page_alloc.c 241 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
Linus Torvalds's avatar
Linus Torvalds committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
Linus Torvalds's avatar
Linus Torvalds committed
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
Linus Torvalds's avatar
Linus Torvalds committed
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
Linus Torvalds's avatar
Linus Torvalds committed
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
Linus Torvalds's avatar
Linus Torvalds committed
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
Linus Torvalds's avatar
Linus Torvalds committed
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
Linus Torvalds's avatar
Linus Torvalds committed
71

72
#include <asm/sections.h>
Linus Torvalds's avatar
Linus Torvalds committed
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
Linus Torvalds's avatar
Linus Torvalds committed
75
#include "internal.h"
76
#include "shuffle.h"
Linus Torvalds's avatar
Linus Torvalds committed
77

78 79
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
80
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
81

82 83 84 85 86
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

87 88
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

89 90 91 92 93 94 95 96 97
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98
int _node_numa_mem_[MAX_NUMNODES];
99 100
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106
DEFINE_MUTEX(pcpu_drain_mutex);
107
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
114
/*
115
 * Array of node states.
Linus Torvalds's avatar
Linus Torvalds committed
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
Linus Torvalds's avatar
Linus Torvalds committed
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

206 207 208 209 210
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
211 212 213 214
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
215
 */
216 217 218 219

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
220
{
221
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 223 224 225
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
226 227
}

228
void pm_restrict_gfp_mask(void)
229
{
230
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 232
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
233
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234
}
235 236 237

bool pm_suspended_storage(void)
{
238
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 240 241
		return false;
	return true;
}
242 243
#endif /* CONFIG_PM_SLEEP */

244
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245
unsigned int pageblock_order __read_mostly;
246 247
#endif

248
static void __free_pages_ok(struct page *page, unsigned int order);
249

Linus Torvalds's avatar
Linus Torvalds committed
250 251 252 253 254 255
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Yaowei Bai's avatar
Yaowei Bai committed
256
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 258 259
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
Linus Torvalds's avatar
Linus Torvalds committed
260
 */
261
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262
#ifdef CONFIG_ZONE_DMA
263
	[ZONE_DMA] = 256,
264
#endif
265
#ifdef CONFIG_ZONE_DMA32
266
	[ZONE_DMA32] = 256,
267
#endif
268
	[ZONE_NORMAL] = 32,
269
#ifdef CONFIG_HIGHMEM
270
	[ZONE_HIGHMEM] = 0,
271
#endif
272
	[ZONE_MOVABLE] = 0,
273
};
Linus Torvalds's avatar
Linus Torvalds committed
274

275
static char * const zone_names[MAX_NR_ZONES] = {
276
#ifdef CONFIG_ZONE_DMA
277
	 "DMA",
278
#endif
279
#ifdef CONFIG_ZONE_DMA32
280
	 "DMA32",
281
#endif
282
	 "Normal",
283
#ifdef CONFIG_HIGHMEM
Mel Gorman's avatar
Mel Gorman committed
284
	 "HighMem",
285
#endif
Mel Gorman's avatar
Mel Gorman committed
286
	 "Movable",
287 288 289
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
290 291
};

292
const char * const migratetype_names[MIGRATE_TYPES] = {
293 294 295 296 297 298 299 300 301 302 303 304
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

305 306 307 308 309 310
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
311 312 313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
314 315
};

Linus Torvalds's avatar
Linus Torvalds committed
316
int min_free_kbytes = 1024;
317
int user_min_free_kbytes = -1;
318 319 320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
330
int watermark_boost_factor __read_mostly = 15000;
331
#endif
332
int watermark_scale_factor = 10;
Linus Torvalds's avatar
Linus Torvalds committed
333

334 335 336
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
337

Tejun Heo's avatar
Tejun Heo committed
338
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 340
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341
static unsigned long required_kernelcore __initdata;
342
static unsigned long required_kernelcore_percent __initdata;
343
static unsigned long required_movablecore __initdata;
344
static unsigned long required_movablecore_percent __initdata;
345
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346
static bool mirrored_kernelcore __meminitdata;
Tejun Heo's avatar
Tejun Heo committed
347 348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352

353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
549

550
void set_pageblock_migratetype(struct page *page, int migratetype)
551
{
552 553
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
554 555
		migratetype = MIGRATE_UNMOVABLE;

556 557 558 559
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

Nick Piggin's avatar
Nick Piggin committed
560
#ifdef CONFIG_DEBUG_VM
561
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
562
{
563 564 565
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
566
	unsigned long sp, start_pfn;
567

568 569
	do {
		seq = zone_span_seqbegin(zone);
570 571
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
572
		if (!zone_spans_pfn(zone, pfn))
573 574 575
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

576
	if (ret)
577 578 579
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
580

581
	return ret;
582 583 584 585
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
586
	if (!pfn_valid_within(page_to_pfn(page)))
587
		return 0;
Linus Torvalds's avatar
Linus Torvalds committed
588
	if (zone != page_zone(page))
589 590 591 592 593 594 595
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
596
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 598
{
	if (page_outside_zone_boundaries(zone, page))
Linus Torvalds's avatar
Linus Torvalds committed
599
		return 1;
600 601 602
	if (!page_is_consistent(zone, page))
		return 1;

Linus Torvalds's avatar
Linus Torvalds committed
603 604
	return 0;
}
Nick Piggin's avatar
Nick Piggin committed
605
#else
606
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
Nick Piggin's avatar
Nick Piggin committed
607 608 609 610 611
{
	return 0;
}
#endif

612 613
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
Linus Torvalds's avatar
Linus Torvalds committed
614
{
615 616 617 618 619 620 621 622 623 624 625 626 627 628
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
629
			pr_alert(
630
			      "BUG: Bad page state: %lu messages suppressed\n",
631 632 633 634 635 636 637 638
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

639
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640
		current->comm, page_to_pfn(page));
641 642 643 644 645
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
646
	dump_page_owner(page);
647

648
	print_modules();
Linus Torvalds's avatar
Linus Torvalds committed
649
	dump_stack();
650
out:
651
	/* Leave bad fields for debug, except PageBuddy could make trouble */
652
	page_mapcount_reset(page); /* remove PageBuddy */
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
654 655 656 657 658
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
659
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
Linus Torvalds's avatar
Linus Torvalds committed
660
 *
661 662
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
Linus Torvalds's avatar
Linus Torvalds committed
663
 *
664 665
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
Linus Torvalds's avatar
Linus Torvalds committed
666
 *
667
 * The first tail page's ->compound_order holds the order of allocation.
668
 * This usage means that zero-order pages may not be compound.
Linus Torvalds's avatar
Linus Torvalds committed
669
 */
670

671
void free_compound_page(struct page *page)
672
{
673
	mem_cgroup_uncharge(page);
674
	__free_pages_ok(page, compound_order(page));
675 676
}

677
void prep_compound_page(struct page *page, unsigned int order)
678 679 680 681
{
	int i;
	int nr_pages = 1 << order;

682
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 684 685 686
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
687
		set_page_count(p, 0);
688
		p->mapping = TAIL_MAPPING;
689
		set_compound_head(p, page);
690
	}
691
	atomic_set(compound_mapcount_ptr(page), -1);
692 693
}

694 695
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
696

697 698 699
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
700
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701
EXPORT_SYMBOL(_debug_pagealloc_enabled);
702 703

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704

705 706
static int __init early_debug_pagealloc(char *buf)
{
707
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
708 709 710
}
early_param("debug_pagealloc", early_debug_pagealloc);

711
void init_debug_pagealloc(void)
712
{
713 714 715
	if (!debug_pagealloc_enabled())
		return;

716 717
	static_branch_enable(&_debug_pagealloc_enabled);

718 719 720
	if (!debug_guardpage_minorder())
		return;

721
	static_branch_enable(&_debug_guardpage_enabled);
722 723
}

724 725 726 727 728
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
729
		pr_err("Bad debug_guardpage_minorder value\n");
730 731 732
		return 0;
	}
	_debug_guardpage_minorder = res;
733
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 735
	return 0;
}
736
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737

738
static inline bool set_page_guard(struct zone *zone, struct page *page,
739
				unsigned int order, int migratetype)
740
{
741
	if (!debug_guardpage_enabled())
742 743 744 745
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
746

747
	__SetPageGuard(page);
748 749 750 751
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
752 753

	return true;
754 755
}

756 757
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
758
{
759 760 761
	if (!debug_guardpage_enabled())
		return;

762
	__ClearPageGuard(page);
763

764 765 766
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
767 768
}
#else
769 770
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
771 772
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
773 774
#endif

775
static inline void set_page_order(struct page *page, unsigned int order)
776
{
777
	set_page_private(page, order);
778
	__SetPageBuddy(page);
Linus Torvalds's avatar
Linus Torvalds committed
779 780 781 782
}

/*
 * This function checks whether a page is free && is the buddy
783
 * we can coalesce a page and its buddy if
784
 * (a) the buddy is not in a hole (check before calling!) &&
785
 * (b) the buddy is in the buddy system &&
786 787
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
788
 *
789 790
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
Linus Torvalds's avatar
Linus Torvalds committed
791
 *
792
 * For recording page's order, we use page_private(page).
Linus Torvalds's avatar
Linus Torvalds committed
793
 */
794
static inline int page_is_buddy(struct page *page, struct page *buddy,
795
							unsigned int order)
Linus Torvalds's avatar
Linus Torvalds committed
796
{
797
	if (page_is_guard(buddy) && page_order(buddy) == order) {
798 799 800
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

801 802
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

803 804 805
		return 1;
	}

806
	if (PageBuddy(buddy) && page_order(buddy) == order) {
807 808 809 810 811 812 813 814
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

815 816
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

817
		return 1;
818
	}
819
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

Linus Torvalds's avatar
Linus Torvalds committed
873 874 875 876 877 878 879 880 881 882 883 884 885
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
886 887
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
Linus Torvalds's avatar
Linus Torvalds committed
888
 * So when we are allocating or freeing one, we can derive the state of the
889 890
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
Linus Torvalds's avatar
Linus Torvalds committed
891
 * If a block is freed, and its buddy is also free, then this
892
 * triggers coalescing into a block of larger size.
Linus Torvalds's avatar
Linus Torvalds committed
893
 *
894
 * -- nyc
Linus Torvalds's avatar
Linus Torvalds committed
895 896
 */

Nick Piggin's avatar
Nick Piggin committed
897
static inline void __free_one_page(struct page *page,
898
		unsigned long pfn,
899 900
		struct zone *zone, unsigned int order,
		int migratetype)
Linus Torvalds's avatar
Linus Torvalds committed
901
{
902 903
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
904
	struct page *buddy;
905
	unsigned int max_order;
906
	struct capture_control *capc = task_capc(zone);
907 908

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
Linus Torvalds's avatar
Linus Torvalds committed
909

910
	VM_BUG_ON(!zone_is_initialized(zone));
911
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
Linus Torvalds's avatar
Linus Torvalds committed
912

913
	VM_BUG_ON(migratetype == -1);
914
	if (likely(!is_migrate_isolate(migratetype)))
915
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
916

917
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
918
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
Linus Torvalds's avatar
Linus Torvalds committed
919

920
continue_merging:
921
	while (order < max_order - 1) {
922 923 924 925 926
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
927 928
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
929 930 931

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
932
		if (!page_is_buddy(page, buddy, order))
933
			goto done_merging;
934 935 936 937
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
938
		if (page_is_guard(buddy))
939
			clear_page_guard(zone, buddy, order, migratetype);
940 941
		else
			del_page_from_free_area(buddy, &zone->free_area[order]);
942 943 944
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
Linus Torvalds's avatar
Linus Torvalds committed
945 946
		order++;
	}
947 948 949 950 951 952 953 954 955 956 957 958
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

959 960
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
961 962 963 964 965 966 967 968 969 970 971 972
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
Linus Torvalds's avatar
Linus Torvalds committed
973
	set_page_order(page, order);
974 975 976 977 978 979 980 981 982

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
983 984
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
			&& !is_shuffle_order(order)) {
985
		struct page *higher_page, *higher_buddy;
986 987 988 989
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
990 991
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
992 993 994
			add_to_free_area_tail(page, &zone->free_area[order],
					      migratetype);
			return;
995 996 997
		}
	}

998 999 1000 1001 1002 1003
	if (is_shuffle_order(order))
		add_to_free_area_random(page, &zone->free_area[order],
				migratetype);
	else
		add_to_free_area(page, &zone->free_area[order], migratetype);

Linus Torvalds's avatar
Linus Torvalds committed
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1028
static void free_pages_check_bad(struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
1029
{
1030 1031 1032 1033 1034
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1035

1036
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1037 1038 1039
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1040
	if (unlikely(page_ref_count(page) != 0))
1041
		bad_reason = "nonzero _refcount";
1042 1043 1044 1045
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1046 1047 1048 1049
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1050
	bad_page(page, bad_reason, bad_flags);
1051 1052 1053 1054
}

static inline int free_pages_check(struct page *page)
{
1055
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1056 1057 1058 1059
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1060
	return 1;
Linus Torvalds's avatar
Linus Torvalds committed
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1079
		/* the first tail page: ->mapping may be compound_mapcount() */
1080 1081 1082 1083 1084 1085 1086 1087
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
1088
		 * deferred_list.next -- ignore value.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1113 1114 1115 1116 1117 1118 1119 1120
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
}

1121 1122
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1123
{
1124
	int bad = 0;
1125 1126 1127

	VM_BUG_ON_PAGE(PageTail(page), page);

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1139

1140 1141
		if (compound)
			ClearPageDoubleMap(page);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1152
	if (PageMappingFlags(page))
1153
		page->mapping = NULL;
1154
	if (memcg_kmem_enabled() && PageKmemcg(page))
1155
		__memcg_kmem_uncharge(page, order);
1156 1157 1158 1159
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1160

1161 1162 1163
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1164 1165 1166

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1167
					   PAGE_SIZE << order);
1168
		debug_check_no_obj_freed(page_address(page),
1169
					   PAGE_SIZE << order);
1170
	}
1171 1172 1173
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1174
	kernel_poison_pages(page, 1 << order, 0);
1175 1176 1177 1178 1179 1180 1181
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1182
	if (debug_pagealloc_enabled_static())
1183 1184
		kernel_map_pages(page, 1 << order, 0);

1185
	kasan_free_nondeferred_pages(page, order);
1186 1187 1188 1189

	return true;
}

1190
#ifdef CONFIG_DEBUG_VM
1191 1192 1193 1194 1195 1196
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1197 1198 1199 1200
{
	return free_pages_prepare(page, 0, true);
}

1201
static bool bulkfree_pcp_prepare(struct page *page)
1202
{
1203
	if (debug_pagealloc_enabled_static())
1204 1205 1206
		return free_pages_check(page);
	else
		return false;
1207 1208
}
#else
1209 1210 1211 1212 1213 1214
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1215 1216
static bool free_pcp_prepare(struct page *page)
{
1217
	if (debug_pagealloc_enabled_static())
1218 1219 1220
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1221 1222
}

1223 1224 1225 1226 1227 1228
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1229 1230 1231 1232 1233 1234 1235 1236 1237
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

Linus Torvalds's avatar
Linus Torvalds committed
1238
/*
1239
 * Frees a number of pages from the PCP lists
Linus Torvalds's avatar
Linus Torvalds committed
1240
 * Assumes all pages on list are in same zone, and of same order.
1241
 * count is the number of pages to free.
Linus Torvalds's avatar
Linus Torvalds committed
1242 1243 1244 1245 1246 1247 1248
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1249 1250
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
Linus Torvalds's avatar
Linus Torvalds committed
1251
{
1252
	int migratetype = 0;
1253
	int batch_free = 0;
1254
	int prefetch_nr = 0;
1255
	bool isolated_pageblocks;
1256 1257
	struct page *page, *tmp;
	LIST_HEAD(head);
1258

1259
	while (count) {
1260 1261 1262
		struct list_head *list;

		/*
1263 1264 1265 1266 1267
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1268 1269
		 */
		do {
1270
			batch_free++;
1271 1272 1273 1274
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
Nick Piggin's avatar
Nick Piggin committed
1275

1276 1277
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1278
			batch_free = count;
1279

