP40:
		case WLAN_CIPHER_SUITE_WEP104:
			/* These ciphers do not use key sequence */
			return -EINVAL;
		case WLAN_CIPHER_SUITE_TKIP:
		case WLAN_CIPHER_SUITE_CCMP:
330 331 332
		case WLAN_CIPHER_SUITE_CCMP_256:
		case WLAN_CIPHER_SUITE_GCMP:
		case WLAN_CIPHER_SUITE_GCMP_256:
333
		case WLAN_CIPHER_SUITE_AES_CMAC:
334 335 336
		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337 338 339 340 341 342
			if (params->seq_len != 6)
				return -EINVAL;
			break;
		}
	}

343
	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
344 345
		return -EINVAL;

346 347
	return 0;
}
348

349
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
350 351 352 353 354 355
{
	unsigned int hdrlen = 24;

	if (ieee80211_is_data(fc)) {
		if (ieee80211_has_a4(fc))
			hdrlen = 30;
356
		if (ieee80211_is_data_qos(fc)) {
357
			hdrlen += IEEE80211_QOS_CTL_LEN;
358 359 360
			if (ieee80211_has_order(fc))
				hdrlen += IEEE80211_HT_CTL_LEN;
		}
361 362 363
		goto out;
	}

364 365 366 367 368 369
	if (ieee80211_is_mgmt(fc)) {
		if (ieee80211_has_order(fc))
			hdrlen += IEEE80211_HT_CTL_LEN;
		goto out;
	}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	if (ieee80211_is_ctl(fc)) {
		/*
		 * ACK and CTS are 10 bytes, all others 16. To see how
		 * to get this condition consider
		 *   subtype mask:   0b0000000011110000 (0x00F0)
		 *   ACK subtype:    0b0000000011010000 (0x00D0)
		 *   CTS subtype:    0b0000000011000000 (0x00C0)
		 *   bits that matter:         ^^^      (0x00E0)
		 *   value of those: 0b0000000011000000 (0x00C0)
		 */
		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
			hdrlen = 10;
		else
			hdrlen = 16;
	}
out:
	return hdrlen;
}
EXPORT_SYMBOL(ieee80211_hdrlen);

unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
{
	const struct ieee80211_hdr *hdr =
			(const struct ieee80211_hdr *)skb->data;
	unsigned int hdrlen;

	if (unlikely(skb->len < 10))
		return 0;
	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	if (unlikely(hdrlen > skb->len))
		return 0;
	return hdrlen;
}
EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);

405
static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
406
{
407
	int ae = flags & MESH_FLAGS_AE;
408
	/* 802.11-2012, 8.2.4.7.3 */
409
	switch (ae) {
410
	default:
411 412
	case 0:
		return 6;
413
	case MESH_FLAGS_AE_A4:
414
		return 12;
415
	case MESH_FLAGS_AE_A5_A6:
416 417 418
		return 18;
	}
}
419 420 421 422 423

unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
{
	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
}
424
EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
425

426
int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
427 428
				  const u8 *addr, enum nl80211_iftype iftype,
				  u8 data_offset)
429 430
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
431 432 433 434 435 436 437
	struct {
		u8 hdr[ETH_ALEN] __aligned(2);
		__be16 proto;
	} payload;
	struct ethhdr tmp;
	u16 hdrlen;
	u8 mesh_flags = 0;
438 439 440 441

	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
		return -1;

442
	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
443 444
	if (skb->len < hdrlen + 8)
		return -1;
445 446 447 448 449 450 451 452 453 454

	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
	 * header
	 * IEEE 802.11 address fields:
	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
	 *   0     0   DA    SA    BSSID n/a
	 *   0     1   DA    BSSID SA    n/a
	 *   1     0   BSSID SA    DA    n/a
	 *   1     1   RA    TA    DA    SA
	 */
455 456 457 458 459
	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);

	if (iftype == NL80211_IFTYPE_MESH_POINT)
		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
460

461 462
	mesh_flags &= MESH_FLAGS_AE;

463 464 465 466
	switch (hdr->frame_control &
		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
	case cpu_to_le16(IEEE80211_FCTL_TODS):
		if (unlikely(iftype != NL80211_IFTYPE_AP &&
467 468
			     iftype != NL80211_IFTYPE_AP_VLAN &&
			     iftype != NL80211_IFTYPE_P2P_GO))
469 470 471 472
			return -1;
		break;
	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
473 474 475
			     iftype != NL80211_IFTYPE_MESH_POINT &&
			     iftype != NL80211_IFTYPE_AP_VLAN &&
			     iftype != NL80211_IFTYPE_STATION))
476 477
			return -1;
		if (iftype == NL80211_IFTYPE_MESH_POINT) {
478
			if (mesh_flags == MESH_FLAGS_AE_A4)
Zhu Yi's avatar
Zhu Yi committed
479
				return -1;
480
			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
Zhu Yi's avatar
Zhu Yi committed
481 482
				skb_copy_bits(skb, hdrlen +
					offsetof(struct ieee80211s_hdr, eaddr1),
483
					tmp.h_dest, 2 * ETH_ALEN);
484
			}
485
			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
486 487 488
		}
		break;
	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
489
		if ((iftype != NL80211_IFTYPE_STATION &&
490 491
		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
		     iftype != NL80211_IFTYPE_MESH_POINT) ||
492 493
		    (is_multicast_ether_addr(tmp.h_dest) &&
		     ether_addr_equal(tmp.h_source, addr)))
494
			return -1;
495
		if (iftype == NL80211_IFTYPE_MESH_POINT) {
496
			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
497
				return -1;
498
			if (mesh_flags == MESH_FLAGS_AE_A4)
Zhu Yi's avatar
Zhu Yi committed
499 500
				skb_copy_bits(skb, hdrlen +
					offsetof(struct ieee80211s_hdr, eaddr1),
501 502
					tmp.h_source, ETH_ALEN);
			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
503
		}
504 505
		break;
	case cpu_to_le16(0):
506
		if (iftype != NL80211_IFTYPE_ADHOC &&
507 508
		    iftype != NL80211_IFTYPE_STATION &&
		    iftype != NL80211_IFTYPE_OCB)
509
				return -1;
510 511 512
		break;
	}

513 514
	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
	tmp.h_proto = payload.proto;
515

516 517 518 519
	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
		    tmp.h_proto != htons(ETH_P_AARP) &&
		    tmp.h_proto != htons(ETH_P_IPX)) ||
		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
520 521
		/* remove RFC1042 or Bridge-Tunnel encapsulation and
		 * replace EtherType */
522 523
		hdrlen += ETH_ALEN + 2;
	else
524
		tmp.h_proto = htons(skb->len - hdrlen);
525 526

	pskb_pull(skb, hdrlen);
527

528
	if (!ehdr)
529
		ehdr = skb_push(skb, sizeof(struct ethhdr));
530 531
	memcpy(ehdr, &tmp, sizeof(tmp));

532 533
	return 0;
}
534
EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
535

536 537 538 539 540 541 542
static void
__frame_add_frag(struct sk_buff *skb, struct page *page,
		 void *ptr, int len, int size)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	int page_offset;

543
	page_ref_inc(page);
544 545 546 547 548 549 550 551 552
	page_offset = ptr - page_address(page);
	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
}

static void
__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
			    int offset, int len)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
553
	const skb_frag_t *frag = &sh->frags[0];
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	struct page *frag_page;
	void *frag_ptr;
	int frag_len, frag_size;
	int head_size = skb->len - skb->data_len;
	int cur_len;

	frag_page = virt_to_head_page(skb->head);
	frag_ptr = skb->data;
	frag_size = head_size;

	while (offset >= frag_size) {
		offset -= frag_size;
		frag_page = skb_frag_page(frag);
		frag_ptr = skb_frag_address(frag);
		frag_size = skb_frag_size(frag);
569
		frag++;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	}

	frag_ptr += offset;
	frag_len = frag_size - offset;

	cur_len = min(len, frag_len);

	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
	len -= cur_len;

	while (len > 0) {
		frag_len = skb_frag_size(frag);
		cur_len = min(len, frag_len);
		__frame_add_frag(frame, skb_frag_page(frag),
				 skb_frag_address(frag), cur_len, frag_len);
		len -= cur_len;
586
		frag++;
587 588 589
	}
}

590 591
static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
592
		       int offset, int len, bool reuse_frag)
593 594
{
	struct sk_buff *frame;
595
	int cur_len = len;
596 597 598 599

	if (skb->len - offset < len)
		return NULL;

600 601 602 603 604 605 606 607
	/*
	 * When reusing framents, copy some data to the head to simplify
	 * ethernet header handling and speed up protocol header processing
	 * in the stack later.
	 */
	if (reuse_frag)
		cur_len = min_t(int, len, 32);

608 609 610 611
	/*
	 * Allocate and reserve two bytes more for payload
	 * alignment since sizeof(struct ethhdr) is 14.
	 */
612
	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
613 614
	if (!frame)
		return NULL;
615 616

	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617 618 619 620 621 622 623 624
	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);

	len -= cur_len;
	if (!len)
		return frame;

	offset += cur_len;
	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
625 626 627

	return frame;
}
628 629 630

void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
			      const u8 *addr, enum nl80211_iftype iftype,
631
			      const unsigned int extra_headroom,
632
			      const u8 *check_da, const u8 *check_sa)
633
{
634
	unsigned int hlen = ALIGN(extra_headroom, 4);
635 636 637
	struct sk_buff *frame = NULL;
	u16 ethertype;
	u8 *payload;
638
	int offset = 0, remaining;
639
	struct ethhdr eth;
640
	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
641
	bool reuse_skb = false;
642
	bool last = false;
643

644 645 646
	while (!last) {
		unsigned int subframe_len;
		int len;
647 648
		u8 padding;

649 650 651
		skb_copy_bits(skb, offset, &eth, sizeof(eth));
		len = ntohs(eth.h_proto);
		subframe_len = sizeof(struct ethhdr) + len;
652
		padding = (4 - subframe_len) & 0x3;
653

654
		/* the last MSDU has no padding */
655
		remaining = skb->len - offset;
656 657 658
		if (subframe_len > remaining)
			goto purge;

659 660
		offset += sizeof(struct ethhdr);
		last = remaining <= subframe_len + padding;
661 662 663 664 665 666 667 668 669 670

		/* FIXME: should we really accept multicast DA? */
		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
		     !ether_addr_equal(check_da, eth.h_dest)) ||
		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
			offset += len + padding;
			continue;
		}

		/* reuse skb for the last subframe */
671
		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
672
			skb_pull(skb, offset);
673
			frame = skb;
674 675
			reuse_skb = true;
		} else {
676 677
			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
						       reuse_frag);
678 679 680
			if (!frame)
				goto purge;

681
			offset += len + padding;
682 683 684 685 686 687 688 689
		}

		skb_reset_network_header(frame);
		frame->dev = skb->dev;
		frame->priority = skb->priority;

		payload = frame->data;
		ethertype = (payload[6] << 8) | payload[7];
690
		if (likely((ether_addr_equal(payload, rfc1042_header) &&
691
			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
692
			   ether_addr_equal(payload, bridge_tunnel_header))) {
693 694
			eth.h_proto = htons(ethertype);
			skb_pull(frame, ETH_ALEN + 2);
695
		}
696 697

		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
698 699 700
		__skb_queue_tail(list, frame);
	}

701 702 703
	if (!reuse_skb)
		dev_kfree_skb(skb);

704 705 706 707 708 709 710 711
	return;

 purge:
	__skb_queue_purge(list);
	dev_kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);

712
/* Given a data frame determine the 802.1p/1d tag to use. */
713 714
unsigned int cfg80211_classify8021d(struct sk_buff *skb,
				    struct cfg80211_qos_map *qos_map)
715 716
{
	unsigned int dscp;
717
	unsigned char vlan_priority;
718 719 720 721 722 723 724 725 726