1280
		do {
1281
			page = list_last_entry(list, struct page, lru);
1282
			/* must delete to avoid corrupting pcp list */
1283
			list_del(&page->lru);
1284
			pcp->count--;
1285

1286 1287 1288
			if (bulkfree_pcp_prepare(page))
				continue;

1289
			list_add_tail(&page->lru, &head);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1302
		} while (--count && --batch_free && !list_empty(list));
Linus Torvalds's avatar
Linus Torvalds committed
1303
	}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1323
	spin_unlock(&zone->lock);
Linus Torvalds's avatar
Linus Torvalds committed
1324 1325
}

1326 1327
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1328
				unsigned int order,
1329
				int migratetype)
Linus Torvalds's avatar
Linus Torvalds committed
1330
{
1331
	spin_lock(&zone->lock);
1332 1333 1334 1335
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1336
	__free_one_page(page, pfn, zone, order, migratetype);
1337
	spin_unlock(&zone->lock);
Nick Piggin's avatar
Nick Piggin committed
1338 1339
}

1340
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341
				unsigned long zone, int nid)
1342
{
1343
	mm_zero_struct_page(page);
1344 1345 1346 1347
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1348
	page_kasan_tag_reset(page);
1349 1350 1351 1352 1353 1354 1355 1356 1357

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1358
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359
static void __meminit init_reserved_page(unsigned long pfn)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1376
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1377 1378 1379 1380 1381 1382 1383
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1384 1385 1386 1387 1388 1389
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1390
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1391 1392 1393 1394
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1395 1396 1397 1398 1399
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1400 1401 1402 1403

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1404 1405 1406 1407 1408 1409
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1410 1411
		}
	}
1412 1413
}

1414 1415
static void __free_pages_ok(struct page *page, unsigned int order)
{
1416
	unsigned long flags;
1417
	int migratetype;
1418
	unsigned long pfn = page_to_pfn(page);
1419

1420
	if (!free_pages_prepare(page, order, true))
1421 1422
		return;

1423
	migratetype = get_pfnblock_migratetype(page, pfn);
1424 1425
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1426
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1427
	local_irq_restore(flags);
Linus Torvalds's avatar
Linus Torvalds committed
1428 1429
}

1430
void __free_pages_core(struct page *page, unsigned int order)
1431
{
1432
	unsigned int nr_pages = 1 << order;
1433
	struct page *p = page;
1434
	unsigned int loop;
1435

1436 1437 1438
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1439 1440
		__ClearPageReserved(p);
		set_page_count(p, 0);
1441
	}
1442 1443
	__ClearPageReserved(p);
	set_page_count(p, 0);
1444

1445
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 1447
	set_page_refcounted(page);
	__free_pages(page, order);
1448 1449
}

1450 1451
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1452

1453 1454 1455 1456
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1457
	static DEFINE_SPINLOCK(early_pfn_lock);
1458 1459
	int nid;

1460
	spin_lock(&early_pfn_lock);
1461
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1462
	if (nid < 0)
1463
		nid = first_online_node;
1464 1465 1466
	spin_unlock(&early_pfn_lock);

	return nid;
1467 1468 1469 1470
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 1472
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1473 1474 1475
{
	int nid;

1476
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1490
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1491 1492 1493 1494
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1495
	__free_pages_core(page, order);
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1527 1528 1529
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1569
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 1571
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1572
{
1573 1574
	struct page *page;
	unsigned long i;
1575

1576
	if (!nr_pages)
1577 1578
		return;

1579 1580
	page = pfn_to_page(pfn);

1581
	/* Free a large naturally-aligned chunk if possible */
1582 1583
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1584
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585
		__free_pages_core(page, pageblock_order);
1586 1587 1588
		return;
	}

1589 1590 1591
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592
		__free_pages_core(page, 0);
1593
	}
1594 1595
}

1596 1597 1598 1599 1600 1601 1602 1603 1604
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1605

1606
/*
1607 1608 1609 1610 1611 1612 1613 1614
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1615
 */
1616
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1617
{
1618 1619 1620 1621 1622 1623
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1624

1625 1626 1627 1628
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1629
static void __init deferred_free_pages(unsigned long pfn,
1630 1631 1632 1633
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1634

1635
	for (; pfn < end_pfn; pfn++) {
1636
		if (!deferred_pfn_valid(pfn)) {
1637 1638 1639 1640 1641
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1642
			touch_nmi_watchdog();
1643 1644 1645 1646 1647 1648
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1649 1650
}

1651 1652 1653 1654 1655
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1656
static unsigned long  __init deferred_init_pages(struct zone *zone,
1657 1658
						 unsigned long pfn,
						 unsigned long end_pfn)
1659 1660
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661
	int nid = zone_to_nid(zone);
1662
	unsigned long nr_pages = 0;
1663
	int zid = zone_idx(zone);
1664 1665
	struct page *page = NULL;

1666
	for (; pfn < end_pfn; pfn++) {
1667
		if (!deferred_pfn_valid(pfn)) {
1668
			page = NULL;
1669
			continue;
1670
		} else if (!page || !(pfn & nr_pgmask)) {
1671
			page = pfn_to_page(pfn);
1672
			touch_nmi_watchdog();
1673 1674
		} else {
			page++;
1675
		}
1676
		__init_single_page(page, pfn, zid, nid);
1677
		nr_pages++;
1678
	}
1679
	return (nr_pages);
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1766
/* Initialise remaining memory on a node */
1767
static int __init deferred_init_memmap(void *data)
1768
{
1769
	pg_data_t *pgdat = data;
1770 1771 1772
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1773 1774
	unsigned long start = jiffies;
	struct zone *zone;
1775
	int zid;
1776
	u64 i;
1777

1778 1779 1780 1781 1782 1783
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1784
	if (first_init_pfn == ULONG_MAX) {
1785
		pgdat_resize_unlock(pgdat, &flags);
1786
		pgdat_init_report_one_done();
1787 1788 1789
		return 0;
	}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1801 1802 1803 1804 1805

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1806

1807
	/*
1808 1809 1810
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1811
	 */
1812 1813 1814
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1815
	pgdat_resize_unlock(pgdat, &flags);
1816 1817 1818 1819

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1820 1821
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1822 1823

	pgdat_init_report_one_done();
1824 1825
	return 0;
}
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846
	pg_data_t *pgdat = zone->zone_pgdat;
1847
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 1849
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1878 1879 1880 1881
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1882
		pgdat_resize_unlock(pgdat, &flags);
1883 1884
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1885 1886
	}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897

1898 1899 1900
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1901

1902
		/* If our quota has been met we can stop here */
1903 1904 1905 1906
		if (nr_pages >= nr_pages_needed)
			break;
	}

1907
	pgdat->first_deferred_pfn = spfn;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1925
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1926 1927 1928

void __init page_alloc_init_late(void)
{
1929
	struct zone *zone;
1930
	int nid;
1931 1932

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1933

1934 1935
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 1937 1938 1939 1940
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1941
	wait_for_completion(&pgdat_init_all_done_comp);
1942

1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1951 1952 1953 1954 1955 1956
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1957 1958
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1959
#endif
1960

1961 1962
	/* Discard memblock private memory */
	memblock_discard();
1963

1964 1965 1966
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

1967 1968
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1969 1970
}

1971
#ifdef CONFIG_CMA
1972
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1973 1974 1975 1976 1977 1978 1979 1980
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1981
	} while (++p, --i);
1982 1983

	set_pageblock_migratetype(page, MIGRATE_CMA);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1998
	adjust_managed_page_count(page, pageblock_nr_pages);
1999 2000
}
#endif
Linus Torvalds's avatar
Linus Torvalds committed
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2014
 * -- nyc
Linus Torvalds's avatar
Linus Torvalds committed
2015
 */
2016
static inline void expand(struct zone *zone, struct page *page,
2017 2018
	int low, int high, struct free_area *area,
	int migratetype)
Linus Torvalds's avatar
Linus Torvalds committed
2019 2020 2021 2022 2023 2024 2025
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
2026
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2027

2028 2029 2030 2031 2032 2033 2034
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2035
			continue;
2036

2037
		add_to_free_area(&page[size], area, migratetype);
Linus Torvalds's avatar
Linus Torvalds committed
2038 2039 2040 2041
		set_page_order(&page[size], high);
	}
}

2042
static void check_new_page_bad(struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
2043
{
2044 2045
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2046

2047
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2048 2049 2050
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2051
	if (unlikely(page_ref_count(page) != 0))
2052
		bad_reason = "nonzero _refcount";
2053 2054 2055
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2056 2057 2058
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2059
	}
2060 2061 2062 2063
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2064 2065 2066 2067
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2082 2083
}

2084
static inline bool free_pages_prezeroed(void)
2085
{
2086 2087
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2088 2089
}

2090
#ifdef CONFIG_DEBUG_VM
2091 2092 2093 2094 2095 2096
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2097
{
2098
	if (debug_pagealloc_enabled_static())
2099 2100 2101
		return check_new_page(page);
	else
		return false;
2102 2103
}

2104
static inline bool check_new_pcp(struct page *page)
2105 2106 2107 2108
{
	return check_new_page(page);
}
#else
2109 2110 2111 2112 2113 2114
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2115 2116 2117
{
	return check_new_page(page);
}
2118
static inline bool check_new_pcp(struct page *page)
2119
{
2120
	if (debug_pagealloc_enabled_static())
2121 2122 2123
		return check_new_page(page);
	else
		return false;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2140 2141 2142 2143 2144 2145 2146
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2147
	if (debug_pagealloc_enabled_static())
2148
		kernel_map_pages(page, 1 << order, 1);
2149
	kasan_alloc_pages(page, order);
2150
	kernel_poison_pages(page, 1 << order, 1);
2151 2152 2153
	set_page_owner(page, order, gfp_flags);
}

2154
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2155
							unsigned int alloc_flags)
2156
{
2157
	post_alloc_hook(page, order, gfp_flags);
2158

2159 2160
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
2161 2162 2163 2164

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2165
	/*
2166
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2167 2168 2169 2170
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2171 2172 2173 2174
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
Linus Torvalds's avatar
Linus Torvalds committed
2175 2176
}

2177 2178 2179 2180
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2181
static __always_inline
2182
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2183 2184 2185
						int migratetype)
{
	unsigned int current_order;
2186
	struct free_area *area;
2187 2188 2189 2190 2191
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2192
		page = get_page_from_free_area(area, migratetype);
2193 2194
		if (!page)
			continue;
2195
		del_page_from_free_area(page, area);
2196
		expand(zone, page, order, current_order, area, migratetype);
2197
		set_pcppage_migratetype(page, migratetype);
2198 2199 2200 2201 2202 2203 2204
		return page;
	}

	return NULL;
}


2205 2206 2207 2208
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2209
static int fallbacks[MIGRATE_TYPES][4] = {
2210 2211
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2212
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2213
#ifdef CONFIG_CMA
2214
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2215
#endif
2216
#ifdef CONFIG_MEMORY_ISOLATION
2217
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2218
#endif
2219 2220
};

2221
#ifdef CONFIG_CMA
2222
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2223 2224 2225 2226 2227 2228 2229 2230 2231
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2232 2233
/*
 * Move the free pages in a range to the free lists of the requested type.
2234
 * Note that start_page and end_pages are not aligned on a pageblock
2235 2236
 * boundary. If alignment is required, use move_freepages_block()
 */
2237
static int move_freepages(struct zone *zone,
Adrian Bunk's avatar
Adrian Bunk committed
2238
			  struct page *start_page, struct page *end_page,
2239
			  int migratetype, int *num_movable)
2240 2241
{
	struct page *page;
2242
	unsigned int order;
2243
	int pages_moved = 0;
2244 2245 2246 2247 2248 2249 2250 2251

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2252 2253 2254 2255 2256 2257 2258 2259 2260
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2261 2262 2263 2264
			page++;
			continue;
		}

2265 2266 2267 2268
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2269
		order = page_order(page);
2270
		move_to_free_area(page, &zone->free_area[order], migratetype);
2271
		page += 1 << order;
2272
		pages_moved += 1 << order;
2273 2274
	}

2275
	return pages_moved;
2276 2277
}

2278
int move_freepages_block(struct zone *zone, struct page *page,
2279
				int migratetype, int *num_movable)
2280 2281 2282 2283
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2284 2285 2286
	if (num_movable)
		*num_movable = 0;

2287
	start_pfn = page_to_pfn(page);
2288
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2289
	start_page = pfn_to_page(start_pfn);
2290 2291
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2292 2293

	/* Do not cross zone boundaries */
2294
	if (!zone_spans_pfn(zone, start_pfn))
2295
		start_page = page;
2296
	if (!zone_spans_pfn(zone, end_pfn))
2297 2298
		return 0;

2299 2300
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2314
/*
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2325
 */
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2347 2348 2349 2350 2351 2352 2353 2354 2355
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2368 2369 2370 2371 2372 2373
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2374 2375 2376
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2377 2378 2379 2380
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2381 2382
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2383
		unsigned int alloc_flags, int start_type, bool whole_block)
2384
{
2385
	unsigned int current_order = page_order(page);
2386
	struct free_area *area;
2387 2388 2389 2390
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2391

2392 2393 2394 2395
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2396
	if (is_migrate_highatomic(old_block_type))
2397 2398
		goto single_page;

2399 2400 2401
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2402
		goto single_page;
2403 2404
	}

2405 2406 2407 2408 2409 2410 2411
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2412
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2413

2414 2415 2416 2417
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2442
	/* moving whole block can fail due to zone boundary conditions */
2443
	if (!free_pages)
2444
		goto single_page;
2445

2446 2447 2448 2449 2450
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2451 2452
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2453 2454 2455 2456 2457

	return;

single_page:
	area = &zone->free_area[current_order];
2458
	move_to_free_area(page, area, start_type);
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2479
		if (fallback_mt == MIGRATE_TYPES)
2480 2481
			break;

2482
		if (free_area_empty(area, fallback_mt))
2483
			continue;
2484

2485 2486 2487
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2488 2489 2490 2491 2492
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2493
	}
2494 2495

	return -1;
2496 2497
}

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2512
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2524 2525
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2526 2527
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2528
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2540 2541 2542
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2543
 */
2544 2545
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2546 2547 2548 2549 2550 2551 2552
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2553
	bool ret;
2554 2555 2556

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2557 2558 2559 2560 2561 2562
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2563 2564 2565 2566 2567 2568
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2569
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2570
			if (!page)
2571 2572 2573
				continue;

			/*
2574 2575 2576 2577 2578
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2579
			 */
2580
			if (is_migrate_highatomic_page(page)) {
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2603 2604
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2605 2606 2607 2608
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2609 2610 2611
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2612 2613

	return false;
2614 2615
}

2616 2617 2618 2619 2620
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2621 2622 2623 2624
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2625
 */
2626
static __always_inline bool
2627 2628
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2629
{
2630
	struct free_area *area;
2631
	int current_order;
2632
	int min_order = order;
2633
	struct page *page;
2634 2635
	int fallback_mt;
	bool can_steal;
2636

2637 2638 2639 2640 2641 2642 2643 2644
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2645 2646 2647 2648 2649
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2650
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2651
				--current_order) {
2652 2653
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2654
				start_migratetype, false, &can_steal);
2655 2656
		if (fallback_mt == -1)
			continue;
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2669

2670 2671
		goto do_steal;
	}
2672

2673
	return false;
2674

2675 2676 2677 2678 2679 2680 2681 2682
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2683 2684
	}

2685 2686 2687 2688 2689 2690 2691
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2692
	page = get_page_from_free_area(area, fallback_mt);
2693

2694 2695
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2696 2697 2698 2699 2700 2701

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2702 2703
}

2704
/*
Linus Torvalds's avatar
Linus Torvalds committed
2705 2706 2707
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2708
static __always_inline struct page *
2709 2710
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
Linus Torvalds's avatar
Linus Torvalds committed
2711 2712 2713
{
	struct page *page;

2714
retry:
2715
	page = __rmqueue_smallest(zone, order, migratetype);
2716
	if (unlikely(!page)) {
2717 2718 2719
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2720 2721
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2722
			goto retry;
2723 2724
	}