	/* skb->priority values from 256->263 are magic values to
	 * directly indicate a specific 802.1d priority.  This is used
	 * to allow 802.1d priority to be passed directly in from VLAN
	 * tags, etc.
	 */
	if (skb->priority >= 256 && skb->priority <= 263)
		return skb->priority - 256;

727 728
	if (skb_vlan_tag_present(skb)) {
		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
729 730 731 732 733
			>> VLAN_PRIO_SHIFT;
		if (vlan_priority > 0)
			return vlan_priority;
	}

734 735
	switch (skb->protocol) {
	case htons(ETH_P_IP):
736 737 738 739
		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
		break;
	case htons(ETH_P_IPV6):
		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
740
		break;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	case htons(ETH_P_MPLS_UC):
	case htons(ETH_P_MPLS_MC): {
		struct mpls_label mpls_tmp, *mpls;

		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
					  sizeof(*mpls), &mpls_tmp);
		if (!mpls)
			return 0;

		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
			>> MPLS_LS_TC_SHIFT;
	}
	case htons(ETH_P_80221):
		/* 802.21 is always network control traffic */
		return 7;
756 757 758 759
	default:
		return 0;
	}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	if (qos_map) {
		unsigned int i, tmp_dscp = dscp >> 2;

		for (i = 0; i < qos_map->num_des; i++) {
			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
				return qos_map->dscp_exception[i].up;
		}

		for (i = 0; i < 8; i++) {
			if (tmp_dscp >= qos_map->up[i].low &&
			    tmp_dscp <= qos_map->up[i].high)
				return i;
		}
	}

775 776 777
	return dscp >> 5;
}
EXPORT_SYMBOL(cfg80211_classify8021d);
778 779 780

const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
{
781 782 783 784
	const struct cfg80211_bss_ies *ies;

	ies = rcu_dereference(bss->ies);
	if (!ies)
785
		return NULL;
786 787

	return cfg80211_find_ie(ie, ies->data, ies->len);
788 789
}
EXPORT_SYMBOL(ieee80211_bss_get_ie);
790 791 792

void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
{
793
	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
794 795 796 797 798 799
	struct net_device *dev = wdev->netdev;
	int i;

	if (!wdev->connect_keys)
		return;

800
	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
801 802
		if (!wdev->connect_keys->params[i].cipher)
			continue;
803 804
		if (rdev_add_key(rdev, dev, i, false, NULL,
				 &wdev->connect_keys->params[i])) {
805
			netdev_err(dev, "failed to set key %d\n", i);
806 807
			continue;
		}
808 809 810 811 812
		if (wdev->connect_keys->def == i &&
		    rdev_set_default_key(rdev, dev, i, true, true)) {
			netdev_err(dev, "failed to set defkey %d\n", i);
			continue;
		}
813 814
	}

815
	kzfree(wdev->connect_keys);
816 817
	wdev->connect_keys = NULL;
}
818

819
void cfg80211_process_wdev_events(struct wireless_dev *wdev)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
{
	struct cfg80211_event *ev;
	unsigned long flags;

	spin_lock_irqsave(&wdev->event_lock, flags);
	while (!list_empty(&wdev->event_list)) {
		ev = list_first_entry(&wdev->event_list,
				      struct cfg80211_event, list);
		list_del(&ev->list);
		spin_unlock_irqrestore(&wdev->event_lock, flags);

		wdev_lock(wdev);
		switch (ev->type) {
		case EVENT_CONNECT_RESULT:
			__cfg80211_connect_result(
835 836 837
				wdev->netdev,
				&ev->cr,
				ev->cr.status == WLAN_STATUS_SUCCESS);
838 839
			break;
		case EVENT_ROAMED:
840
			__cfg80211_roamed(wdev, &ev->rm);
841 842 843 844
			break;
		case EVENT_DISCONNECTED:
			__cfg80211_disconnected(wdev->netdev,
						ev->dc.ie, ev->dc.ie_len,
845 846
						ev->dc.reason,
						!ev->dc.locally_generated);
847 848
			break;
		case EVENT_IBSS_JOINED:
849 850
			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
					       ev->ij.channel);
851
			break;
852 853 854
		case EVENT_STOPPED:
			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
			break;
855 856 857
		case EVENT_PORT_AUTHORIZED:
			__cfg80211_port_authorized(wdev, ev->pa.bssid);
			break;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
		}
		wdev_unlock(wdev);

		kfree(ev);

		spin_lock_irqsave(&wdev->event_lock, flags);
	}
	spin_unlock_irqrestore(&wdev->event_lock, flags);
}

void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
{
	struct wireless_dev *wdev;

	ASSERT_RTNL();

874
	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
875 876 877 878 879
		cfg80211_process_wdev_events(wdev);
}

int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
			  struct net_device *dev, enum nl80211_iftype ntype,
880
			  struct vif_params *params)
881 882 883 884
{
	int err;
	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;

885
	ASSERT_RTNL();
886 887 888 889 890

	/* don't support changing VLANs, you just re-create them */
	if (otype == NL80211_IFTYPE_AP_VLAN)
		return -EOPNOTSUPP;

891 892 893
	/* cannot change into P2P device or NAN */
	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
	    ntype == NL80211_IFTYPE_NAN)
894 895
		return -EOPNOTSUPP;

896 897 898 899
	if (!rdev->ops->change_virtual_intf ||
	    !(rdev->wiphy.interface_modes & (1 << ntype)))
		return -EOPNOTSUPP;

900
	/* if it's part of a bridge, reject changing type to station/ibss */
901
	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
902 903 904
	    (ntype == NL80211_IFTYPE_ADHOC ||
	     ntype == NL80211_IFTYPE_STATION ||
	     ntype == NL80211_IFTYPE_P2P_CLIENT))
905 906
		return -EBUSY;

907
	if (ntype != otype) {
908
		dev->ieee80211_ptr->use_4addr = false;
909
		dev->ieee80211_ptr->mesh_id_up_len = 0;
910
		wdev_lock(dev->ieee80211_ptr);
911
		rdev_set_qos_map(rdev, dev, NULL);
912
		wdev_unlock(dev->ieee80211_ptr);
913

914
		switch (otype) {
915
		case NL80211_IFTYPE_AP:
916
			cfg80211_stop_ap(rdev, dev, true);
917
			break;
918 919 920 921
		case NL80211_IFTYPE_ADHOC:
			cfg80211_leave_ibss(rdev, dev, false);
			break;
		case NL80211_IFTYPE_STATION:
922
		case NL80211_IFTYPE_P2P_CLIENT:
923
			wdev_lock(dev->ieee80211_ptr);
924 925
			cfg80211_disconnect(rdev, dev,
					    WLAN_REASON_DEAUTH_LEAVING, true);
926
			wdev_unlock(dev->ieee80211_ptr);
927 928 929 930 931 932 933 934 935 936 937
			break;
		case NL80211_IFTYPE_MESH_POINT:
			/* mesh should be handled? */
			break;
		default:
			break;
		}

		cfg80211_process_rdev_events(rdev);
	}

938
	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
939 940 941

	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);

942 943 944
	if (!err && params && params->use_4addr != -1)
		dev->ieee80211_ptr->use_4addr = params->use_4addr;

945 946 947 948 949 950 951
	if (!err) {
		dev->priv_flags &= ~IFF_DONT_BRIDGE;
		switch (ntype) {
		case NL80211_IFTYPE_STATION:
			if (dev->ieee80211_ptr->use_4addr)
				break;
			/* fall through */
952
		case NL80211_IFTYPE_OCB:
953
		case NL80211_IFTYPE_P2P_CLIENT:
954 955 956
		case NL80211_IFTYPE_ADHOC:
			dev->priv_flags |= IFF_DONT_BRIDGE;
			break;
957
		case NL80211_IFTYPE_P2P_GO:
958 959 960 961 962 963 964 965 966 967
		case NL80211_IFTYPE_AP:
		case NL80211_IFTYPE_AP_VLAN:
		case NL80211_IFTYPE_WDS:
		case NL80211_IFTYPE_MESH_POINT:
			/* bridging OK */
			break;
		case NL80211_IFTYPE_MONITOR:
			/* monitor can't bridge anyway */
			break;
		case NL80211_IFTYPE_UNSPECIFIED:
968
		case NUM_NL80211_IFTYPES:
969 970
			/* not happening */
			break;
971
		case NL80211_IFTYPE_P2P_DEVICE:
972
		case NL80211_IFTYPE_NAN:
973 974
			WARN_ON(1);
			break;
975 976 977
		}
	}

978 979 980 981 982
	if (!err && ntype != otype && netif_running(dev)) {
		cfg80211_update_iface_num(rdev, ntype, 1);
		cfg80211_update_iface_num(rdev, otype, -1);
	}

983 984
	return err;
}
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
{
	int modulation, streams, bitrate;

	/* the formula below does only work for MCS values smaller than 32 */
	if (WARN_ON_ONCE(rate->mcs >= 32))
		return 0;

	modulation = rate->mcs & 7;
	streams = (rate->mcs >> 3) + 1;

	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;

	if (modulation < 4)
		bitrate *= (modulation + 1);
	else if (modulation == 4)
		bitrate *= (modulation + 2);
	else
		bitrate *= (modulation + 3);

	bitrate *= streams;

	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
		bitrate = (bitrate / 9) * 10;

	/* do NOT round down here */
	return (bitrate + 50000) / 100000;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
{
	static const u32 __mcs2bitrate[] = {
		/* control PHY */
		[0] =   275,
		/* SC PHY */
		[1] =  3850,
		[2] =  7700,
		[3] =  9625,
		[4] = 11550,
		[5] = 12512, /* 1251.25 mbps */
		[6] = 15400,
		[7] = 19250,
		[8] = 23100,
		[9] = 25025,
		[10] = 30800,
		[11] = 38500,
		[12] = 46200,
		/* OFDM PHY */
		[13] =  6930,
		[14] =  8662, /* 866.25 mbps */
		[15] = 13860,
		[16] = 17325,
		[17] = 20790,
		[18] = 27720,
		[19] = 34650,
		[20] = 41580,
		[21] = 45045,
		[22] = 51975,
		[23] = 62370,
		[24] = 67568, /* 6756.75 mbps */
		/* LP-SC PHY */
		[25] =  6260,
		[26] =  8340,
		[27] = 11120,
		[28] = 12510,
		[29] = 16680,
		[30] = 22240,
		[31] = 25030,
	};

	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
		return 0;

	return __mcs2bitrate[rate->mcs];
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
{
	static const u32 base[4][10] = {
		{   6500000,
		   13000000,
		   19500000,
		   26000000,
		   39000000,
		   52000000,
		   58500000,
		   65000000,
		   78000000,
1074 1075
		/* not in the spec, but some devices use this: */
		   86500000,
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		},
		{  13500000,
		   27000000,
		   40500000,
		   54000000,
		   81000000,
		  108000000,
		  121500000,
		  135000000,
		  162000000,
		  180000000,
		},
		{  29300000,
		   58500000,
		   87800000,
		  117000000,
		  175500000,
		  234000000,
		  263300000,
		  292500000,
		  351000000,
		  390000000,
		},
		{  58500000,
		  117000000,
		  175500000,
		  234000000,
		  351000000,
		  468000000,
		  526500000,
		  585000000,
		  702000000,
		  780000000,
		},
	};
	u32 bitrate;
	int idx;

1114 1115
	if (rate->mcs > 9)
		goto warn;
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	switch (rate->bw) {
	case RATE_INFO_BW_160:
		idx = 3;
		break;
	case RATE_INFO_BW_80:
		idx = 2;
		break;
	case RATE_INFO_BW_40:
		idx = 1;
		break;
	case RATE_INFO_BW_5:
	case RATE_INFO_BW_10:
	default:
1130
		goto warn;
1131 1132 1133
	case RATE_INFO_BW_20:
		idx = 0;
	}
1134 1135 1136 1137 1138 1139 1140 1141 1142

	bitrate = base[idx][rate->mcs];
	bitrate *= rate->nss;