2725
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726
	return page;
Linus Torvalds's avatar
Linus Torvalds committed
2727 2728
}

2729
/*
Linus Torvalds's avatar
Linus Torvalds committed
2730 2731 2732 2733
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2734
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2735
			unsigned long count, struct list_head *list,
2736
			int migratetype, unsigned int alloc_flags)
Linus Torvalds's avatar
Linus Torvalds committed
2737
{
2738
	int i, alloced = 0;
2739

2740
	spin_lock(&zone->lock);
Linus Torvalds's avatar
Linus Torvalds committed
2741
	for (i = 0; i < count; ++i) {
2742 2743
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
2744
		if (unlikely(page == NULL))
Linus Torvalds's avatar
Linus Torvalds committed
2745
			break;
2746

2747 2748 2749
		if (unlikely(check_pcp_refill(page)))
			continue;

2750
		/*
2751 2752 2753 2754 2755 2756 2757 2758
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2759
		 */
2760
		list_add_tail(&page->lru, list);
2761
		alloced++;
2762
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2763 2764
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
Linus Torvalds's avatar
Linus Torvalds committed
2765
	}
2766 2767 2768 2769 2770 2771 2772

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2773
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2774
	spin_unlock(&zone->lock);
2775
	return alloced;
Linus Torvalds's avatar
Linus Torvalds committed
2776 2777
}

2778
#ifdef CONFIG_NUMA
2779
/*
2780 2781 2782 2783
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2784 2785
 * Note that this function must be called with the thread pinned to
 * a single processor.
2786
 */
2787
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2788 2789
{
	unsigned long flags;
2790
	int to_drain, batch;
2791

2792
	local_irq_save(flags);
2793
	batch = READ_ONCE(pcp->batch);
2794
	to_drain = min(pcp->count, batch);
2795
	if (to_drain > 0)
2796
		free_pcppages_bulk(zone, to_drain, pcp);
2797
	local_irq_restore(flags);
2798 2799 2800
}
#endif

2801
/*
2802
 * Drain pcplists of the indicated processor and zone.
2803 2804 2805 2806 2807
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2808
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
Linus Torvalds's avatar
Linus Torvalds committed
2809
{
Nick Piggin's avatar
Nick Piggin committed
2810
	unsigned long flags;
2811 2812
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
Linus Torvalds's avatar
Linus Torvalds committed
2813

2814 2815
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
2816

2817
	pcp = &pset->pcp;
2818
	if (pcp->count)
2819 2820 2821
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
Linus Torvalds's avatar
Linus Torvalds committed
2836 2837 2838
	}
}

2839 2840
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2841 2842 2843
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2844
 */
2845
void drain_local_pages(struct zone *zone)
2846
{
2847 2848 2849 2850 2851 2852
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2853 2854
}

2855 2856
static void drain_local_pages_wq(struct work_struct *work)
{
2857 2858 2859 2860
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2861 2862 2863 2864 2865 2866 2867 2868
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2869
	drain_local_pages(drain->zone);
2870
	preempt_enable();
2871 2872
}

2873
/*
2874 2875
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2876 2877
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2878
 * Note that this can be extremely slow as the draining happens in a workqueue.
2879
 */
2880
void drain_all_pages(struct zone *zone)
2881
{
2882 2883 2884 2885 2886 2887 2888 2889
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2890 2891 2892 2893 2894 2895 2896
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2907

2908 2909 2910 2911 2912 2913 2914
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2915 2916
		struct per_cpu_pageset *pcp;
		struct zone *z;
2917
		bool has_pcps = false;
2918 2919

		if (zone) {
2920
			pcp = per_cpu_ptr(zone->pageset, cpu);
2921
			if (pcp->pcp.count)
2922
				has_pcps = true;
2923 2924 2925 2926 2927 2928 2929
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2930 2931
			}
		}
2932

2933 2934 2935 2936 2937
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2938

2939
	for_each_cpu(cpu, &cpus_with_pcps) {
2940 2941 2942 2943 2944
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2945
	}
2946
	for_each_cpu(cpu, &cpus_with_pcps)
2947
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2948 2949

	mutex_unlock(&pcpu_drain_mutex);
2950 2951
}

2952
#ifdef CONFIG_HIBERNATION
Linus Torvalds's avatar
Linus Torvalds committed
2953

2954 2955 2956 2957 2958
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

Linus Torvalds's avatar
Linus Torvalds committed
2959 2960
void mark_free_pages(struct zone *zone)
{
2961
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2962
	unsigned long flags;
2963
	unsigned int order, t;
2964
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
2965

2966
	if (zone_is_empty(zone))
Linus Torvalds's avatar
Linus Torvalds committed
2967 2968 2969
		return;

	spin_lock_irqsave(&zone->lock, flags);
2970

2971
	max_zone_pfn = zone_end_pfn(zone);
2972 2973
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2974
			page = pfn_to_page(pfn);
2975

2976 2977 2978 2979 2980
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2981 2982 2983
			if (page_zone(page) != zone)
				continue;

2984 2985
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2986
		}
Linus Torvalds's avatar
Linus Torvalds committed
2987

2988
	for_each_migratetype_order(order, t) {
2989 2990
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2991
			unsigned long i;
Linus Torvalds's avatar
Linus Torvalds committed
2992

2993
			pfn = page_to_pfn(page);
2994 2995 2996 2997 2998
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2999
				swsusp_set_page_free(pfn_to_page(pfn + i));
3000
			}
3001
		}
3002
	}
Linus Torvalds's avatar
Linus Torvalds committed
3003 3004
	spin_unlock_irqrestore(&zone->lock, flags);
}
3005
#endif /* CONFIG_PM */
Linus Torvalds's avatar
Linus Torvalds committed
3006

3007
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
Linus Torvalds's avatar
Linus Torvalds committed
3008
{
3009
	int migratetype;
Linus Torvalds's avatar
Linus Torvalds committed
3010

3011
	if (!free_pcp_prepare(page))
3012
		return false;
3013

3014
	migratetype = get_pfnblock_migratetype(page, pfn);
3015
	set_pcppage_migratetype(page, migratetype);
3016 3017 3018
	return true;
}

3019
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3020 3021 3022 3023 3024 3025
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3026
	__count_vm_event(PGFREE);
3027

3028 3029 3030
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3031
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3032 3033 3034 3035
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3036
		if (unlikely(is_migrate_isolate(migratetype))) {
3037
			free_one_page(zone, page, pfn, 0, migratetype);
3038
			return;
3039 3040 3041 3042
		}
		migratetype = MIGRATE_MOVABLE;
	}

3043
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3044
	list_add(&page->lru, &pcp->lists[migratetype]);
Linus Torvalds's avatar
Linus Torvalds committed
3045
	pcp->count++;
Nick Piggin's avatar
Nick Piggin committed
3046
	if (pcp->count >= pcp->high) {
3047
		unsigned long batch = READ_ONCE(pcp->batch);
3048
		free_pcppages_bulk(zone, batch, pcp);
Nick Piggin's avatar
Nick Piggin committed
3049
	}
3050
}
3051

3052 3053 3054
/*
 * Free a 0-order page
 */
3055
void free_unref_page(struct page *page)
3056 3057 3058 3059
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3060
	if (!free_unref_page_prepare(page, pfn))
3061 3062 3063
		return;

	local_irq_save(flags);
3064
	free_unref_page_commit(page, pfn);
3065
	local_irq_restore(flags);
Linus Torvalds's avatar
Linus Torvalds committed
3066 3067
}

3068 3069 3070
/*
 * Free a list of 0-order pages
 */
3071
void free_unref_page_list(struct list_head *list)
3072 3073
{
	struct page *page, *next;
3074
	unsigned long flags, pfn;
3075
	int batch_count = 0;
3076 3077 3078 3079

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3080
		if (!free_unref_page_prepare(page, pfn))
3081 3082 3083
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3084

3085
	local_irq_save(flags);
3086
	list_for_each_entry_safe(page, next, list, lru) {
3087 3088 3089
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3090 3091
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3102
	}
3103
	local_irq_restore(flags);
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3118 3119
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3120

3121
	for (i = 1; i < (1 << order); i++)
3122
		set_page_refcounted(page + i);
3123
	split_page_owner(page, order);
3124
}
K. Y. Srinivasan's avatar
K. Y. Srinivasan committed
3125
EXPORT_SYMBOL_GPL(split_page);
3126

3127
int __isolate_free_page(struct page *page, unsigned int order)
3128
{
3129
	struct free_area *area = &page_zone(page)->free_area[order];
3130 3131
	unsigned long watermark;
	struct zone *zone;
3132
	int mt;
3133 3134 3135 3136

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3137
	mt = get_pageblock_migratetype(page);
3138

3139
	if (!is_migrate_isolate(mt)) {
3140 3141 3142 3143 3144 3145
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3146
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3147
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3148 3149
			return 0;

3150
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3151
	}
3152 3153

	/* Remove page from free list */
3154 3155

	del_page_from_free_area(page, area);
3156

3157 3158 3159 3160
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3161 3162
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3163 3164
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
3165
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3166
			    && !is_migrate_highatomic(mt))
3167 3168 3169
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3170 3171
	}

3172

3173
	return 1UL << order;
3174 3175
}

3176 3177 3178 3179 3180
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
3181
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3182 3183
{
#ifdef CONFIG_NUMA
3184
	enum numa_stat_item local_stat = NUMA_LOCAL;
3185

3186 3187 3188 3189
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3190
	if (zone_to_nid(z) != numa_node_id())
3191 3192
		local_stat = NUMA_OTHER;

3193
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3194
		__inc_numa_state(z, NUMA_HIT);
3195
	else {
3196 3197
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3198
	}
3199
	__inc_numa_state(z, local_stat);
3200 3201 3202
#endif
}

3203 3204
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3205
			unsigned int alloc_flags,
Mel Gorman's avatar
Mel Gorman committed
3206
			struct per_cpu_pages *pcp,
3207 3208 3209 3210 3211 3212 3213 3214
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3215
					migratetype, alloc_flags);
3216 3217 3218 3219
			if (unlikely(list_empty(list)))
				return NULL;
		}

Mel Gorman's avatar
Mel Gorman committed
3220
		page = list_first_entry(list, struct page, lru);
3221 3222 3223 3224 3225 3226 3227 3228 3229
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3230 3231
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3232 3233 3234 3235
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3236
	unsigned long flags;
3237

3238
	local_irq_save(flags);
3239 3240
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3241
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3242
	if (page) {
3243
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3244 3245
		zone_statistics(preferred_zone, zone);
	}
3246
	local_irq_restore(flags);
3247 3248 3249
	return page;
}

Linus Torvalds's avatar
Linus Torvalds committed
3250
/*
3251
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
Linus Torvalds's avatar
Linus Torvalds committed
3252
 */
3253
static inline
3254
struct page *rmqueue(struct zone *preferred_zone,
3255
			struct zone *zone, unsigned int order,
3256 3257
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
Linus Torvalds's avatar
Linus Torvalds committed
3258 3259
{
	unsigned long flags;
3260
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
3261

3262
	if (likely(order == 0)) {
3263 3264
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3265 3266
		goto out;
	}
3267

3268 3269 3270 3271 3272 3273
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3274

3275 3276 3277 3278 3279 3280 3281
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
Nick Piggin's avatar
Nick Piggin committed
3282
		if (!page)
3283
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3284 3285 3286 3287 3288 3289
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
Linus Torvalds's avatar
Linus Torvalds committed
3290

3291
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3292
	zone_statistics(preferred_zone, zone);
Nick Piggin's avatar
Nick Piggin committed
3293
	local_irq_restore(flags);
Linus Torvalds's avatar
Linus Torvalds committed
3294

3295
out:
3296 3297 3298 3299 3300 3301
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3302
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
Linus Torvalds's avatar
Linus Torvalds committed
3303
	return page;
Nick Piggin's avatar
Nick Piggin committed
3304 3305 3306 3307

failed:
	local_irq_restore(flags);
	return NULL;
Linus Torvalds's avatar
Linus Torvalds committed
3308 3309
}

3310 3311
#ifdef CONFIG_FAIL_PAGE_ALLOC

3312
static struct {
3313 3314
	struct fault_attr attr;

3315
	bool ignore_gfp_highmem;
3316
	bool ignore_gfp_reclaim;
3317
	u32 min_order;
3318 3319
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3320
	.ignore_gfp_reclaim = true,
3321
	.ignore_gfp_highmem = true,
3322
	.min_order = 1,
3323 3324 3325 3326 3327 3328 3329 3330
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3331
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3332
{
3333
	if (order < fail_page_alloc.min_order)
3334
		return false;
3335
	if (gfp_mask & __GFP_NOFAIL)
3336
		return false;
3337
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3338
		return false;
3339 3340
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3341
		return false;
3342 3343 3344 3345 3346 3347 3348 3349

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3350
	umode_t mode = S_IFREG | 0600;
3351 3352
	struct dentry *dir;

3353 3354
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3355

3356 3357 3358 3359 3360
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3361

3362
	return 0;
3363 3364 3365 3366 3367 3368 3369 3370
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3371
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3372
{
3373
	return false;
3374 3375 3376 3377
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3378 3379 3380 3381 3382 3383
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

Linus Torvalds's avatar
Linus Torvalds committed
3384
/*
3385 3386 3387 3388
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
Linus Torvalds's avatar
Linus Torvalds committed
3389
 */
3390 3391 3392
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
Linus Torvalds's avatar
Linus Torvalds committed
3393
{
3394
	long min = mark;
Linus Torvalds's avatar
Linus Torvalds committed
3395
	int o;
3396
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
Linus Torvalds's avatar
Linus Torvalds committed
3397

3398
	/* free_pages may go negative - that's OK */
3399
	free_pages -= (1 << order) - 1;
3400

3401
	if (alloc_flags & ALLOC_HIGH)
Linus Torvalds's avatar
Linus Torvalds committed
3402
		min -= min / 2;
3403 3404 3405 3406 3407 3408

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3409
	if (likely(!alloc_harder)) {
3410
		free_pages -= z->nr_reserved_highatomic;
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3424

3425 3426 3427 3428 3429 3430
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3431 3432 3433 3434 3435 3436
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3437
		return false;
Linus Torvalds's avatar
Linus Torvalds committed
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3452
			if (!free_area_empty(area, mt))
3453 3454 3455 3456
				return true;
		}

#ifdef CONFIG_CMA
3457
		if ((alloc_flags & ALLOC_CMA) &&
3458
		    !free_area_empty(area, MIGRATE_CMA)) {
3459
			return true;
3460
		}
3461
#endif
3462 3463 3464
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
Linus Torvalds's avatar
Linus Torvalds committed
3465
	}
3466
	return false;
3467 3468
}

3469
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3470
		      int classzone_idx, unsigned int alloc_flags)
3471 3472 3473 3474 3475
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3476 3477 3478 3479
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3480 3481 3482 3483 3484 3485 3486
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3487 3488 3489 3490 3491 3492 3493 3494

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3495
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3496 3497 3498 3499 3500 3501
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3502
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3503
			unsigned long mark, int classzone_idx)
3504 3505 3506 3507 3508 3509
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3510
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3511
								free_pages);
Linus Torvalds's avatar
Linus Torvalds committed
3512 3513
}

3514
#ifdef CONFIG_NUMA
3515 3516
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3517
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3518
				node_reclaim_distance;
3519
}
3520
#else	/* CONFIG_NUMA */
3521 3522 3523 3524
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3525 3526
#endif	/* CONFIG_NUMA */

3527 3528 3529 3530 3531 3532 3533 3534 3535
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3536
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3537
{
3538 3539 3540 3541 3542 3543
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3544 3545 3546
	if (!zone)
		return alloc_flags;

3547
	if (zone_idx(zone) != ZONE_NORMAL)
3548
		return alloc_flags;
3549 3550 3551 3552 3553 3554 3555 3556

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3557
		return alloc_flags;
3558

3559
	alloc_flags |= ALLOC_NOFRAGMENT;
3560 3561
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3562 3563
}

3564
/*
3565
 * get_page_from_freelist goes through the zonelist trying to allocate
3566 3567 3568
 * a page.
 */
static struct page *
3569 3570
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
3571
{
3572
	struct zoneref *z;
3573
	struct zone *zone;
3574
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3575
	bool no_fallback;
3576

3577
retry:
3578
	/*
3579
	 * Scan zonelist, looking for a zone with enough free.
3580
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3581
	 */
3582 3583
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3584
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3585
								ac->nodemask) {
3586
		struct page *page;
3587 3588
		unsigned long mark;

3589 3590
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3591
			!__cpuset_zone_allowed(zone, gfp_mask))
3592
				continue;
3593 3594
		/*
		 * When allocating a page cache page for writing, we
3595 3596
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3597
		 * proportional share of globally allowed dirty pages.
3598
		 * The dirty limits take into account the node's
3599 3600 3601 3602 3603
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3604
		 * exceed the per-node dirty limit in the slowpath
3605
		 * (spread_dirty_pages unset) before going into reclaim,
3606
		 * which is important when on a NUMA setup the allowed
3607
		 * nodes are together not big enough to reach the
3608
		 * global limit.  The proper fix for these situations
3609
		 * will require awareness of nodes in the
3610 3611
		 * dirty-throttling and the flusher threads.
		 */
3612 3613 3614 3615 3616 3617 3618 3619 3620
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
3621

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3638
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3639
		if (!zone_watermark_fast(zone, order, mark,
3640
				       ac_classzone_idx(ac), alloc_flags)) {
3641 3642
			int ret;

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3653 3654 3655 3656 3657
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3658
			if (node_reclaim_mode == 0 ||
3659
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3660 3661
				continue;

3662
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3663
			switch (ret) {
3664
			case NODE_RECLAIM_NOSCAN:
3665
				/* did not scan */
3666
				continue;
3667
			case NODE_RECLAIM_FULL:
3668
				/* scanned but unreclaimable */
3669
				continue;
3670 3671
			default:
				/* did we reclaim enough */
3672
				if (zone_watermark_ok(zone, order, mark,
3673
						ac_classzone_idx(ac), alloc_flags))
3674 3675 3676
					goto try_this_zone;

				continue;
3677
			}
3678 3679
		}

3680
try_this_zone:
3681
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3682
				gfp_mask, alloc_flags, ac->migratetype);
3683
		if (page) {
3684
			prep_new_page(page, order, gfp_mask, alloc_flags);
3685 3686 3687 3688 3689 3690 3691 3692

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3693
			return page;
3694 3695 3696 3697 3698 3699 3700 3701
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3702
		}
3703
	}
3704

3705 3706 3707 3708 3709 3710 3711 3712 3713
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3714
	return NULL;
3715 3716
}

3717
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3718 3719 3720 3721 3722 3723 3724 3725 3726
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3727
		if (tsk_is_oom_victim(current) ||
3728 3729
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3730
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 3732
		filter &= ~SHOW_MEM_FILTER_NODES;

3733
	show_mem(filter, nodemask);
3734 3735
}

3736
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3737 3738 3739
{
	struct va_format vaf;
	va_list args;
3740
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3741

3742
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3743 3744
		return;

3745 3746 3747
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3748
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3749 3750
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3751
	va_end(args);
Joe Perches's avatar
Joe Perches committed
3752

3753
	cpuset_print_current_mems_allowed();
3754
	pr_cont("\n");
3755
	dump_stack();
3756
	warn_alloc_show_mem(gfp_mask, nodemask);
3757 3758
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3779 3780
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3781
	const struct alloc_context *ac, unsigned long *did_some_progress)
3782
{
3783 3784 3785
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3786
		.memcg = NULL,
3787 3788 3789
		.gfp_mask = gfp_mask,
		.order = order,
	};
3790 3791
	struct page *page;

3792 3793 3794
	*did_some_progress = 0;

	/*
3795 3796
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3797
	 */
3798
	if (!mutex_trylock(&oom_lock)) {
3799
		*did_some_progress = 1;
3800
		schedule_timeout_uninterruptible(1);
Linus Torvalds's avatar
Linus Torvalds committed
3801 3802
		return NULL;
	}
3803

3804 3805 3806
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3807 3808 3809
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3810
	 */
3811 3812 3813
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3814
	if (page)
3815 3816
		goto out;

3817 3818 3819 3820 3821 3822
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3823 3824 3825 3826 3827 3828 3829 3830
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3849

3850
	/* Exhausted what can be done so it's blame time */
3851
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3852
		*did_some_progress = 1;
3853

3854 3855 3856 3857 3858 3859
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3860 3861
					ALLOC_NO_WATERMARKS, ac);
	}
3862
out:
3863
	mutex_unlock(&oom_lock);
3864 3865 3866
	return page;
}

3867 3868 3869 3870 3871 3872
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3873 3874 3875 3876
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3877
		unsigned int alloc_flags, const struct alloc_context *ac,
3878
		enum compact_priority prio, enum compact_result *compact_result)
3879
{
3880
	struct page *page = NULL;
3881
	unsigned long pflags;
3882
	unsigned int noreclaim_flag;
3883 3884

	if (!order)
3885 3886
		return NULL;

3887
	psi_memstall_enter(&pflags);
3888
	noreclaim_flag = memalloc_noreclaim_save();
3889

3890
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3891
								prio, &page);
3892

3893
	memalloc_noreclaim_restore(noreclaim_flag);
3894
	psi_memstall_leave(&pflags);
3895

3896 3897 3898 3899 3900
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3901

3902 3903 3904 3905 3906 3907 3908
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3909

3910 3911
	if (page) {
		struct zone *zone = page_zone(page);
3912

3913 3914 3915 3916 3917
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3918

3919 3920 3921 3922 3923
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3924

3925
	cond_resched();
3926 3927 3928

	return NULL;
}
3929

3930 3931 3932 3933
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3934
		     int *compaction_retries)
3935 3936
{
	int max_retries = MAX_COMPACT_RETRIES;
3937
	int min_priority;
3938 3939 3940
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3941 3942 3943 3944

	if (!order)
		return false;

3945 3946 3947
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3948 3949 3950 3951 3952
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3953 3954
	if (compaction_failed(compact_result))
		goto check_priority;
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

3965 3966 3967
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
3968 3969
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
3970
	 */
3971
	if (compaction_withdrawn(compact_result)) {
3972
		goto check_priority;
3973
	}
3974 3975

	/*
3976
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3977 3978 3979 3980 3981 3982 3983 3984
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3985 3986 3987 3988
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3989

3990 3991 3992 3993 3994
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3995 3996
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3997

3998
	if (*compact_priority > min_priority) {
3999 4000
		(*compact_priority)--;
		*compaction_retries = 0;
4001
		ret = true;
4002
	}
4003 4004 4005
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4006
}
4007 4008 4009
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4010
		unsigned int alloc_flags, const struct alloc_context *ac,
4011
		enum compact_priority prio, enum compact_result *compact_result)
4012
{
4013
	*compact_result = COMPACT_SKIPPED;
4014 4015
	return NULL;
}
4016 4017

static inline bool
4018 4019
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4020
		     enum compact_priority *compact_priority,
4021
		     int *compaction_retries)
4022
{
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4041 4042
	return false;
}
4043
#endif /* CONFIG_COMPACTION */
4044

4045
#ifdef CONFIG_LOCKDEP
4046
static struct lockdep_map __fs_reclaim_map =
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
4058
	if (current->flags & PF_MEMALLOC)
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4081 4082 4083
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4084
		__fs_reclaim_acquire();
4085 4086 4087 4088 4089 4090
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4091
		__fs_reclaim_release();
4092 4093 4094 4095
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4096 4097
/* Perform direct synchronous page reclaim */
static int
4098 4099
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4100
{
4101
	int progress;
4102
	unsigned int noreclaim_flag;
4103
	unsigned long pflags;
4104 4105 4106 4107 4108

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4109
	psi_memstall_enter(&pflags);
4110
	fs_reclaim_acquire(gfp_mask);
4111
	noreclaim_flag = memalloc_noreclaim_save();
4112

4113 4114
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4115

4116
	memalloc_noreclaim_restore(noreclaim_flag);
4117
	fs_reclaim_release(gfp_mask);
4118
	psi_memstall_leave(&pflags);
4119 4120 4121

	cond_resched();

4122 4123 4124 4125 4126 4127
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4128
		unsigned int alloc_flags, const struct alloc_context *ac,
4129
		unsigned long *did_some_progress)
4130 4131 4132 4133
{
	struct page *page = NULL;
	bool drained = false;

4134
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4135 4136
	if (unlikely(!(*did_some_progress)))
		return NULL;
4137

4138
retry:
4139
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4140 4141 4142

	/*
	 * If an allocation failed after direct reclaim, it could be because
4143 4144
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4145 4146
	 */
	if (!page && !drained) {
4147
		unreserve_highatomic_pageblock(ac, false);
4148
		drain_all_pages(NULL);
4149 4150 4151 4152
		drained = true;
		goto retry;
	}

4153 4154 4155
	return page;
}

4156 4157
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4158 4159 4160
{
	struct zoneref *z;
	struct zone *zone;
4161
	pg_data_t *last_pgdat = NULL;
4162
	enum zone_type high_zoneidx = ac->high_zoneidx;
4163

4164 4165
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4166
		if (last_pgdat != zone->zone_pgdat)
4167
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4168 4169
		last_pgdat = zone->zone_pgdat;
	}
4170 4171
}

4172
static inline unsigned int
4173 4174
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4175
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
Linus Torvalds's avatar
Linus Torvalds committed
4176

4177
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4178
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4179

4180 4181 4182 4183
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4184
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4185
	 */
4186
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
Linus Torvalds's avatar
Linus Torvalds committed
4187

4188
	if (gfp_mask & __GFP_ATOMIC) {
4189
		/*
4190 4191
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4192
		 */
4193
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4194
			alloc_flags |= ALLOC_HARDER;
4195
		/*
4196
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4197
		 * comment for __cpuset_node_allowed().
4198
		 */
4199
		alloc_flags &= ~ALLOC_CPUSET;
4200
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4201 4202
		alloc_flags |= ALLOC_HARDER;

4203 4204 4205
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4206 4207 4208 4209
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4210 4211 4212
	return alloc_flags;
}

4213
static bool oom_reserves_allowed(struct task_struct *tsk)
4214
{
4215 4216 4217 4218 4219 4220 4221 4222
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4223 4224
		return false;

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4236
	if (gfp_mask & __GFP_MEMALLOC)
4237
		return ALLOC_NO_WATERMARKS;
4238
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4239 4240 4241 4242 4243 4244 4245
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4246

4247 4248 4249 4250 4251 4252
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4253 4254
}

4255 4256 4257
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4258 4259 4260 4261
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
4262 4263 4264 4265 4266 4267
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4268
		     bool did_some_progress, int *no_progress_loops)
4269 4270 4271
{
	struct zone *zone;
	struct zoneref *z;
4272
	bool ret = false;
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

4284 4285 4286 4287
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4288 4289
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4290
		return unreserve_highatomic_pageblock(ac, true);
4291
	}
4292

4293 4294 4295 4296 4297
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
4298 4299 4300 4301
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4302
		unsigned long reclaimable;
4303 4304
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
4305

4306 4307
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4308 4309

		/*
4310 4311
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
4312
		 */
4313 4314 4315 4316 4317
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4318 4319 4320 4321 4322 4323 4324
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4325
				unsigned long write_pending;
4326

4327 4328
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4329

4330
				if (2 * write_pending > reclaimable) {
4331 4332 4333 4334
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4335

4336 4337
			ret = true;
			goto out;
4338 4339 4340
		}
	}

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
4354 4355
}

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4389 4390
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4391
						struct alloc_context *ac)
4392
{
4393
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4394
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4395
	struct page *page = NULL;
4396
	unsigned int alloc_flags;
4397
	unsigned long did_some_progress;
4398
	enum compact_priority compact_priority;
4399
	enum compact_result compact_result;
4400 4401 4402
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4403
	int reserve_flags;
Linus Torvalds's avatar
Linus Torvalds committed
4404

4405 4406 4407 4408 4409 4410 4411 4412
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4413 4414 4415 4416 4417
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4418 4419 4420 4421 4422 4423 4424 4425

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4437
	if (alloc_flags & ALLOC_KSWAPD)
4438
		wake_all_kswapds(order, gfp_mask, ac);
4439 4440 4441 4442 4443 4444 4445 4446 4447

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4448 4449
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4450 4451 4452 4453 4454 4455
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4456
	 */
4457 4458 4459 4460
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4461 4462
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4463
						INIT_COMPACT_PRIORITY,
4464 4465 4466 4467
						&compact_result);
		if (page)
			goto got_pg;

4468 4469 4470 4471 4472
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4473 4474 4475 4476
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4477 4478
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4493 4494

			/*
4495 4496
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4497
			 * using async compaction.
4498
			 */
4499
			compact_priority = INIT_COMPACT_PRIORITY;
4500 4501
		}
	}
4502

4503
retry:
4504
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4505
	if (alloc_flags & ALLOC_KSWAPD)
4506
		wake_all_kswapds(order, gfp_mask, ac);
4507

4508 4509 4510
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4511

4512
	/*
4513 4514 4515
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4516
	 */
4517
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4518
		ac->nodemask = NULL;
4519 4520 4521 4522
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4523
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4524
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4525 4526
	if (page)
		goto got_pg;
Linus Torvalds's avatar
Linus Torvalds committed
4527

4528
	/* Caller is not willing to reclaim, we can't balance anything */
4529
	if (!can_direct_reclaim)
Linus Torvalds's avatar
Linus Torvalds committed
4530 4531
		goto nopage;

4532 4533
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4534 4535
		goto nopage;

4536 4537 4538 4539 4540 4541 4542
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4543
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4544
					compact_priority, &compact_result);
4545 4546
	if (page)
		goto got_pg;
4547

4548 4549
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4550
		goto nopage;
4551

4552 4553
	/*
	 * Do not retry costly high order allocations unless they are
4554
	 * __GFP_RETRY_MAYFAIL
4555
	 */
4556
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4557
		goto nopage;
4558 4559

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4560
				 did_some_progress > 0, &no_progress_loops))
4561 4562
		goto retry;

4563 4564 4565 4566 4567 4568 4569
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4570
			should_compact_retry(ac, order, alloc_flags,
4571
				compact_result, &compact_priority,
4572
				&compaction_retries))
4573 4574
		goto retry;

4575 4576 4577

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4578 4579
		goto retry_cpuset;

4580 4581 4582 4583 4584
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4585
	/* Avoid allocations with no watermarks from looping endlessly */
4586 4587
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4588
	     (gfp_mask & __GFP_NOMEMALLOC)))
4589 4590
		goto nopage;

4591
	/* Retry as long as the OOM killer is making progress */
4592 4593
	if (did_some_progress) {
		no_progress_loops = 0;
4594
		goto retry;
4595
	}
4596

Linus Torvalds's avatar
Linus Torvalds committed
4597
nopage:
4598 4599
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4600 4601
		goto retry_cpuset;

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4639 4640 4641 4642
		cond_resched();
		goto retry;
	}
fail:
4643
	warn_alloc(gfp_mask, ac->nodemask,
4644
			"page allocation failure: order:%u", order);
Linus Torvalds's avatar
Linus Torvalds committed
4645
got_pg:
4646
	return page;
Linus Torvalds's avatar
Linus Torvalds committed
4647
}
4648

4649
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4650
		int preferred_nid, nodemask_t *nodemask,
4651 4652
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4653
{
4654
	ac->high_zoneidx = gfp_zone(gfp_mask);
4655
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4656 4657
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4658

4659
	if (cpusets_enabled()) {
4660 4661 4662
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4663 4664
		else
			*alloc_flags |= ALLOC_CPUSET;
4665 4666
	}

4667 4668
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4669

4670
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4671 4672

	if (should_fail_alloc_page(gfp_mask, order))
4673
		return false;
4674

4675 4676 4677
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4678 4679
	return true;
}
4680

4681
/* Determine whether to spread dirty pages and what the first usable zone */
4682
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4683
{
4684
	/* Dirty zone balancing only done in the fast path */
4685
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4686

4687 4688 4689 4690 4691
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4692 4693 4694 4695 4696 4697 4698 4699
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4700 4701
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4702 4703 4704
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4705
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4706 4707
	struct alloc_context ac = { };