	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
		bitrate = (bitrate / 9) * 10;

	/* do NOT round down here */
	return (bitrate + 50000) / 100000;
1143 1144 1145 1146
 warn:
	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
		  rate->bw, rate->mcs, rate->nss);
	return 0;
1147 1148
}

Luca Coelho's avatar
Luca Coelho committed
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
{
#define SCALE 2048
	u16 mcs_divisors[12] = {
		34133, /* 16.666666... */
		17067, /*  8.333333... */
		11378, /*  5.555555... */
		 8533, /*  4.166666... */
		 5689, /*  2.777777... */
		 4267, /*  2.083333... */
		 3923, /*  1.851851... */
		 3413, /*  1.666666... */
		 2844, /*  1.388888... */
		 2560, /*  1.250000... */
		 2276, /*  1.111111... */
		 2048, /*  1.000000... */
	};
	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
	u64 tmp;
	u32 result;

	if (WARN_ON_ONCE(rate->mcs > 11))
		return 0;

	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
		return 0;
	if (WARN_ON_ONCE(rate->he_ru_alloc >
			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
		return 0;
	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
		return 0;

	if (rate->bw == RATE_INFO_BW_160)
		result = rates_160M[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_80 ||
		 (rate->bw == RATE_INFO_BW_HE_RU &&
		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
		result = rates_969[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_40 ||
		 (rate->bw == RATE_INFO_BW_HE_RU &&
		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
		result = rates_484[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_20 ||
		 (rate->bw == RATE_INFO_BW_HE_RU &&
		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
		result = rates_242[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_HE_RU &&
		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
		result = rates_106[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_HE_RU &&
		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
		result = rates_52[rate->he_gi];
	else if (rate->bw == RATE_INFO_BW_HE_RU &&
		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
		result = rates_26[rate->he_gi];
	else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
		      rate->bw, rate->he_ru_alloc))
		return 0;

	/* now scale to the appropriate MCS */
	tmp = result;
	tmp *= SCALE;
	do_div(tmp, mcs_divisors[rate->mcs]);
	result = tmp;

	/* and take NSS, DCM into account */
	result = (result * rate->nss) / 8;
	if (rate->he_dcm)
		result /= 2;

	return result;
}

1228
u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1229
{
1230 1231
	if (rate->flags & RATE_INFO_FLAGS_MCS)
		return cfg80211_calculate_bitrate_ht(rate);
1232 1233
	if (rate->flags & RATE_INFO_FLAGS_60G)
		return cfg80211_calculate_bitrate_60g(rate);
1234 1235
	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
		return cfg80211_calculate_bitrate_vht(rate);
Luca Coelho's avatar
Luca Coelho committed
1236 1237
	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
		return cfg80211_calculate_bitrate_he(rate);
1238

1239
	return rate->legacy;
1240
}
1241
EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1242

1243 1244 1245
int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
			  enum ieee80211_p2p_attr_id attr,
			  u8 *buf, unsigned int bufsize)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	u8 *out = buf;
	u16 attr_remaining = 0;
	bool desired_attr = false;
	u16 desired_len = 0;

	while (len > 0) {
		unsigned int iedatalen;
		unsigned int copy;
		const u8 *iedata;

		if (len < 2)
			return -EILSEQ;
		iedatalen = ies[1];
		if (iedatalen + 2 > len)
			return -EILSEQ;

		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
			goto cont;

		if (iedatalen < 4)
			goto cont;

		iedata = ies + 2;

		/* check WFA OUI, P2P subtype */
		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
		    iedata[2] != 0x9a || iedata[3] != 0x09)
			goto cont;

		iedatalen -= 4;
		iedata += 4;

		/* check attribute continuation into this IE */
		copy = min_t(unsigned int, attr_remaining, iedatalen);
		if (copy && desired_attr) {
			desired_len += copy;
			if (out) {
				memcpy(out, iedata, min(bufsize, copy));
				out += min(bufsize, copy);
				bufsize -= min(bufsize, copy);
			}


			if (copy == attr_remaining)
				return desired_len;
		}

		attr_remaining -= copy;
		if (attr_remaining)
			goto cont;

		iedatalen -= copy;
		iedata += copy;

		while (iedatalen > 0) {
			u16 attr_len;

			/* P2P attribute ID & size must fit */
			if (iedatalen < 3)
				return -EILSEQ;
			desired_attr = iedata[0] == attr;
			attr_len = get_unaligned_le16(iedata + 1);
			iedatalen -= 3;
			iedata += 3;

			copy = min_t(unsigned int, attr_len, iedatalen);

			if (desired_attr) {
				desired_len += copy;
				if (out) {
					memcpy(out, iedata, min(bufsize, copy));
					out += min(bufsize, copy);
					bufsize -= min(bufsize, copy);
				}

				if (copy == attr_len)
					return desired_len;
			}

			iedata += copy;
			iedatalen -= copy;
			attr_remaining = attr_len - copy;
		}

 cont:
		len -= ies[1] + 2;
		ies += ies[1] + 2;
	}

	if (attr_remaining && desired_attr)
		return -EILSEQ;

	return -ENOENT;
}
EXPORT_SYMBOL(cfg80211_get_p2p_attr);

1343
static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1344 1345 1346
{
	int i;

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/* Make sure array values are legal */
	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
		return false;

	i = 0;
	while (i < n_ids) {
		if (ids[i] == WLAN_EID_EXTENSION) {
			if (id_ext && (ids[i + 1] == id))
				return true;

			i += 2;
			continue;
		}

		if (ids[i] == id && !id_ext)
1362
			return true;
1363 1364 1365

		i++;
	}
1366 1367 1368
	return false;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
{
	/* we assume a validly formed IEs buffer */
	u8 len = ies[pos + 1];

	pos += 2 + len;

	/* the IE itself must have 255 bytes for fragments to follow */
	if (len < 255)
		return pos;

	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
		len = ies[pos + 1];
		pos += 2 + len;
	}

	return pos;
}

1388 1389 1390 1391 1392 1393 1394
size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
			      const u8 *ids, int n_ids,
			      const u8 *after_ric, int n_after_ric,
			      size_t offset)
{
	size_t pos = offset;