4708 4709 4710 4711 4712 4713 4714 4715 4716
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4717
	gfp_mask &= gfp_allowed_mask;
4718
	alloc_mask = gfp_mask;
4719
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4720 4721
		return NULL;

4722
	finalise_ac(gfp_mask, &ac);
4723

4724 4725 4726 4727
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4728
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4729

4730
	/* First allocation attempt */
4731
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4732 4733
	if (likely(page))
		goto out;
4734

4735
	/*
4736 4737 4738 4739
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4740
	 */
4741
	alloc_mask = current_gfp_context(gfp_mask);
4742
	ac.spread_dirty_pages = false;
4743

4744 4745 4746 4747
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4748
	if (unlikely(ac.nodemask != nodemask))
4749
		ac.nodemask = nodemask;
4750

4751
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4752

4753
out:
4754
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4755
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4756 4757
		__free_pages(page, order);
		page = NULL;
4758 4759
	}

4760 4761
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4762
	return page;
Linus Torvalds's avatar
Linus Torvalds committed
4763
}
4764
EXPORT_SYMBOL(__alloc_pages_nodemask);
Linus Torvalds's avatar
Linus Torvalds committed
4765 4766

/*
4767 4768 4769
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
Linus Torvalds's avatar
Linus Torvalds committed
4770
 */
4771
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
Linus Torvalds's avatar
Linus Torvalds committed
4772
{
4773 4774
	struct page *page;

4775
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
Linus Torvalds's avatar
Linus Torvalds committed
4776 4777 4778 4779 4780 4781
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

4782
unsigned long get_zeroed_page(gfp_t gfp_mask)
Linus Torvalds's avatar
Linus Torvalds committed
4783
{
4784
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
Linus Torvalds's avatar
Linus Torvalds committed
4785 4786 4787
}
EXPORT_SYMBOL(get_zeroed_page);

4788
static inline void free_the_page(struct page *page, unsigned int order)
Linus Torvalds's avatar
Linus Torvalds committed
4789
{
4790 4791 4792 4793
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
Linus Torvalds's avatar
Linus Torvalds committed
4794 4795
}

4796 4797 4798 4799 4800
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
Linus Torvalds's avatar
Linus Torvalds committed
4801 4802
EXPORT_SYMBOL(__free_pages);

4803
void free_pages(unsigned long addr, unsigned int order)
Linus Torvalds's avatar
Linus Torvalds committed
4804 4805
{
	if (addr != 0) {
Nick Piggin's avatar
Nick Piggin committed
4806
		VM_BUG_ON(!virt_addr_valid((void *)addr));
Linus Torvalds's avatar
Linus Torvalds committed
4807 4808 4809 4810 4811 4812
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4824 4825
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4845
void __page_frag_cache_drain(struct page *page, unsigned int count)
4846 4847 4848
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4849 4850
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4851
}
4852
EXPORT_SYMBOL(__page_frag_cache_drain);
4853

4854 4855
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4856 4857 4858 4859 4860 4861 4862
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4863
		page = __page_frag_cache_refill(nc, gfp_mask);
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4874
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4875 4876

		/* reset page count bias and offset to start of new frag */
4877
		nc->pfmemalloc = page_is_pfmemalloc(page);
4878
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4879 4880 4881 4882 4883 4884 4885
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4886
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4887 4888 4889 4890 4891 4892 4893
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4894
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4895 4896

		/* reset page count bias and offset to start of new frag */
4897
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4898 4899 4900 4901 4902 4903 4904 4905
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4906
EXPORT_SYMBOL(page_frag_alloc);
4907 4908 4909 4910

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4911
void page_frag_free(void *addr)
4912 4913 4914
{
	struct page *page = virt_to_head_page(addr);

4915 4916
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4917
}
4918
EXPORT_SYMBOL(page_frag_free);
4919

4920 4921
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
Andi Kleen's avatar
Andi Kleen committed
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4936 4937 4938
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4939
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4940 4941 4942 4943 4944 4945 4946 4947
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4948 4949
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4950 4951 4952 4953 4954 4955
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4956 4957 4958
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4959
	addr = __get_free_pages(gfp_mask, order);
Andi Kleen's avatar
Andi Kleen committed
4960
	return make_alloc_exact(addr, order, size);
4961 4962 4963
}
EXPORT_SYMBOL(alloc_pages_exact);

Andi Kleen's avatar
Andi Kleen committed
4964 4965 4966
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4967
 * @nid: the preferred node ID where memory should be allocated
Andi Kleen's avatar
Andi Kleen committed
4968
 * @size: the number of bytes to allocate
4969
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andi Kleen's avatar
Andi Kleen committed
4970 4971 4972
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4973 4974
 *
 * Return: pointer to the allocated area or %NULL in case of error.
Andi Kleen's avatar
Andi Kleen committed
4975
 */
4976
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
Andi Kleen's avatar
Andi Kleen committed
4977
{
4978
	unsigned int order = get_order(size);
4979 4980 4981 4982 4983 4984
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
Andi Kleen's avatar
Andi Kleen committed
4985 4986 4987 4988 4989
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5009 5010 5011 5012
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5013
 * nr_free_zone_pages() counts the number of pages which are beyond the
5014 5015
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5016 5017
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5018 5019
 *
 * Return: number of pages beyond high watermark.
5020
 */
5021
static unsigned long nr_free_zone_pages(int offset)
Linus Torvalds's avatar
Linus Torvalds committed
5022
{
5023
	struct zoneref *z;
5024 5025
	struct zone *zone;

5026
	/* Just pick one node, since fallback list is circular */
5027
	unsigned long sum = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5028

5029
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
Linus Torvalds's avatar
Linus Torvalds committed
5030

5031
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5032
		unsigned long size = zone_managed_pages(zone);
5033
		unsigned long high = high_wmark_pages(zone);
5034 5035
		if (size > high)
			sum += size - high;
Linus Torvalds's avatar
Linus Torvalds committed
5036 5037 5038 5039 5040
	}

	return sum;
}

5041 5042 5043 5044 5045
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5046 5047 5048
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
Linus Torvalds's avatar
Linus Torvalds committed
5049
 */
5050
unsigned long nr_free_buffer_pages(void)
Linus Torvalds's avatar
Linus Torvalds committed
5051
{
Al Viro's avatar
Al Viro committed
5052
	return nr_free_zone_pages(gfp_zone(GFP_USER));
Linus Torvalds's avatar
Linus Torvalds committed
5053
}
5054
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
Linus Torvalds's avatar
Linus Torvalds committed
5055

5056 5057 5058 5059 5060
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5061 5062
 *
 * Return: number of pages beyond high watermark within all zones.
Linus Torvalds's avatar
Linus Torvalds committed
5063
 */
5064
unsigned long nr_free_pagecache_pages(void)
Linus Torvalds's avatar
Linus Torvalds committed
5065
{
Mel Gorman's avatar
Mel Gorman committed
5066
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
Linus Torvalds's avatar
Linus Torvalds committed
5067
}
5068 5069

static inline void show_node(struct zone *zone)
Linus Torvalds's avatar
Linus Torvalds committed
5070
{
5071
	if (IS_ENABLED(CONFIG_NUMA))
5072
		printk("Node %d ", zone_to_nid(zone));
Linus Torvalds's avatar
Linus Torvalds committed
5073 5074
}

5075 5076 5077 5078 5079 5080
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5081
	unsigned long reclaimable;
5082 5083 5084 5085
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5086
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5087 5088

	for_each_zone(zone)
5089
		wmark_low += low_wmark_pages(zone);
5090 5091 5092 5093 5094

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5095
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5107 5108 5109
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5110
	 */
5111 5112 5113
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5114

5115 5116 5117 5118 5119 5120
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

Linus Torvalds's avatar
Linus Torvalds committed
5121 5122
void si_meminfo(struct sysinfo *val)
{
5123
	val->totalram = totalram_pages();
5124
	val->sharedram = global_node_page_state(NR_SHMEM);
5125
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
Linus Torvalds's avatar
Linus Torvalds committed
5126
	val->bufferram = nr_blockdev_pages();
5127
	val->totalhigh = totalhigh_pages();
Linus Torvalds's avatar
Linus Torvalds committed
5128 5129 5130 5131 5132 5133 5134 5135 5136
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5137 5138
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5139 5140
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5141 5142
	pg_data_t *pgdat = NODE_DATA(nid);

5143
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5144
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5145
	val->totalram = managed_pages;
5146
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5147
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5148
#ifdef CONFIG_HIGHMEM
5149 5150 5151 5152
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5153
			managed_highpages += zone_managed_pages(zone);
5154 5155 5156 5157 5158
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5159
#else
5160 5161
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5162
#endif
Linus Torvalds's avatar
Linus Torvalds committed
5163 5164 5165 5166
	val->mem_unit = PAGE_SIZE;
}
#endif

5167
/*
5168 5169
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5170
 */
5171
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5172 5173
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5174
		return false;
5175

5176 5177 5178 5179 5180 5181 5182 5183 5184
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5185 5186
}

Linus Torvalds's avatar
Linus Torvalds committed
5187 5188
#define K(x) ((x) << (PAGE_SHIFT-10))

5189 5190 5191 5192 5193
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5194 5195
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5196 5197 5198
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5199
#ifdef CONFIG_MEMORY_ISOLATION
5200
		[MIGRATE_ISOLATE]	= 'I',
5201
#endif
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5213
	printk(KERN_CONT "(%s) ", tmp);
5214 5215
}

Linus Torvalds's avatar
Linus Torvalds committed
5216 5217 5218 5219
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5220 5221 5222 5223
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
5224
 */
5225
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
Linus Torvalds's avatar
Linus Torvalds committed
5226
{
5227
	unsigned long free_pcp = 0;
5228
	int cpu;
Linus Torvalds's avatar
Linus Torvalds committed
5229
	struct zone *zone;
5230
	pg_data_t *pgdat;
Linus Torvalds's avatar
Linus Torvalds committed
5231

5232
	for_each_populated_zone(zone) {
5233
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5234
			continue;
5235

5236 5237
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
Linus Torvalds's avatar
Linus Torvalds committed
5238 5239
	}

5240 5241
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5242 5243
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5244
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5245
		" free:%lu free_pcp:%lu free_cma:%lu\n",
5246 5247 5248 5249 5250 5251 5252
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5253 5254 5255
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5256 5257
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5258
		global_node_page_state(NR_FILE_MAPPED),
5259
		global_node_page_state(NR_SHMEM),
5260 5261 5262
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5263
		free_pcp,
5264
		global_zone_page_state(NR_FREE_CMA_PAGES));
Linus Torvalds's avatar
Linus Torvalds committed
5265

5266
	for_each_online_pgdat(pgdat) {
5267
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5268 5269
			continue;

5270 5271 5272 5273 5274 5275 5276 5277
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5278
			" mapped:%lukB"
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5299
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5300 5301
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5302
			K(node_page_state(pgdat, NR_SHMEM)),
5303 5304 5305 5306 5307 5308 5309 5310
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5311 5312
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
5313 5314
	}

5315
	for_each_populated_zone(zone) {
Linus Torvalds's avatar
Linus Torvalds committed
5316 5317
		int i;

5318
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5319
			continue;
5320 5321 5322 5323 5324

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

Linus Torvalds's avatar
Linus Torvalds committed
5325
		show_node(zone);
5326 5327
		printk(KERN_CONT
			"%s"
Linus Torvalds's avatar
Linus Torvalds committed
5328 5329 5330 5331
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5332
			" reserved_highatomic:%luKB"
5333 5334 5335 5336 5337
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5338
			" writepending:%lukB"
Linus Torvalds's avatar
Linus Torvalds committed
5339
			" present:%lukB"
5340
			" managed:%lukB"
5341
			" mlocked:%lukB"
5342
			" kernel_stack:%lukB"
5343 5344
			" pagetables:%lukB"
			" bounce:%lukB"
5345 5346
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5347
			" free_cma:%lukB"
Linus Torvalds's avatar
Linus Torvalds committed
5348 5349
			"\n",
			zone->name,
5350
			K(zone_page_state(zone, NR_FREE_PAGES)),
5351 5352 5353
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5354
			K(zone->nr_reserved_highatomic),
5355 5356 5357 5358 5359
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5360
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
Linus Torvalds's avatar
Linus Torvalds committed
5361
			K(zone->present_pages),
5362
			K(zone_managed_pages(zone)),
5363
			K(zone_page_state(zone, NR_MLOCK)),
5364
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5365 5366
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5367 5368
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5369
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
Linus Torvalds's avatar
Linus Torvalds committed
5370 5371
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5372 5373
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
Linus Torvalds's avatar
Linus Torvalds committed
5374 5375
	}

5376
	for_each_populated_zone(zone) {
5377 5378
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5379
		unsigned char types[MAX_ORDER];
Linus Torvalds's avatar
Linus Torvalds committed
5380

5381
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5382
			continue;
Linus Torvalds's avatar
Linus Torvalds committed
5383
		show_node(zone);
5384
		printk(KERN_CONT "%s: ", zone->name);
Linus Torvalds's avatar
Linus Torvalds committed
5385 5386 5387

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5388 5389 5390 5391
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5392
			total += nr[order] << order;
5393 5394 5395

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5396
				if (!free_area_empty(area, type))
5397 5398
					types[order] |= 1 << type;
			}
Linus Torvalds's avatar
Linus Torvalds committed
5399 5400
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5401
		for (order = 0; order < MAX_ORDER; order++) {
5402 5403
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5404 5405 5406
			if (nr[order])
				show_migration_types(types[order]);
		}
5407
		printk(KERN_CONT "= %lukB\n", K(total));
Linus Torvalds's avatar
Linus Torvalds committed
5408 5409
	}

5410 5411
	hugetlb_show_meminfo();

5412
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5413

Linus Torvalds's avatar
Linus Torvalds committed
5414 5415 5416
	show_swap_cache_info();
}

5417 5418 5419 5420 5421 5422
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

Linus Torvalds's avatar
Linus Torvalds committed
5423 5424
/*
 * Builds allocation fallback zone lists.
5425 5426
 *
 * Add all populated zones of a node to the zonelist.
Linus Torvalds's avatar
Linus Torvalds committed
5427
 */
5428
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
Linus Torvalds's avatar
Linus Torvalds committed
5429
{
5430
	struct zone *zone;
5431
	enum zone_type zone_type = MAX_NR_ZONES;
5432
	int nr_zones = 0;
5433 5434

	do {
5435
		zone_type--;
5436
		zone = pgdat->node_zones + zone_type;
5437
		if (managed_zone(zone)) {
5438
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5439
			check_highest_zone(zone_type);
Linus Torvalds's avatar
Linus Torvalds committed
5440
		}
5441
	} while (zone_type);
5442

5443
	return nr_zones;
Linus Torvalds's avatar
Linus Torvalds committed
5444 5445 5446
}

#ifdef CONFIG_NUMA
5447 5448 5449

static int __parse_numa_zonelist_order(char *s)
{
5450 5451 5452 5453 5454 5455 5456 5457
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5458 5459 5460 5461 5462 5463 5464
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5465 5466 5467
	if (!s)
		return 0;

5468
	return __parse_numa_zonelist_order(s);
5469 5470 5471
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5472 5473
char numa_zonelist_order[] = "Node";

5474 5475 5476
/*
 * sysctl handler for numa_zonelist_order
 */
5477
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5478
		void __user *buffer, size_t *length,
5479 5480
		loff_t *ppos)
{
5481
	char *str;
5482 5483
	int ret;

5484 5485 5486 5487 5488
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5489

5490 5491
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5492
	return ret;
5493 5494 5495
}


5496
#define MAX_NODE_LOAD (nr_online_nodes)
5497 5498
static int node_load[MAX_NUMNODES];

Linus Torvalds's avatar
Linus Torvalds committed
5499
/**
5500
 * find_next_best_node - find the next node that should appear in a given node's fallback list
Linus Torvalds's avatar
Linus Torvalds committed
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5511 5512
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
Linus Torvalds's avatar
Linus Torvalds committed
5513
 */
5514
static int find_next_best_node(int node, nodemask_t *used_node_mask)
Linus Torvalds's avatar
Linus Torvalds committed
5515
{
5516
	int n, val;
Linus Torvalds's avatar
Linus Torvalds committed
5517
	int min_val = INT_MAX;
David Rientjes's avatar
David Rientjes committed
5518
	int best_node = NUMA_NO_NODE;
5519
	const struct cpumask *tmp = cpumask_of_node(0);
Linus Torvalds's avatar
Linus Torvalds committed
5520