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	while (pos < ielen) {
		u8 ext = 0;

		if (ies[pos] == WLAN_EID_EXTENSION)
			ext = 2;
		if ((pos + ext) >= ielen)
			break;

		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
					  ies[pos] == WLAN_EID_EXTENSION))
			break;

1407
		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1408
			pos = skip_ie(ies, ielen, pos);
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			while (pos < ielen) {
				if (ies[pos] == WLAN_EID_EXTENSION)
					ext = 2;
				else
					ext = 0;

				if ((pos + ext) >= ielen)
					break;

				if (!ieee80211_id_in_list(after_ric,
							  n_after_ric,
							  ies[pos + ext],
							  ext == 2))
					pos = skip_ie(ies, ielen, pos);
1424 1425
				else
					break;
1426
			}
1427
		} else {
1428
			pos = skip_ie(ies, ielen, pos);
1429 1430 1431 1432 1433 1434 1435
		}
	}

	return pos;
}
EXPORT_SYMBOL(ieee80211_ie_split_ric);

1436
bool ieee80211_operating_class_to_band(u8 operating_class,
1437
				       enum nl80211_band *band)
1438 1439 1440 1441
{
	switch (operating_class) {
	case 112:
	case 115 ... 127:
1442
	case 128 ... 130:
1443
		*band = NL80211_BAND_5GHZ;
1444 1445 1446 1447 1448
		return true;
	case 81:
	case 82:
	case 83:
	case 84:
1449
		*band = NL80211_BAND_2GHZ;
1450
		return true;
1451
	case 180:
1452
		*band = NL80211_BAND_60GHZ;
1453
		return true;
1454 1455 1456 1457 1458 1459
	}

	return false;
}
EXPORT_SYMBOL(ieee80211_operating_class_to_band);

1460 1461 1462 1463
bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
					  u8 *op_class)
{
	u8 vht_opclass;
1464
	u32 freq = chandef->center_freq1;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	if (freq >= 2412 && freq <= 2472) {
		if (chandef->width > NL80211_CHAN_WIDTH_40)
			return false;

		/* 2.407 GHz, channels 1..13 */
		if (chandef->width == NL80211_CHAN_WIDTH_40) {
			if (freq > chandef->chan->center_freq)
				*op_class = 83; /* HT40+ */
			else
				*op_class = 84; /* HT40- */
		} else {
			*op_class = 81;
		}

		return true;
	}

	if (freq == 2484) {
		if (chandef->width > NL80211_CHAN_WIDTH_40)
			return false;

		*op_class = 82; /* channel 14 */
		return true;
	}

	switch (chandef->width) {
	case NL80211_CHAN_WIDTH_80:
		vht_opclass = 128;
		break;
	case NL80211_CHAN_WIDTH_160:
		vht_opclass = 129;
		break;
	case NL80211_CHAN_WIDTH_80P80:
		vht_opclass = 130;
		break;
	case NL80211_CHAN_WIDTH_10:
	case NL80211_CHAN_WIDTH_5:
		return false; /* unsupported for now */
	default:
		vht_opclass = 0;
		break;
	}

	/* 5 GHz, channels 36..48 */
	if (freq >= 5180 && freq <= 5240) {
		if (vht_opclass) {
			*op_class = vht_opclass;
		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
			if (freq > chandef->chan->center_freq)
				*op_class = 116;
			else
				*op_class = 117;
		} else {
			*op_class = 115;
		}

		return true;
	}

	/* 5 GHz, channels 52..64 */
	if (freq >= 5260 && freq <= 5320) {
		if (vht_opclass) {
			*op_class = vht_opclass;
		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
			if (freq > chandef->chan->center_freq)
				*op_class = 119;
			else
				*op_class = 120;
		} else {
			*op_class = 118;
		}

		return true;
	}

	/* 5 GHz, channels 100..144 */
	if (freq >= 5500 && freq <= 5720) {
		if (vht_opclass) {
			*op_class = vht_opclass;
		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
			if (freq > chandef->chan->center_freq)
				*op_class = 122;
			else
				*op_class = 123;
		} else {
			*op_class = 121;
		}

		return true;
	}

	/* 5 GHz, channels 149..169 */
	if (freq >= 5745 && freq <= 5845) {
		if (vht_opclass) {
			*op_class = vht_opclass;
		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
			if (freq > chandef->chan->center_freq)
				*op_class = 126;
			else
				*op_class = 127;
		} else if (freq <= 5805) {
			*op_class = 124;
		} else {
			*op_class = 125;
		}

		return true;
	}

	/* 56.16 GHz, channel 1..4 */
1576
	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		if (chandef->width >= NL80211_CHAN_WIDTH_40)
			return false;

		*op_class = 180;
		return true;
	}

	/* not supported yet */
	return false;
}
EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);

1589 1590 1591
static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
				       u32 *beacon_int_gcd,
				       bool *beacon_int_different)
1592 1593 1594
{
	struct wireless_dev *wdev;

1595 1596
	*beacon_int_gcd = 0;
	*beacon_int_different = false;
1597

1598
	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1599 1600
		if (!wdev->beacon_interval)
			continue;
1601

1602 1603
		if (!*beacon_int_gcd) {
			*beacon_int_gcd = wdev->beacon_interval;
1604
			continue;
1605
		}
1606

1607
		if (wdev->beacon_interval == *beacon_int_gcd)
1608 1609
			continue;

1610 1611 1612
		*beacon_int_different = true;
		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
	}
1613

1614 1615 1616 1617
	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
		if (*beacon_int_gcd)
			*beacon_int_different = true;
		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1618
	}
1619
}
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
				 enum nl80211_iftype iftype, u32 beacon_int)
{
	/*
	 * This is just a basic pre-condition check; if interface combinations
	 * are possible the driver must already be checking those with a call
	 * to cfg80211_check_combinations(), in which case we'll validate more
	 * through the cfg80211_calculate_bi_data() call and code in
	 * cfg80211_iter_combinations().
	 */

	if (beacon_int < 10 || beacon_int > 10000)
		return -EINVAL;

	return 0;
1636
}
1637

1638
int cfg80211_iter_combinations(struct wiphy *wiphy,
1639
			       struct iface_combination_params *params,
1640 1641 1642
			       void (*iter)(const struct ieee80211_iface_combination *c,
					    void *data),
			       void *data)
1643
{
1644 1645
	const struct ieee80211_regdomain *regdom;
	enum nl80211_dfs_regions region = 0;
1646 1647 1648
	int i, j, iftype;
	int num_interfaces = 0;
	u32 used_iftypes = 0;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	u32 beacon_int_gcd;
	bool beacon_int_different;

	/*
	 * This is a bit strange, since the iteration used to rely only on
	 * the data given by the driver, but here it now relies on context,
	 * in form of the currently operating interfaces.
	 * This is OK for all current users, and saves us from having to
	 * push the GCD calculations into all the drivers.
	 * In the future, this should probably rely more on data that's in
	 * cfg80211 already - the only thing not would appear to be any new
	 * interfaces (while being brought up) and channel/radar data.
	 */
	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
				   &beacon_int_gcd, &beacon_int_different);
1664

1665
	if (params->radar_detect) {
1666 1667 1668 1669 1670 1671 1672
		rcu_read_lock();
		regdom = rcu_dereference(cfg80211_regdomain);
		if (regdom)
			region = regdom->dfs_region;
		rcu_read_unlock();
	}

1673
	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1674 1675
		num_interfaces += params->iftype_num[iftype];
		if (params->iftype_num[iftype] > 0 &&
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		    !(wiphy->software_iftypes & BIT(iftype)))
			used_iftypes |= BIT(iftype);
	}

	for (i = 0; i < wiphy->n_iface_combinations; i++) {
		const struct ieee80211_iface_combination *c;
		struct ieee80211_iface_limit *limits;
		u32 all_iftypes = 0;

		c = &wiphy->iface_combinations[i];

		if (num_interfaces > c->max_interfaces)
			continue;
1689
		if (params->num_different_channels > c->num_different_channels)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
			continue;

		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
				 GFP_KERNEL);
		if (!limits)
			return -ENOMEM;

		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
			if (wiphy->software_iftypes & BIT(iftype))
				continue;
			for (j = 0; j < c->n_limits; j++) {
				all_iftypes |= limits[j].types;
				if (!(limits[j].types & BIT(iftype)))
					continue;
1704
				if (limits[j].max < params->iftype_num[iftype])
1705
					goto cont;
1706
				limits[j].max -= params->iftype_num[iftype];
1707 1708 1709
			}
		}

1710 1711
		if (params->radar_detect !=
			(c->radar_detect_widths & params->radar_detect))
1712 1713
			goto cont;

1714
		if (params->radar_detect && c->radar_detect_regions &&
1715 1716 1717
		    !(c->radar_detect_regions & BIT(region)))
			goto cont;

1718 1719 1720 1721 1722 1723 1724 1725
		/* Finally check that all iftypes that we're currently
		 * using are actually part of this combination. If they
		 * aren't then we can't use this combination and have
		 * to continue to the next.
		 */
		if ((all_iftypes & used_iftypes) != used_iftypes)
			goto cont;

1726
		if (beacon_int_gcd) {
1727
			if (c->beacon_int_min_gcd &&
1728
			    beacon_int_gcd < c->beacon_int_min_gcd)
1729
				goto cont;
1730
			if (!c->beacon_int_min_gcd && beacon_int_different)
1731 1732 1733
				goto cont;
		}

1734 1735 1736
		/* This combination covered all interface types and
		 * supported the requested numbers, so we're good.
		 */
1737 1738

		(*iter)(c, data);
1739 1740 1741 1742
 cont:
		kfree(limits);
	}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	return 0;
}
EXPORT_SYMBOL(cfg80211_iter_combinations);

static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
			  void *data)
{
	int *num = data;
	(*num)++;
}

int cfg80211_check_combinations(struct wiphy *wiphy,
1756
				struct iface_combination_params *params)
1757 1758 1759
{
	int err, num = 0;

1760
	err = cfg80211_iter_combinations(wiphy, params,
1761 1762 1763 1764 1765 1766 1767
					 cfg80211_iter_sum_ifcombs, &num);
	if (err)
		return err;
	if (num == 0)
		return -EBUSY;

	return 0;
1768 1769 1770
}
EXPORT_SYMBOL(cfg80211_check_combinations);

1771 1772 1773 1774 1775 1776
int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
			   const u8 *rates, unsigned int n_rates,
			   u32 *mask)
{
	int i, j;

1777 1778 1779
	if (!sband)
		return -EINVAL;

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
		return -EINVAL;

	*mask = 0;

	for (i = 0; i < n_rates; i++) {
		int rate = (rates[i] & 0x7f) * 5;
		bool found = false;

		for (j = 0; j < sband->n_bitrates; j++) {
			if (sband->bitrates[j].bitrate == rate) {
				found = true;
				*mask |= BIT(j);
				break;
			}
		}
		if (!found)
			return -EINVAL;
	}

	/*
	 * mask must have at least one bit set here since we
	 * didn't accept a 0-length rates array nor allowed
	 * entries in the array that didn't exist
	 */

	return 0;
}
1808

1809 1810
unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
{
1811
	enum nl80211_band band;
1812 1813
	unsigned int n_channels = 0;

1814
	for (band = 0; band < NUM_NL80211_BANDS; band++)
1815 1816 1817 1818 1819 1820 1821
		if (wiphy->bands[band])
			n_channels += wiphy->bands[band]->n_channels;

	return n_channels;
}
EXPORT_SYMBOL(ieee80211_get_num_supported_channels);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
			 struct station_info *sinfo)
{
	struct cfg80211_registered_device *rdev;
	struct wireless_dev *wdev;

	wdev = dev->ieee80211_ptr;
	if (!wdev)
		return -EOPNOTSUPP;

	rdev = wiphy_to_rdev(wdev->wiphy);
	if (!rdev->ops->get_station)
		return -EOPNOTSUPP;