5521 5522 5523 5524 5525
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
Linus Torvalds's avatar
Linus Torvalds committed
5526

5527
	for_each_node_state(n, N_MEMORY) {
Linus Torvalds's avatar
Linus Torvalds committed
5528 5529 5530 5531 5532 5533 5534 5535

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5536 5537 5538
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

Linus Torvalds's avatar
Linus Torvalds committed
5539
		/* Give preference to headless and unused nodes */
5540 5541
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
Linus Torvalds's avatar
Linus Torvalds committed
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5560 5561 5562 5563 5564 5565

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5566 5567
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
Linus Torvalds's avatar
Linus Torvalds committed
5568
{
5569 5570 5571 5572 5573 5574 5575 5576 5577
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5578

5579 5580 5581 5582 5583
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5584 5585
}

5586 5587 5588 5589 5590
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5591 5592
	struct zoneref *zonerefs;
	int nr_zones;
5593

5594 5595 5596 5597 5598
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5599 5600
}

5601 5602 5603 5604 5605 5606 5607 5608 5609
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5610 5611
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5612
	nodemask_t used_mask;
5613
	int local_node, prev_node;
Linus Torvalds's avatar
Linus Torvalds committed
5614 5615 5616

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5617
	load = nr_online_nodes;
Linus Torvalds's avatar
Linus Torvalds committed
5618 5619
	prev_node = local_node;
	nodes_clear(used_mask);
5620 5621

	memset(node_order, 0, sizeof(node_order));
Linus Torvalds's avatar
Linus Torvalds committed
5622 5623 5624 5625 5626 5627
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5628 5629
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5630 5631
			node_load[node] = load;

5632
		node_order[nr_nodes++] = node;
Linus Torvalds's avatar
Linus Torvalds committed
5633 5634 5635
		prev_node = node;
		load--;
	}
5636

5637
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5638
	build_thisnode_zonelists(pgdat);
Linus Torvalds's avatar
Linus Torvalds committed
5639 5640
}

5641 5642 5643 5644 5645 5646 5647 5648 5649
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5650
	struct zoneref *z;
5651

5652
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5653
				   gfp_zone(GFP_KERNEL),
5654
				   NULL);
5655
	return zone_to_nid(z->zone);
5656 5657
}
#endif
5658

5659 5660
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
Linus Torvalds's avatar
Linus Torvalds committed
5661 5662
#else	/* CONFIG_NUMA */

5663
static void build_zonelists(pg_data_t *pgdat)
Linus Torvalds's avatar
Linus Torvalds committed
5664
{
5665
	int node, local_node;
5666 5667
	struct zoneref *zonerefs;
	int nr_zones;
Linus Torvalds's avatar
Linus Torvalds committed
5668 5669 5670

	local_node = pgdat->node_id;

5671 5672 5673
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
Linus Torvalds's avatar
Linus Torvalds committed
5674

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5686 5687
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
Linus Torvalds's avatar
Linus Torvalds committed
5688
	}
5689 5690 5691
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5692 5693
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5694 5695
	}

5696 5697
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5698 5699 5700 5701
}

#endif	/* CONFIG_NUMA */

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5719
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5720

5721
static void __build_all_zonelists(void *data)
Linus Torvalds's avatar
Linus Torvalds committed
5722
{
5723
	int nid;
5724
	int __maybe_unused cpu;
5725
	pg_data_t *self = data;
5726 5727 5728
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5729

5730 5731 5732
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5733

5734 5735 5736 5737
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5738 5739
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5740 5741 5742
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5743

5744 5745
			build_zonelists(pgdat);
		}
5746

5747 5748 5749 5750 5751 5752 5753 5754 5755
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5756
		for_each_online_cpu(cpu)
5757
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5758
#endif
5759
	}
5760 5761

	spin_unlock(&lock);
5762 5763
}

5764 5765 5766
static noinline void __init
build_all_zonelists_init(void)
{
5767 5768
	int cpu;

5769
	__build_all_zonelists(NULL);
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5787 5788 5789 5790
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5791 5792
/*
 * unless system_state == SYSTEM_BOOTING.
5793
 *
5794
 * __ref due to call of __init annotated helper build_all_zonelists_init
5795
 * [protected by SYSTEM_BOOTING].
5796
 */
5797
void __ref build_all_zonelists(pg_data_t *pgdat)
5798 5799
{
	if (system_state == SYSTEM_BOOTING) {
5800
		build_all_zonelists_init();
5801
	} else {
5802
		__build_all_zonelists(pgdat);
5803 5804
		/* cpuset refresh routine should be here */
	}
5805
	vm_total_pages = nr_free_pagecache_pages();
5806 5807 5808 5809 5810 5811 5812
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5813
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5814 5815 5816 5817
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5818
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
Joe Perches's avatar
Joe Perches committed
5819 5820 5821
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5822
#ifdef CONFIG_NUMA
5823
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5824
#endif
Linus Torvalds's avatar
Linus Torvalds committed
5825 5826
}

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
#ifdef CONFIG_SPARSEMEM
/* Skip PFNs that belong to non-present sections */
static inline __meminit unsigned long next_pfn(unsigned long pfn)
{
	unsigned long section_nr;

	section_nr = pfn_to_section_nr(++pfn);
	if (present_section_nr(section_nr))
		return pfn;

	while (++section_nr <= __highest_present_section_nr) {
		if (present_section_nr(section_nr))
			return section_nr_to_pfn(section_nr);
	}

	return -1;
}
#else
static inline __meminit unsigned long next_pfn(unsigned long pfn)
{
	return pfn++;
}
#endif

Linus Torvalds's avatar
Linus Torvalds committed
5875 5876
/*
 * Initially all pages are reserved - free ones are freed
5877
 * up by memblock_free_all() once the early boot process is
Linus Torvalds's avatar
Linus Torvalds committed
5878 5879
 * done. Non-atomic initialization, single-pass.
 */
5880
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5881 5882
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
Linus Torvalds's avatar
Linus Torvalds committed
5883
{
5884
	unsigned long pfn, end_pfn = start_pfn + size;
5885
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
5886

5887 5888 5889
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5890
#ifdef CONFIG_ZONE_DEVICE
5891 5892
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5893 5894 5895 5896
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5897
	 */
5898 5899 5900 5901 5902 5903 5904 5905 5906
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5907

5908
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
Dave Hansen's avatar
Dave Hansen committed
5909
		/*
5910 5911
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
Dave Hansen's avatar
Dave Hansen committed
5912
		 */
5913
		if (context == MEMMAP_EARLY) {
5914 5915
			if (!early_pfn_valid(pfn)) {
				pfn = next_pfn(pfn) - 1;
5916
				continue;
5917
			}
5918 5919 5920 5921 5922 5923
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
Dave Hansen's avatar
Dave Hansen committed
5924
		}
5925

5926 5927 5928
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5929
			__SetPageReserved(page);
5930

5931 5932 5933 5934 5935
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5936
		 * kernel allocations are made.
5937 5938 5939 5940 5941 5942 5943 5944
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5945
			cond_resched();
5946
		}
Linus Torvalds's avatar
Linus Torvalds committed
5947 5948 5949
	}
}

5950 5951 5952 5953 5954 5955 5956 5957
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
5958
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5959 5960 5961 5962
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

5963
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5964 5965 5966 5967 5968 5969 5970
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
5971
	if (altmap) {
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
5991 5992 5993
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
5994 5995
		 */
		page->pgmap = pgmap;
5996
		page->zone_device_data = NULL;
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6011
		 * because this is done early in section_activate()
6012 6013 6014 6015 6016 6017 6018
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6019
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6020 6021 6022 6023
		size, jiffies_to_msecs(jiffies - start));
}

#endif
6024
static void __meminit zone_init_free_lists(struct zone *zone)
Linus Torvalds's avatar
Linus Torvalds committed
6025
{
6026
	unsigned int order, t;
6027 6028
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
Linus Torvalds's avatar
Linus Torvalds committed
6029 6030 6031 6032
		zone->free_area[order].nr_free = 0;
	}
}

6033 6034 6035 6036 6037
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
Linus Torvalds's avatar
Linus Torvalds committed
6038

6039
static int zone_batchsize(struct zone *zone)
6040
{
6041
#ifdef CONFIG_MMU
6042 6043 6044 6045
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6046
	 * size of the zone.
6047
	 */
6048
	batch = zone_managed_pages(zone) / 1024;
6049 6050 6051
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6052 6053 6054 6055 6056
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6057 6058 6059
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6060
	 *
6061 6062 6063 6064
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6065
	 */
6066
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6067

6068
	return batch;
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6086 6087
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6115
/* a companion to pageset_set_high() */
6116 6117
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6118
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6119 6120
}

6121
static void pageset_init(struct per_cpu_pageset *p)
6122 6123
{
	struct per_cpu_pages *pcp;
6124
	int migratetype;
6125

6126 6127
	memset(p, 0, sizeof(*p));

6128
	pcp = &p->pcp;
6129 6130
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6131 6132
}

6133 6134 6135 6136 6137 6138
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6139
/*
6140
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6141 6142
 * to the value high for the pageset p.
 */
6143
static void pageset_set_high(struct per_cpu_pageset *p,
6144 6145
				unsigned long high)
{
6146 6147 6148
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6149

6150
	pageset_update(&p->pcp, high, batch);
6151 6152
}

6153 6154
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6155 6156
{
	if (percpu_pagelist_fraction)
6157
		pageset_set_high(pcp,
6158
			(zone_managed_pages(zone) /
6159 6160 6161 6162 6163
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6164 6165 6166 6167 6168 6169 6170 6171
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6172
void __meminit setup_zone_pageset(struct zone *zone)
6173 6174 6175
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6176 6177
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6178 6179
}

6180
/*
6181 6182
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6183
 */
6184
void __init setup_per_cpu_pageset(void)
6185
{
6186
	struct pglist_data *pgdat;
6187
	struct zone *zone;
6188

6189 6190
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6191 6192 6193 6194

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6195 6196
}

6197
static __meminit void zone_pcp_init(struct zone *zone)
6198
{
6199 6200 6201 6202 6203 6204
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6205

6206
	if (populated_zone(zone))
6207 6208 6209
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6210 6211
}

6212
void __meminit init_currently_empty_zone(struct zone *zone,
6213
					unsigned long zone_start_pfn,
6214
					unsigned long size)
6215 6216
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6217
	int zone_idx = zone_idx(zone) + 1;
6218

6219 6220
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6221 6222 6223

	zone->zone_start_pfn = zone_start_pfn;

6224 6225 6226 6227 6228 6229
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6230
	zone_init_free_lists(zone);
6231
	zone->initialized = 1;
6232 6233
}

Tejun Heo's avatar
Tejun Heo committed
6234
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6235
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6236

6237 6238 6239
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6240 6241
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6242
{
6243
	unsigned long start_pfn, end_pfn;
6244
	int nid;
6245

6246 6247
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6248

6249
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6250
	if (nid != NUMA_NO_NODE) {
6251 6252 6253
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6254 6255 6256
	}

	return nid;
6257 6258 6259 6260
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6261
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6262
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6263
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6264
 *
6265 6266 6267
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6268
 */
6269
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6270
{
6271 6272
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6273

6274 6275 6276
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6277

6278
		if (start_pfn < end_pfn)
6279 6280 6281
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6282 6283 6284
	}
}

6285 6286
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6287
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6288
 *
6289 6290
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6291 6292 6293
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6294 6295
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6296

6297 6298
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6299 6300 6301 6302
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6303 6304 6305
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6306 6307
 *
 * It returns the start and end page frame of a node based on information
6308
 * provided by memblock_set_node(). If called for a node
6309
 * with no available memory, a warning is printed and the start and end
6310
 * PFNs will be 0.
6311
 */
6312
void __init get_pfn_range_for_nid(unsigned int nid,
6313 6314
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6315
	unsigned long this_start_pfn, this_end_pfn;
6316
	int i;
6317

6318 6319 6320
	*start_pfn = -1UL;
	*end_pfn = 0;

6321 6322 6323
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6324 6325
	}

6326
	if (*start_pfn == -1UL)
6327 6328 6329
		*start_pfn = 0;
}

Mel Gorman's avatar
Mel Gorman committed
6330 6331 6332 6333 6334
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
Adrian Bunk's avatar
Adrian Bunk committed
6335
static void __init find_usable_zone_for_movable(void)
Mel Gorman's avatar
Mel Gorman committed
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
Lucas De Marchi's avatar
Lucas De Marchi committed
6353
 * because it is sized independent of architecture. Unlike the other zones,
Mel Gorman's avatar
Mel Gorman committed
6354 6355 6356 6357 6358 6359 6360
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6361
static void __init adjust_zone_range_for_zone_movable(int nid,
Mel Gorman's avatar
Mel Gorman committed
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6376 6377 6378 6379 6380 6381
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

Mel Gorman's avatar
Mel Gorman committed
6382 6383 6384 6385 6386 6387
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6388 6389 6390 6391
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6392
static unsigned long __init zone_spanned_pages_in_node(int nid,
6393
					unsigned long zone_type,
6394 6395
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6396 6397
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6398 6399
					unsigned long *ignored)
{
6400 6401
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6402
	/* When hotadd a new node from cpu_up(), the node should be empty */
6403 6404 6405
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6406
	/* Get the start and end of the zone */
6407 6408
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
Mel Gorman's avatar
Mel Gorman committed
6409 6410
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6411
				zone_start_pfn, zone_end_pfn);
6412 6413

	/* Check that this node has pages within the zone's required range */
6414
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6415 6416 6417
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6418 6419
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6420 6421

	/* Return the spanned pages */
6422
	return *zone_end_pfn - *zone_start_pfn;
6423 6424 6425 6426
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6427
 * then all holes in the requested range will be accounted for.
6428
 */
6429
unsigned long __init __absent_pages_in_range(int nid,
6430 6431 6432
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6433 6434 6435
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6436

6437 6438 6439 6440
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6441
	}
6442
	return nr_absent;
6443 6444 6445 6446 6447 6448 6449
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6450
 * Return: the number of pages frames in memory holes within a range.
6451 6452 6453 6454 6455 6456 6457 6458
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6459
static unsigned long __init zone_absent_pages_in_node(int nid,
6460
					unsigned long zone_type,
6461 6462
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6463 6464
					unsigned long *ignored)
{
6465 6466
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6467
	unsigned long zone_start_pfn, zone_end_pfn;
6468
	unsigned long nr_absent;
6469

6470
	/* When hotadd a new node from cpu_up(), the node should be empty */
6471 6472 6473
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6474 6475
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476

Mel Gorman's avatar
Mel Gorman committed
6477 6478 6479
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6480 6481 6482 6483 6484 6485 6486
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6504 6505 6506 6507
		}
	}

	return nr_absent;
6508
}
6509

Tejun Heo's avatar
Tejun Heo committed
6510
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6511
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6512
					unsigned long zone_type,
6513 6514
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6515 6516
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6517 6518
					unsigned long *zones_size)
{
6519 6520 6521 6522 6523 6524 6525 6526
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6527 6528 6529
	return zones_size[zone_type];
}

6530
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6531
						unsigned long zone_type,
6532 6533
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6534 6535 6536 6537 6538 6539 6540
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6541

Tejun Heo's avatar
Tejun Heo committed
6542
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6543

6544
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6545 6546 6547 6548
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6549
{
6550
	unsigned long realtotalpages = 0, totalpages = 0;
6551 6552
	enum zone_type i;

6553 6554
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6555
		unsigned long zone_start_pfn, zone_end_pfn;
6556
		unsigned long size, real_size;
6557

6558 6559 6560
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6561 6562
						  &zone_start_pfn,
						  &zone_end_pfn,
6563 6564
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6565 6566
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6567 6568 6569 6570
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6571 6572 6573 6574 6575 6576 6577 6578
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6579 6580 6581 6582 6583
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6584 6585 6586
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6587 6588
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6589 6590 6591
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6592
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6593 6594 6595
{
	unsigned long usemapsize;

6596
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6597 6598
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6599 6600 6601 6602 6603 6604
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

Pavel Tatashin's avatar
Pavel Tatashin committed
6605
static void __ref setup_usemap(struct pglist_data *pgdat,
6606 6607 6608
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6609
{
6610
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6611
	zone->pageblock_flags = NULL;
6612
	if (usemapsize) {
6613
		zone->pageblock_flags =
6614 6615
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6616 6617 6618 6619
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6620 6621
}
#else
6622 6623
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6624 6625
#endif /* CONFIG_SPARSEMEM */

6626
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6627

6628
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6629
void __init set_pageblock_order(void)
6630
{
6631 6632
	unsigned int order;

6633 6634 6635 6636
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6637 6638 6639 6640 6641
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6642 6643
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6644 6645
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6646 6647 6648 6649 6650
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6651 6652
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6653 6654 6655
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6656
 */
6657
void __init set_pageblock_order(void)
6658 6659
{
}
6660 6661 6662

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6663
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
Pavel Tatashin's avatar
Pavel Tatashin committed
6664
						unsigned long present_pages)
6665 6666 6667 6668 6669 6670 6671 6672
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6673
	 * populated regions may not be naturally aligned on page boundary.
6674 6675 6676 6677 6678 6679 6680 6681 6682
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6683 6684 6685
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6686 6687 6688 6689 6690
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6705
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
Linus Torvalds's avatar
Linus Torvalds committed
6706
{
6707
	pgdat_resize_init(pgdat);
6708 6709 6710 6711

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

Linus Torvalds's avatar
Linus Torvalds committed
6712
	init_waitqueue_head(&pgdat->kswapd_wait);
6713
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6714

6715
	pgdat_page_ext_init(pgdat);
6716
	spin_lock_init(&pgdat->lru_lock);
6717
	lruvec_init(&pgdat->__lruvec);
6718 6719 6720 6721 6722
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6723
	atomic_long_set(&zone->managed_pages, remaining_pages);
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6764

6765
	pgdat_init_internals(pgdat);
6766 6767
	pgdat->per_cpu_nodestats = &boot_nodestats;

Linus Torvalds's avatar
Linus Torvalds committed
6768 6769
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6770
		unsigned long size, freesize, memmap_pages;
6771
		unsigned long zone_start_pfn = zone->zone_start_pfn;
Linus Torvalds's avatar
Linus Torvalds committed
6772

6773
		size = zone->spanned_pages;
6774
		freesize = zone->present_pages;
Linus Torvalds's avatar
Linus Torvalds committed
6775

6776
		/*
6777
		 * Adjust freesize so that it accounts for how much memory
6778 6779 6780
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6781
		memmap_pages = calc_memmap_size(size, freesize);
6782 6783 6784 6785 6786 6787 6788 6789
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6790
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6791 6792
					zone_names[j], memmap_pages, freesize);
		}
6793

6794
		/* Account for reserved pages */
6795 6796
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
6797
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6798
					zone_names[0], dma_reserve);
6799 6800
		}

6801
		if (!is_highmem_idx(j))
6802
			nr_kernel_pages += freesize;
6803 6804 6805
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6806
		nr_all_pages += freesize;
Linus Torvalds's avatar
Linus Torvalds committed
6807

6808 6809 6810 6811 6812
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6813
		zone_init_internals(zone, j, nid, freesize);
6814

6815
		if (!size)
Linus Torvalds's avatar
Linus Torvalds committed
6816 6817
			continue;

6818
		set_pageblock_order();
6819 6820
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6821
		memmap_init(size, nid, j, zone_start_pfn);
Linus Torvalds's avatar
Linus Torvalds committed
6822 6823 6824
	}
}

6825
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6826
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
Linus Torvalds's avatar
Linus Torvalds committed
6827
{
6828
	unsigned long __maybe_unused start = 0;
6829 6830
	unsigned long __maybe_unused offset = 0;

Linus Torvalds's avatar
Linus Torvalds committed
6831 6832 6833 6834
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6835 6836
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
Linus Torvalds's avatar
Linus Torvalds committed
6837 6838
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6839
		unsigned long size, end;
6840 6841
		struct page *map;

6842 6843 6844 6845 6846
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6847
		end = pgdat_end_pfn(pgdat);
6848 6849
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6850 6851
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6852 6853 6854
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
6855
		pgdat->node_mem_map = map + offset;
Linus Torvalds's avatar
Linus Torvalds committed
6856
	}
6857 6858 6859
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6860
#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds's avatar
Linus Torvalds committed
6861 6862 6863
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6864
	if (pgdat == NODE_DATA(0)) {
Linus Torvalds's avatar
Linus Torvalds committed
6865
		mem_map = NODE_DATA(0)->node_mem_map;
6866
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6867
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6868
			mem_map -= offset;
Tejun Heo's avatar
Tejun Heo committed
6869
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6870
	}
Linus Torvalds's avatar
Linus Torvalds committed
6871 6872
#endif
}
6873 6874 6875
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
Linus Torvalds's avatar
Linus Torvalds committed
6876

6877 6878 6879 6880 6881 6882 6883 6884 6885
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6886
void __init free_area_init_node(int nid, unsigned long *zones_size,
Pavel Tatashin's avatar
Pavel Tatashin committed
6887 6888
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
Linus Torvalds's avatar
Linus Torvalds committed
6889
{
6890
	pg_data_t *pgdat = NODE_DATA(nid);
6891 6892
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6893

6894
	/* pg_data_t should be reset to zero when it's allocated */
6895
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6896

Linus Torvalds's avatar
Linus Torvalds committed
6897 6898
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6899
	pgdat->per_cpu_nodestats = NULL;
6900 6901
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6902
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6903 6904
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6905 6906
#else
	start_pfn = node_start_pfn;
6907 6908 6909
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
Linus Torvalds's avatar
Linus Torvalds committed
6910 6911

	alloc_node_mem_map(pgdat);
6912
	pgdat_set_deferred_range(pgdat);
Linus Torvalds's avatar
Linus Torvalds committed
6913

6914
	free_area_init_core(pgdat);
Linus Torvalds's avatar
Linus Torvalds committed
6915 6916
}

6917
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6940 6941 6942 6943 6944 6945
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6946 6947 6948 6949 6950
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6951
 */
6952
void __init zero_resv_unavail(void)
6953 6954 6955
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6956
	phys_addr_t next = 0;
6957 6958

	/*
6959
	 * Loop through unavailable ranges not covered by memblock.memory.
6960 6961
	 */
	pgcnt = 0;
6962 6963
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6964 6965
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6966 6967
		next = end;
	}
6968
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6969

6970 6971 6972 6973 6974
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6975
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6976
}
6977
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6978

Tejun Heo's avatar
Tejun Heo committed
6979
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6980 6981 6982 6983 6984

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6985
void __init setup_nr_node_ids(void)
6986
{
6987
	unsigned int highest;
6988

6989
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6990 6991 6992 6993
	nr_node_ids = highest + 1;
}
#endif

6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7010
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7011 7012 7013 7014 7015
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7016
	unsigned long start, end, mask;
7017
	int last_nid = NUMA_NO_NODE;
7018
	int i, nid;
7019

7020
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7044
/* Find the lowest pfn for a node */
Adrian Bunk's avatar
Adrian Bunk committed
7045
static unsigned long __init find_min_pfn_for_node(int nid)
7046
{
7047
	unsigned long min_pfn = ULONG_MAX;
7048 7049
	unsigned long start_pfn;
	int i;
7050

7051 7052
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
7053

7054
	if (min_pfn == ULONG_MAX) {
7055
		pr_warn("Could not find start_pfn for node %d\n", nid);
7056 7057 7058 7059
		return 0;
	}

	return min_pfn;
7060 7061 7062 7063 7064
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7065
 * Return: the minimum PFN based on information provided via
7066
 * memblock_set_node().
7067 7068 7069 7070 7071 7072
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7073 7074 7075
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7076
 * Populate N_MEMORY for calculating usable_nodes.
7077
 */
7078
static unsigned long __init early_calculate_totalpages(void)
7079 7080
{
	unsigned long totalpages = 0;
7081 7082 7083 7084 7085
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7086

7087 7088
		totalpages += pages;
		if (pages)
7089
			node_set_state(nid, N_MEMORY);
7090
	}
7091
	return totalpages;
7092 7093
}

Mel Gorman's avatar
Mel Gorman committed
7094 7095 7096 7097 7098 7099
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7100
static void __init find_zone_movable_pfns_for_nodes(void)
Mel Gorman's avatar
Mel Gorman committed
7101 7102 7103 7104
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7105
	/* save the state before borrow the nodemask */
7106
	nodemask_t saved_node_state = node_states[N_MEMORY];
7107
	unsigned long totalpages = early_calculate_totalpages();
7108
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7109
	struct memblock_region *r;
7110 7111 7112 7113 7114 7115 7116 7117 7118

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7119 7120
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7121 7122
				continue;

7123
			nid = r->nid;
7124

7125
			usable_startpfn = PFN_DOWN(r->base);
7126 7127 7128 7129 7130 7131 7132
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
Mel Gorman's avatar
Mel Gorman committed
7133

7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7164
	/*
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7192
		required_movablecore = min(totalpages, required_movablecore);
7193 7194 7195 7196 7197
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7198 7199 7200 7201 7202
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7203
		goto out;
Mel Gorman's avatar
Mel Gorman committed
7204 7205 7206 7207 7208 7209 7210

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7211
	for_each_node_state(nid, N_MEMORY) {
7212 7213
		unsigned long start_pfn, end_pfn;

Mel Gorman's avatar
Mel Gorman committed
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7230
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
Mel Gorman's avatar
Mel Gorman committed
7231 7232
			unsigned long size_pages;

7233
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
Mel Gorman's avatar
Mel Gorman committed
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7276
			 * satisfied
Mel Gorman's avatar
Mel Gorman committed
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7290
	 * satisfied
Mel Gorman's avatar
Mel Gorman committed
7291 7292 7293 7294 7295
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7296
out2:
Mel Gorman's avatar
Mel Gorman committed
7297 7298 7299 7300
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7301

7302
out:
7303
	/* restore the node_state */
7304
	node_states[N_MEMORY] = saved_node_state;
Mel Gorman's avatar
Mel Gorman committed
7305 7306
}

7307 7308
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7309 7310 7311
{
	enum zone_type zone_type;

7312
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7313
		struct zone *zone = &pgdat->node_zones[zone_type];
7314
		if (populated_zone(zone)) {
7315 7316 7317
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7318
				node_set_state(nid, N_NORMAL_MEMORY);
7319 7320
			break;
		}
7321 7322 7323
	}
}

7324 7325
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7326
 * @max_zone_pfn: an array of max PFNs for each zone
7327 7328
 *
 * This will call free_area_init_node() for each active node in the system.
7329
 * Using the page ranges provided by memblock_set_node(), the size of each
7330 7331 7332 7333 7334 7335 7336 7337 7338
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7339 7340
	unsigned long start_pfn, end_pfn;
	int i, nid;
7341

7342 7343 7344 7345 7346
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7347 7348 7349 7350

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
Mel Gorman's avatar
Mel Gorman committed
7351 7352
		if (i == ZONE_MOVABLE)
			continue;
7353 7354 7355 7356 7357 7358

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7359
	}
Mel Gorman's avatar
Mel Gorman committed
7360 7361 7362

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7363
	find_zone_movable_pfns_for_nodes();
7364 7365

	/* Print out the zone ranges */
7366
	pr_info("Zone ranges:\n");
Mel Gorman's avatar
Mel Gorman committed
7367 7368 7369
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7370
		pr_info("  %-8s ", zone_names[i]);
7371 7372
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7373
			pr_cont("empty\n");
7374
		else
7375 7376 7377 7378
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7379
					<< PAGE_SHIFT) - 1);
Mel Gorman's avatar
Mel Gorman committed
7380 7381 7382
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7383
	pr_info("Movable zone start for each node\n");
Mel Gorman's avatar
Mel Gorman committed
7384 7385
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7386 7387
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
Mel Gorman's avatar
Mel Gorman committed
7388
	}
7389

7390 7391 7392 7393 7394
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7395
	pr_info("Early memory node ranges\n");
7396
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7397 7398 7399
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7400 7401
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7402 7403

	/* Initialise every node */
7404
	mminit_verify_pageflags_layout();
7405
	setup_nr_node_ids();
7406
	zero_resv_unavail();
7407 7408
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7409
		free_area_init_node(nid, NULL,
7410
				find_min_pfn_for_node(nid), NULL);
7411 7412 7413

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7414 7415
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7416 7417
	}
}
Mel Gorman's avatar
Mel Gorman committed
7418

7419 7420
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
Mel Gorman's avatar
Mel Gorman committed
7421 7422
{
	unsigned long long coremem;
7423 7424
	char *endptr;

Mel Gorman's avatar
Mel Gorman committed
7425 7426 7427
	if (!p)
		return -EINVAL;

7428 7429 7430 7431 7432
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
Mel Gorman's avatar
Mel Gorman committed
7433

7434 7435 7436 7437 7438
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
Mel Gorman's avatar
Mel Gorman committed
7439

7440 7441 7442
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
Mel Gorman's avatar
Mel Gorman committed
7443 7444
	return 0;
}
Mel Gorman's avatar
Mel Gorman committed
7445

7446 7447 7448 7449 7450 7451
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7452 7453 7454 7455 7456 7457
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7458 7459
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7460 7461 7462 7463 7464 7465 7466 7467
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7468 7469
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7470 7471
}

Mel Gorman's avatar
Mel Gorman committed
7472
early_param("kernelcore", cmdline_parse_kernelcore);
7473
early_param("movablecore", cmdline_parse_movablecore);
Mel Gorman's avatar
Mel Gorman committed
7474

Tejun Heo's avatar
Tejun Heo committed
7475
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7476

7477 7478
void adjust_managed_page_count(struct page *page, long count)
{
7479
	atomic_long_add(count, &page_zone(page)->managed_pages);
7480
	totalram_pages_add(count);
7481 7482
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7483
		totalhigh_pages_add(count);
7484
#endif
7485
}
7486
EXPORT_SYMBOL(adjust_managed_page_count);
7487

7488
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7489
{
7490 7491
	void *pos;
	unsigned long pages = 0;
7492

7493 7494 7495
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7507
		if ((unsigned int)poison <= 0xFF)
7508 7509 7510
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7511 7512 7513
	}

	if (pages && s)
7514 7515
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7516 7517 7518 7519

	return pages;
}

7520 7521 7522 7523
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7524
	totalram_pages_inc();
7525
	atomic_long_inc(&page_zone(page)->managed_pages);
7526
	totalhigh_pages_inc();
7527 7528 7529
}
#endif

7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7552 7553 7554 7555
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

Joe Perches's avatar
Joe Perches committed
7566
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7567
#ifdef	CONFIG_HIGHMEM
Joe Perches's avatar
Joe Perches committed
7568
		", %luK highmem"
7569
#endif
Joe Perches's avatar
Joe Perches committed
7570 7571 7572 7573 7574
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7575
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
Joe Perches's avatar
Joe Perches committed
7576
		totalcma_pages << (PAGE_SHIFT - 10),
7577
#ifdef	CONFIG_HIGHMEM
7578
		totalhigh_pages() << (PAGE_SHIFT - 10),
7579
#endif
Joe Perches's avatar
Joe Perches committed
7580
		str ? ", " : "", str ? str : "");
7581 7582
}

7583
/**
7584 7585
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7586
 *
7587
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7588 7589
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7590 7591 7592
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7593 7594 7595 7596 7597 7598
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

Linus Torvalds's avatar
Linus Torvalds committed
7599 7600
void __init free_area_init(unsigned long *zones_size)
{
7601
	zero_resv_unavail();
7602
	free_area_init_node(0, zones_size,
Linus Torvalds's avatar
Linus Torvalds committed
7603 7604 7605
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7606
static int page_alloc_cpu_dead(unsigned int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
7607 7608
{

7609 7610
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7611

7612 7613 7614 7615 7616 7617 7618
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7619