1836 1837
	memset(sinfo, 0, sizeof(*sinfo));

1838 1839 1840 1841
	return rdev_get_station(rdev, dev, mac_addr, sinfo);
}
EXPORT_SYMBOL(cfg80211_get_station);

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
{
	int i;

	if (!f)
		return;

	kfree(f->serv_spec_info);
	kfree(f->srf_bf);
	kfree(f->srf_macs);
	for (i = 0; i < f->num_rx_filters; i++)
		kfree(f->rx_filters[i].filter);

	for (i = 0; i < f->num_tx_filters; i++)
		kfree(f->tx_filters[i].filter);

	kfree(f->rx_filters);
	kfree(f->tx_filters);
	kfree(f);
}
EXPORT_SYMBOL(cfg80211_free_nan_func);

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
				u32 center_freq_khz, u32 bw_khz)
{
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz / 2);
	end_freq_khz = center_freq_khz + (bw_khz / 2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
}

1879 1880
int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
{
1881 1882 1883
	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
				sizeof(*(sinfo->pertid)),
				gfp);
1884 1885 1886 1887 1888 1889 1890
	if (!sinfo->pertid)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
const unsigned char rfc1042_header[] __aligned(2) =
	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
EXPORT_SYMBOL(rfc1042_header);

/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
const unsigned char bridge_tunnel_header[] __aligned(2) =
	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
EXPORT_SYMBOL(bridge_tunnel_header);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
struct iapp_layer2_update {
	u8 da[ETH_ALEN];	/* broadcast */
	u8 sa[ETH_ALEN];	/* STA addr */
	__be16 len;		/* 6 */
	u8 dsap;		/* 0 */
	u8 ssap;		/* 0 */
	u8 control;
	u8 xid_info[3];
} __packed;

void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
{
	struct iapp_layer2_update *msg;
	struct sk_buff *skb;

	/* Send Level 2 Update Frame to update forwarding tables in layer 2
	 * bridge devices */

	skb = dev_alloc_skb(sizeof(*msg));
	if (!skb)
		return;
	msg = skb_put(skb, sizeof(*msg));

	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */

	eth_broadcast_addr(msg->da);
	ether_addr_copy(msg->sa, addr);
	msg->len = htons(6);
	msg->dsap = 0;
	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
	msg->control = 0xaf;	/* XID response lsb.1111F101.
				 * F=0 (no poll command; unsolicited frame) */
	msg->xid_info[0] = 0x81;	/* XID format identifier */
	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */

	skb->dev = dev;
	skb->protocol = eth_type_trans(skb, dev);
	memset(skb->cb, 0, sizeof(skb->cb));
	netif_rx_ni(skb);
}
EXPORT_SYMBOL(cfg80211_send_layer2_update);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
			      enum ieee80211_vht_chanwidth bw,
			      int mcs, bool ext_nss_bw_capable)
{
	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
	int max_vht_nss = 0;
	int ext_nss_bw;
	int supp_width;
	int i, mcs_encoding;

	if (map == 0xffff)
		return 0;

	if (WARN_ON(mcs > 9))
		return 0;
	if (mcs <= 7)
		mcs_encoding = 0;
	else if (mcs == 8)
		mcs_encoding = 1;
	else
		mcs_encoding = 2;

	/* find max_vht_nss for the given MCS */
	for (i = 7; i >= 0; i--) {
		int supp = (map >> (2 * i)) & 3;

		if (supp == 3)
			continue;

		if (supp >= mcs_encoding) {
			max_vht_nss = i;
			break;
		}
	}

	if (!(cap->supp_mcs.tx_mcs_map &
			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
		return max_vht_nss;

	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
	supp_width = le32_get_bits(cap->vht_cap_info,
				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);

	/* if not capable, treat ext_nss_bw as 0 */
	if (!ext_nss_bw_capable)
		ext_nss_bw = 0;

	/* This is invalid */
	if (supp_width == 3)
		return 0;

	/* This is an invalid combination so pretend nothing is supported */
	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
		return 0;

	/*
	 * Cover all the special cases according to IEEE 802.11-2016
	 * Table 9-250. All other cases are either factor of 1 or not
	 * valid/supported.
	 */
	switch (bw) {
	case IEEE80211_VHT_CHANWIDTH_USE_HT:
	case IEEE80211_VHT_CHANWIDTH_80MHZ:
		if ((supp_width == 1 || supp_width == 2) &&
		    ext_nss_bw == 3)
			return 2 * max_vht_nss;
		break;
	case IEEE80211_VHT_CHANWIDTH_160MHZ:
		if (supp_width == 0 &&
		    (ext_nss_bw == 1 || ext_nss_bw == 2))
			return DIV_ROUND_UP(max_vht_nss, 2);
		if (supp_width == 0 &&
		    ext_nss_bw == 3)
			return DIV_ROUND_UP(3 * max_vht_nss, 4);
		if (supp_width == 1 &&
		    ext_nss_bw == 3)
			return 2 * max_vht_nss;
		break;
	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
		if (supp_width == 0 &&
		    (ext_nss_bw == 1 || ext_nss_bw == 2))
			return 0; /* not possible */
		if (supp_width == 0 &&
		    ext_nss_bw == 2)
			return DIV_ROUND_UP(max_vht_nss, 2);
		if (supp_width == 0 &&
		    ext_nss_bw == 3)
			return DIV_ROUND_UP(3 * max_vht_nss, 4);
		if (supp_width == 1 &&
		    ext_nss_bw == 0)
			return 0; /* not possible */
		if (supp_width == 1 &&
		    ext_nss_bw == 1)
			return DIV_ROUND_UP(max_vht_nss, 2);
		if (supp_width == 1 &&
		    ext_nss_bw == 2)
			return DIV_ROUND_UP(3 * max_vht_nss, 4);
		break;
	}

	/* not covered or invalid combination received */
	return max_vht_nss;
}
EXPORT_SYMBOL(ieee80211_get_vht_max_nss);