7620 7621 7622 7623 7624 7625 7626 7627 7628
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
7629 7630
}

7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
7644 7645
void __init page_alloc_init(void)
{
7646 7647
	int ret;

7648 7649 7650 7651 7652
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7653 7654 7655 7656
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
Linus Torvalds's avatar
Linus Torvalds committed
7657 7658
}

7659
/*
7660
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7661 7662 7663 7664 7665 7666
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7667
	enum zone_type i, j;
7668 7669

	for_each_online_pgdat(pgdat) {
7670 7671 7672

		pgdat->totalreserve_pages = 0;

7673 7674
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7675
			long max = 0;
7676
			unsigned long managed_pages = zone_managed_pages(zone);
7677 7678 7679 7680 7681 7682 7683

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7684 7685
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7686

7687 7688
			if (max > managed_pages)
				max = managed_pages;
7689

7690
			pgdat->totalreserve_pages += max;
7691

7692 7693 7694 7695 7696 7697
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

Linus Torvalds's avatar
Linus Torvalds committed
7698 7699
/*
 * setup_per_zone_lowmem_reserve - called whenever
7700
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
Linus Torvalds's avatar
Linus Torvalds committed
7701 7702 7703 7704 7705 7706
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7707
	enum zone_type j, idx;
Linus Torvalds's avatar
Linus Torvalds committed
7708

7709
	for_each_online_pgdat(pgdat) {
Linus Torvalds's avatar
Linus Torvalds committed
7710 7711
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7712
			unsigned long managed_pages = zone_managed_pages(zone);
Linus Torvalds's avatar
Linus Torvalds committed
7713 7714 7715

			zone->lowmem_reserve[j] = 0;

7716 7717
			idx = j;
			while (idx) {
Linus Torvalds's avatar
Linus Torvalds committed
7718 7719
				struct zone *lower_zone;

7720
				idx--;
Linus Torvalds's avatar
Linus Torvalds committed
7721
				lower_zone = pgdat->node_zones + idx;
7722 7723 7724 7725 7726 7727 7728 7729

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7730
				managed_pages += zone_managed_pages(lower_zone);
Linus Torvalds's avatar
Linus Torvalds committed
7731 7732 7733
			}
		}
	}
7734 7735 7736

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
Linus Torvalds's avatar
Linus Torvalds committed
7737 7738
}

7739
static void __setup_per_zone_wmarks(void)
Linus Torvalds's avatar
Linus Torvalds committed
7740 7741 7742 7743 7744 7745 7746 7747 7748
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7749
			lowmem_pages += zone_managed_pages(zone);
Linus Torvalds's avatar
Linus Torvalds committed
7750 7751 7752
	}

	for_each_zone(zone) {
7753 7754
		u64 tmp;

7755
		spin_lock_irqsave(&zone->lock, flags);
7756
		tmp = (u64)pages_min * zone_managed_pages(zone);
7757
		do_div(tmp, lowmem_pages);
Linus Torvalds's avatar
Linus Torvalds committed
7758 7759
		if (is_highmem(zone)) {
			/*
Nick Piggin's avatar
Nick Piggin committed
7760 7761 7762 7763
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7764
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7765
			 * deltas control async page reclaim, and so should
Nick Piggin's avatar
Nick Piggin committed
7766
			 * not be capped for highmem.
Linus Torvalds's avatar
Linus Torvalds committed
7767
			 */
7768
			unsigned long min_pages;
Linus Torvalds's avatar
Linus Torvalds committed
7769

7770
			min_pages = zone_managed_pages(zone) / 1024;
7771
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7772
			zone->_watermark[WMARK_MIN] = min_pages;
Linus Torvalds's avatar
Linus Torvalds committed
7773
		} else {
Nick Piggin's avatar
Nick Piggin committed
7774 7775
			/*
			 * If it's a lowmem zone, reserve a number of pages
Linus Torvalds's avatar
Linus Torvalds committed
7776 7777
			 * proportionate to the zone's size.
			 */
7778
			zone->_watermark[WMARK_MIN] = tmp;
Linus Torvalds's avatar
Linus Torvalds committed
7779 7780
		}

7781 7782 7783 7784 7785 7786
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7787
			    mult_frac(zone_managed_pages(zone),
7788 7789
				      watermark_scale_factor, 10000));

7790 7791
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7792
		zone->watermark_boost = 0;
7793

7794
		spin_unlock_irqrestore(&zone->lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
7795
	}
7796 7797 7798

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
Linus Torvalds's avatar
Linus Torvalds committed
7799 7800
}

7801 7802 7803 7804 7805 7806 7807 7808 7809
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7810 7811 7812
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7813
	__setup_per_zone_wmarks();
7814
	spin_unlock(&lock);
7815 7816
}

Linus Torvalds's avatar
Linus Torvalds committed
7817 7818 7819 7820 7821 7822 7823
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7824
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
Linus Torvalds's avatar
Linus Torvalds committed
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7841
int __meminit init_per_zone_wmark_min(void)
Linus Torvalds's avatar
Linus Torvalds committed
7842 7843
{
	unsigned long lowmem_kbytes;
7844
	int new_min_free_kbytes;
Linus Torvalds's avatar
Linus Torvalds committed
7845 7846

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7859
	setup_per_zone_wmarks();
7860
	refresh_zone_stat_thresholds();
Linus Torvalds's avatar
Linus Torvalds committed
7861
	setup_per_zone_lowmem_reserve();
7862 7863 7864 7865 7866 7867

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

Linus Torvalds's avatar
Linus Torvalds committed
7868 7869
	return 0;
}
7870
core_initcall(init_per_zone_wmark_min)
Linus Torvalds's avatar
Linus Torvalds committed
7871 7872

/*
7873
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
Linus Torvalds's avatar
Linus Torvalds committed
7874 7875 7876
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7877
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7878
	void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
7879
{
7880 7881 7882 7883 7884 7885
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7886 7887
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7888
		setup_per_zone_wmarks();
7889
	}
Linus Torvalds's avatar
Linus Torvalds committed
7890 7891 7892
	return 0;
}

7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7920
#ifdef CONFIG_NUMA
7921
static void setup_min_unmapped_ratio(void)
7922
{
7923
	pg_data_t *pgdat;
7924 7925
	struct zone *zone;

7926
	for_each_online_pgdat(pgdat)
7927
		pgdat->min_unmapped_pages = 0;
7928

7929
	for_each_zone(zone)
7930 7931
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7932
}
7933

7934 7935

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7936
	void __user *buffer, size_t *length, loff_t *ppos)
7937 7938 7939
{
	int rc;

7940
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941 7942 7943
	if (rc)
		return rc;

7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7954 7955 7956
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7957
	for_each_zone(zone)
7958 7959
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7973 7974
	return 0;
}
7975 7976
#endif

Linus Torvalds's avatar
Linus Torvalds committed
7977 7978 7979 7980 7981 7982
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7983
 * minimum watermarks. The lowmem reserve ratio can only make sense
Linus Torvalds's avatar
Linus Torvalds committed
7984 7985
 * if in function of the boot time zone sizes.
 */
7986
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7987
	void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
7988
{
7989
	proc_dointvec_minmax(table, write, buffer, length, ppos);
Linus Torvalds's avatar
Linus Torvalds committed
7990 7991 7992 7993
	setup_per_zone_lowmem_reserve();
	return 0;
}

7994 7995 7996 7997 7998 7999 8000 8001 8002
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8003 8004
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8005 8006
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8007
 */
8008
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8009
	void __user *buffer, size_t *length, loff_t *ppos)
8010 8011
{
	struct zone *zone;
8012
	int old_percpu_pagelist_fraction;
8013 8014
	int ret;

8015 8016 8017
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8018
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8033

8034 8035
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8036
out:
8037
	mutex_unlock(&pcp_batch_high_lock);
8038
	return ret;
8039 8040
}

8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8080 8081
				     unsigned long low_limit,
				     unsigned long high_limit)
Linus Torvalds's avatar
Linus Torvalds committed
8082
{
8083
	unsigned long long max = high_limit;
Linus Torvalds's avatar
Linus Torvalds committed
8084 8085
	unsigned long log2qty, size;
	void *table = NULL;
8086
	gfp_t gfp_flags;
8087
	bool virt;
Linus Torvalds's avatar
Linus Torvalds committed
8088 8089 8090 8091

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
Andrew Morton's avatar
Andrew Morton committed
8092
		numentries = nr_kernel_pages;
8093
		numentries -= arch_reserved_kernel_pages();
8094 8095 8096 8097

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
Linus Torvalds's avatar
Linus Torvalds committed
8098

8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

Linus Torvalds's avatar
Linus Torvalds committed
8109 8110 8111 8112 8113
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8114 8115

		/* Make sure we've got at least a 0-order allocation.. */
8116 8117 8118 8119 8120 8121 8122 8123
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8124
			numentries = PAGE_SIZE / bucketsize;
Linus Torvalds's avatar
Linus Torvalds committed
8125
	}
8126
	numentries = roundup_pow_of_two(numentries);
Linus Torvalds's avatar
Linus Torvalds committed
8127 8128 8129 8130 8131 8132

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8133
	max = min(max, 0x80000000ULL);
Linus Torvalds's avatar
Linus Torvalds committed
8134

8135 8136
	if (numentries < low_limit)
		numentries = low_limit;
Linus Torvalds's avatar
Linus Torvalds committed
8137 8138 8139
	if (numentries > max)
		numentries = max;

8140
	log2qty = ilog2(numentries);
Linus Torvalds's avatar
Linus Torvalds committed
8141

8142
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
Linus Torvalds's avatar
Linus Torvalds committed
8143
	do {
8144
		virt = false;
Linus Torvalds's avatar
Linus Torvalds committed
8145
		size = bucketsize << log2qty;
8146 8147
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8148
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8149
			else
8150 8151
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8152
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8153
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8154
			virt = true;
8155
		} else {
8156 8157
			/*
			 * If bucketsize is not a power-of-two, we may free
8158 8159
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8160
			 */
8161 8162
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
Linus Torvalds's avatar
Linus Torvalds committed
8163 8164 8165 8166 8167 8168
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8169 8170 8171
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
Linus Torvalds's avatar
Linus Torvalds committed
8172 8173 8174 8175 8176 8177 8178 8179

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8180

8181
/*
8182 8183 8184
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8185
 * PageLRU check without isolation or lru_lock could race so that
8186 8187 8188
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8189
 */
8190
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8191
			 int migratetype, int flags)
8192
{
8193 8194 8195 8196
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8197

8198
	/*
8199 8200 8201 8202 8203
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8204 8205
	 */

8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8218

8219
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8220 8221
		unsigned long check = pfn + iter;

8222
		if (!pfn_valid_within(check))
8223
			continue;
8224

8225
		page = pfn_to_page(check);
8226

8227
		if (PageReserved(page))
8228
			goto unmovable;
8229

8230 8231 8232 8233 8234 8235 8236 8237
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8238 8239
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8240
		 * We need not scan over tail pages because we don't
8241 8242 8243
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8244 8245
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8246

8247
			if (!hugepage_migration_supported(page_hstate(head)))
8248 8249
				goto unmovable;

8250
			skip_pages = compound_nr(head) - (page - head);
8251
			iter += skip_pages - 1;
8252 8253 8254
			continue;
		}

8255 8256 8257 8258
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8259
		 * because their page->_refcount is zero at all time.
8260
		 */
8261
		if (!page_ref_count(page)) {
8262 8263 8264 8265
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8266

8267 8268 8269 8270
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8271
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8272 8273
			continue;

8274 8275 8276
		if (__PageMovable(page))
			continue;

8277 8278 8279
		if (!PageLRU(page))
			found++;
		/*
8280 8281 8282
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8293
			goto unmovable;
8294
	}
8295
	return false;
8296 8297
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8298
	if (flags & REPORT_FAILURE)
8299
		dump_page(pfn_to_page(pfn + iter), reason);
8300
	return true;
8301 8302
}

8303
#ifdef CONFIG_CONTIG_ALLOC
8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8317 8318
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8319 8320
{
	/* This function is based on compact_zone() from compaction.c. */
8321
	unsigned long nr_reclaimed;
8322 8323 8324 8325
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8326
	migrate_prep();
8327

8328
	while (pfn < end || !list_empty(&cc->migratepages)) {
8329 8330 8331 8332 8333
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8334 8335
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8336
			pfn = isolate_migratepages_range(cc, pfn, end);
8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8347 8348 8349
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8350

8351
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8352
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8353
	}
8354 8355 8356 8357 8358
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8359 8360 8361 8362 8363 8364
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8365 8366 8367 8368
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8369
 * @gfp_mask:	GFP mask to use during compaction
8370 8371
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8372
 * aligned.  The PFN range must belong to a single zone.
8373
 *
8374 8375 8376
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8377
 *
8378
 * Return: zero on success or negative error code.  On success all
8379 8380 8381
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8382
int alloc_contig_range(unsigned long start, unsigned long end,
8383
		       unsigned migratetype, gfp_t gfp_mask)
8384 8385
{
	unsigned long outer_start, outer_end;
8386 8387
	unsigned int order;
	int ret = 0;
8388

8389 8390 8391 8392
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8393
		.mode = MIGRATE_SYNC,
8394
		.ignore_skip_hint = true,
8395
		.no_set_skip_hint = true,
8396
		.gfp_mask = current_gfp_context(gfp_mask),
8397 8398 8399
	};
	INIT_LIST_HEAD(&cc.migratepages);

8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8425
				       pfn_max_align_up(end), migratetype, 0);
8426
	if (ret < 0)
8427
		return ret;
8428

8429 8430
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8431 8432 8433 8434 8435 8436 8437
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8438
	 */
8439
	ret = __alloc_contig_migrate_range(&cc, start, end);
8440
	if (ret && ret != -EBUSY)
8441
		goto done;
8442
	ret =0;
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8467 8468
			outer_start = start;
			break;
8469 8470 8471 8472
		}
		outer_start &= ~0UL << order;
	}

8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8486
	/* Make sure the range is really isolated. */
8487
	if (test_pages_isolated(outer_start, end, 0)) {
8488
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8489
			__func__, outer_start, end);
8490 8491 8492 8493
		ret = -EBUSY;
		goto done;
	}

8494
	/* Grab isolated pages from freelists. */
8495
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8509
				pfn_max_align_up(end), migratetype);
8510 8511
	return ret;
}
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8613
#endif /* CONFIG_CONTIG_ALLOC */
8614

8615
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8616
{
8617 8618 8619 8620 8621 8622 8623 8624 8625
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8626 8627
}

8628 8629 8630 8631
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8632 8633
void __meminit zone_pcp_update(struct zone *zone)
{
8634
	mutex_lock(&pcp_batch_high_lock);
8635
	__zone_pcp_update(zone);
8636
	mutex_unlock(&pcp_batch_high_lock);
8637 8638
}

8639 8640 8641
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8642 8643
	int cpu;
	struct per_cpu_pageset *pset;
8644 8645 8646 8647

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8648 8649 8650 8651
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8652 8653 8654 8655 8656 8657
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8658
#ifdef CONFIG_MEMORY_HOTREMOVE
8659
/*
8660 8661
 * All pages in the range must be in a single zone and isolated
 * before calling this.
8662
 */
8663
unsigned long
8664 8665 8666 8667
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8668
	unsigned int order;
8669 8670
	unsigned long pfn;
	unsigned long flags;
8671 8672
	unsigned long offlined_pages = 0;

8673 8674 8675 8676 8677
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8678 8679
		return offlined_pages;

8680
	offline_mem_sections(pfn, end_pfn);
8681 8682 8683 8684 8685 8686 8687 8688 8689
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8690 8691 8692 8693 8694 8695
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
8696
			offlined_pages++;
8697 8698 8699
			continue;
		}

8700 8701 8702
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8703
		offlined_pages += 1 << order;
8704
#ifdef CONFIG_DEBUG_VM
8705 8706
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
8707
#endif
8708
		del_page_from_free_area(page, &zone->free_area[order]);
8709 8710 8711
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8712 8713

	return offlined_pages;
8714 8715
}
#endif
8716 8717 8718 8719 8720 8721

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8722
	unsigned int order;
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif