flow_dissector.c 48.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/kernel.h>
3
#include <linux/skbuff.h>
4
#include <linux/export.h>
5 6 7
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
8
#include <net/dsa.h>
9
#include <net/dst_metadata.h>
10
#include <net/ip.h>
11
#include <net/ipv6.h>
12 13
#include <net/gre.h>
#include <net/pptp.h>
14
#include <net/tipc.h>
15 16 17 18
#include <linux/igmp.h>
#include <linux/icmp.h>
#include <linux/sctp.h>
#include <linux/dccp.h>
19 20 21
#include <linux/if_tunnel.h>
#include <linux/if_pppox.h>
#include <linux/ppp_defs.h>
22
#include <linux/stddef.h>
23
#include <linux/if_ether.h>
24
#include <linux/mpls.h>
25
#include <linux/tcp.h>
26
#include <net/flow_dissector.h>
27
#include <scsi/fc/fc_fcoe.h>
28
#include <uapi/linux/batadv_packet.h>
29
#include <linux/bpf.h>
30 31 32 33
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_labels.h>
#endif
34 35

static DEFINE_MUTEX(flow_dissector_mutex);
36

37 38
static void dissector_set_key(struct flow_dissector *flow_dissector,
			      enum flow_dissector_key_id key_id)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
{
	flow_dissector->used_keys |= (1 << key_id);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count)
{
	unsigned int i;

	memset(flow_dissector, 0, sizeof(*flow_dissector));

	for (i = 0; i < key_count; i++, key++) {
		/* User should make sure that every key target offset is withing
		 * boundaries of unsigned short.
		 */
		BUG_ON(key->offset > USHRT_MAX);
56 57
		BUG_ON(dissector_uses_key(flow_dissector,
					  key->key_id));
58

59
		dissector_set_key(flow_dissector, key->key_id);
60 61 62
		flow_dissector->offset[key->key_id] = key->offset;
	}

63 64
	/* Ensure that the dissector always includes control and basic key.
	 * That way we are able to avoid handling lack of these in fast path.
65
	 */
66 67 68 69
	BUG_ON(!dissector_uses_key(flow_dissector,
				   FLOW_DISSECTOR_KEY_CONTROL));
	BUG_ON(!dissector_uses_key(flow_dissector,
				   FLOW_DISSECTOR_KEY_BASIC));
70 71 72
}
EXPORT_SYMBOL(skb_flow_dissector_init);

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int skb_flow_dissector_prog_query(const union bpf_attr *attr,
				  union bpf_attr __user *uattr)
{
	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
	u32 prog_id, prog_cnt = 0, flags = 0;
	struct bpf_prog *attached;
	struct net *net;

	if (attr->query.query_flags)
		return -EINVAL;

	net = get_net_ns_by_fd(attr->query.target_fd);
	if (IS_ERR(net))
		return PTR_ERR(net);

	rcu_read_lock();
	attached = rcu_dereference(net->flow_dissector_prog);
	if (attached) {
		prog_cnt = 1;
		prog_id = attached->aux->id;
	}
	rcu_read_unlock();

	put_net(net);

	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
		return -EFAULT;
	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
		return -EFAULT;

	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
		return 0;

	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
		return -EFAULT;

	return 0;
}

112 113 114 115 116
int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
				       struct bpf_prog *prog)
{
	struct bpf_prog *attached;
	struct net *net;
117
	int ret = 0;
118 119 120

	net = current->nsproxy->net_ns;
	mutex_lock(&flow_dissector_mutex);
121 122 123 124 125 126 127 128 129 130

	if (net == &init_net) {
		/* BPF flow dissector in the root namespace overrides
		 * any per-net-namespace one. When attaching to root,
		 * make sure we don't have any BPF program attached
		 * to the non-root namespaces.
		 */
		struct net *ns;

		for_each_net(ns) {
131 132
			if (ns == &init_net)
				continue;
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
			if (rcu_access_pointer(ns->flow_dissector_prog)) {
				ret = -EEXIST;
				goto out;
			}
		}
	} else {
		/* Make sure root flow dissector is not attached
		 * when attaching to the non-root namespace.
		 */
		if (rcu_access_pointer(init_net.flow_dissector_prog)) {
			ret = -EEXIST;
			goto out;
		}
	}

148 149
	attached = rcu_dereference_protected(net->flow_dissector_prog,
					     lockdep_is_held(&flow_dissector_mutex));
150 151 152
	if (attached == prog) {
		/* The same program cannot be attached twice */
		ret = -EINVAL;
153
		goto out;
154 155
	}
	rcu_assign_pointer(net->flow_dissector_prog, prog);
156 157
	if (attached)
		bpf_prog_put(attached);
158
out:
159
	mutex_unlock(&flow_dissector_mutex);
160
	return ret;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
{
	struct bpf_prog *attached;
	struct net *net;

	net = current->nsproxy->net_ns;
	mutex_lock(&flow_dissector_mutex);
	attached = rcu_dereference_protected(net->flow_dissector_prog,
					     lockdep_is_held(&flow_dissector_mutex));
	if (!attached) {
		mutex_unlock(&flow_dissector_mutex);
		return -ENOENT;
	}
	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
177
	bpf_prog_put(attached);
178 179 180
	mutex_unlock(&flow_dissector_mutex);
	return 0;
}
181

182
/**
183 184
 * __skb_flow_get_ports - extract the upper layer ports and return them
 * @skb: sk_buff to extract the ports from
185 186
 * @thoff: transport header offset
 * @ip_proto: protocol for which to get port offset
187 188
 * @data: raw buffer pointer to the packet, if NULL use skb->data
 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
189 190 191 192
 *
 * The function will try to retrieve the ports at offset thoff + poff where poff
 * is the protocol port offset returned from proto_ports_offset
 */
193 194
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen)
195 196 197
{
	int poff = proto_ports_offset(ip_proto);

198 199 200 201 202
	if (!data) {
		data = skb->data;
		hlen = skb_headlen(skb);
	}

203 204 205
	if (poff >= 0) {
		__be32 *ports, _ports;

206 207
		ports = __skb_header_pointer(skb, thoff + poff,
					     sizeof(_ports), data, hlen, &_ports);
208 209 210 211 212 213
		if (ports)
			return *ports;
	}

	return 0;
}
214
EXPORT_SYMBOL(__skb_flow_get_ports);
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static bool icmp_has_id(u8 type)
{
	switch (type) {
	case ICMP_ECHO:
	case ICMP_ECHOREPLY:
	case ICMP_TIMESTAMP:
	case ICMP_TIMESTAMPREPLY:
	case ICMPV6_ECHO_REQUEST:
	case ICMPV6_ECHO_REPLY:
		return true;
	}

	return false;
}

/**
 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
 * @skb: sk_buff to extract from
 * @key_icmp: struct flow_dissector_key_icmp to fill
 * @data: raw buffer pointer to the packet
236
 * @thoff: offset to extract at
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
 * @hlen: packet header length
 */
void skb_flow_get_icmp_tci(const struct sk_buff *skb,
			   struct flow_dissector_key_icmp *key_icmp,
			   void *data, int thoff, int hlen)
{
	struct icmphdr *ih, _ih;

	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
	if (!ih)
		return;

	key_icmp->type = ih->type;
	key_icmp->code = ih->code;

	/* As we use 0 to signal that the Id field is not present,
	 * avoid confusion with packets without such field
	 */
	if (icmp_has_id(ih->type))
		key_icmp->id = ih->un.echo.id ? : 1;
	else
		key_icmp->id = 0;
}
EXPORT_SYMBOL(skb_flow_get_icmp_tci);

/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
 * using skb_flow_get_icmp_tci().
264 265 266 267 268 269 270 271 272 273 274 275 276 277
 */
static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
				    void *target_container,
				    void *data, int thoff, int hlen)
{
	struct flow_dissector_key_icmp *key_icmp;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
		return;

	key_icmp = skb_flow_dissector_target(flow_dissector,
					     FLOW_DISSECTOR_KEY_ICMP,
					     target_container);
278 279

	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
void skb_flow_dissect_meta(const struct sk_buff *skb,
			   struct flow_dissector *flow_dissector,
			   void *target_container)
{
	struct flow_dissector_key_meta *meta;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
		return;

	meta = skb_flow_dissector_target(flow_dissector,
					 FLOW_DISSECTOR_KEY_META,
					 target_container);
	meta->ingress_ifindex = skb->skb_iif;
}
EXPORT_SYMBOL(skb_flow_dissect_meta);

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static void
skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
				   struct flow_dissector *flow_dissector,
				   void *target_container)
{
	struct flow_dissector_key_control *ctrl;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
		return;

	ctrl = skb_flow_dissector_target(flow_dissector,
					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
					 target_container);
	ctrl->addr_type = type;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
void
skb_flow_dissect_ct(const struct sk_buff *skb,
		    struct flow_dissector *flow_dissector,
		    void *target_container,
		    u16 *ctinfo_map,
		    size_t mapsize)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
	struct flow_dissector_key_ct *key;
	enum ip_conntrack_info ctinfo;
	struct nf_conn_labels *cl;
	struct nf_conn *ct;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
		return;

	ct = nf_ct_get(skb, &ctinfo);
	if (!ct)
		return;

	key = skb_flow_dissector_target(flow_dissector,
					FLOW_DISSECTOR_KEY_CT,
					target_container);

	if (ctinfo < mapsize)
		key->ct_state = ctinfo_map[ctinfo];
#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
	key->ct_zone = ct->zone.id;
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
	key->ct_mark = ct->mark;
#endif

	cl = nf_ct_labels_find(ct);
	if (cl)
		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
#endif /* CONFIG_NF_CONNTRACK */
}
EXPORT_SYMBOL(skb_flow_dissect_ct);

354 355 356 357
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
			     struct flow_dissector *flow_dissector,
			     void *target_container)
358 359 360 361 362 363 364 365 366 367 368 369 370 371
{
	struct ip_tunnel_info *info;
	struct ip_tunnel_key *key;

	/* A quick check to see if there might be something to do. */
	if (!dissector_uses_key(flow_dissector,
				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
	    !dissector_uses_key(flow_dissector,
				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
	    !dissector_uses_key(flow_dissector,
				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
	    !dissector_uses_key(flow_dissector,
				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
	    !dissector_uses_key(flow_dissector,
372 373
				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
	    !dissector_uses_key(flow_dissector,
374 375 376
				FLOW_DISSECTOR_KEY_ENC_IP) &&
	    !dissector_uses_key(flow_dissector,
				FLOW_DISSECTOR_KEY_ENC_OPTS))
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;

	info = skb_tunnel_info(skb);
	if (!info)
		return;

	key = &info->key;

	switch (ip_tunnel_info_af(info)) {
	case AF_INET:
		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
						   flow_dissector,
						   target_container);
		if (dissector_uses_key(flow_dissector,
				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
			struct flow_dissector_key_ipv4_addrs *ipv4;

			ipv4 = skb_flow_dissector_target(flow_dissector,
							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
							 target_container);
			ipv4->src = key->u.ipv4.src;
			ipv4->dst = key->u.ipv4.dst;
		}
		break;
	case AF_INET6:
		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
						   flow_dissector,
						   target_container);
		if (dissector_uses_key(flow_dissector,
				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
			struct flow_dissector_key_ipv6_addrs *ipv6;

			ipv6 = skb_flow_dissector_target(flow_dissector,
							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
							 target_container);
			ipv6->src = key->u.ipv6.src;
			ipv6->dst = key->u.ipv6.dst;
		}
		break;
	}

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
		struct flow_dissector_key_keyid *keyid;

		keyid = skb_flow_dissector_target(flow_dissector,
						  FLOW_DISSECTOR_KEY_ENC_KEYID,
						  target_container);
		keyid->keyid = tunnel_id_to_key32(key->tun_id);
	}

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
		struct flow_dissector_key_ports *tp;

		tp = skb_flow_dissector_target(flow_dissector,
					       FLOW_DISSECTOR_KEY_ENC_PORTS,
					       target_container);
		tp->src = key->tp_src;
		tp->dst = key->tp_dst;
	}
436 437 438 439 440 441 442 443 444 445

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
		struct flow_dissector_key_ip *ip;

		ip = skb_flow_dissector_target(flow_dissector,
					       FLOW_DISSECTOR_KEY_ENC_IP,
					       target_container);
		ip->tos = key->tos;
		ip->ttl = key->ttl;
	}
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
		struct flow_dissector_key_enc_opts *enc_opt;

		enc_opt = skb_flow_dissector_target(flow_dissector,
						    FLOW_DISSECTOR_KEY_ENC_OPTS,
						    target_container);

		if (info->options_len) {
			enc_opt->len = info->options_len;
			ip_tunnel_info_opts_get(enc_opt->data, info);
			enc_opt->dst_opt_type = info->key.tun_flags &
						TUNNEL_OPTIONS_PRESENT;
		}
	}
461
}
462
EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
463

464 465 466 467 468 469 470
static enum flow_dissect_ret
__skb_flow_dissect_mpls(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container, void *data, int nhoff, int hlen)
{
	struct flow_dissector_key_keyid *key_keyid;
	struct mpls_label *hdr, _hdr[2];
471
	u32 entry, label;
472 473

	if (!dissector_uses_key(flow_dissector,
474 475
				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
476 477 478 479 480 481 482
		return FLOW_DISSECT_RET_OUT_GOOD;

	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
				   hlen, &_hdr);
	if (!hdr)
		return FLOW_DISSECT_RET_OUT_BAD;

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	entry = ntohl(hdr[0].entry);
	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
		struct flow_dissector_key_mpls *key_mpls;

		key_mpls = skb_flow_dissector_target(flow_dissector,
						     FLOW_DISSECTOR_KEY_MPLS,
						     target_container);
		key_mpls->mpls_label = label;
		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
					>> MPLS_LS_TTL_SHIFT;
		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
					>> MPLS_LS_TC_SHIFT;
		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
					>> MPLS_LS_S_SHIFT;
	}

	if (label == MPLS_LABEL_ENTROPY) {
502 503 504 505 506 507 508 509
		key_keyid = skb_flow_dissector_target(flow_dissector,
						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
						      target_container);
		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
	}
	return FLOW_DISSECT_RET_OUT_GOOD;
}

510 511 512 513 514 515 516 517 518 519 520 521 522
static enum flow_dissect_ret
__skb_flow_dissect_arp(const struct sk_buff *skb,
		       struct flow_dissector *flow_dissector,
		       void *target_container, void *data, int nhoff, int hlen)
{
	struct flow_dissector_key_arp *key_arp;
	struct {
		unsigned char ar_sha[ETH_ALEN];
		unsigned char ar_sip[4];
		unsigned char ar_tha[ETH_ALEN];
		unsigned char ar_tip[4];
	} *arp_eth, _arp_eth;
	const struct arphdr *arp;
523
	struct arphdr _arp;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
		return FLOW_DISSECT_RET_OUT_GOOD;

	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
				   hlen, &_arp);
	if (!arp)
		return FLOW_DISSECT_RET_OUT_BAD;

	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
	    arp->ar_pro != htons(ETH_P_IP) ||
	    arp->ar_hln != ETH_ALEN ||
	    arp->ar_pln != 4 ||
	    (arp->ar_op != htons(ARPOP_REPLY) &&
	     arp->ar_op != htons(ARPOP_REQUEST)))
		return FLOW_DISSECT_RET_OUT_BAD;

	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
				       sizeof(_arp_eth), data,
				       hlen, &_arp_eth);
	if (!arp_eth)
		return FLOW_DISSECT_RET_OUT_BAD;

	key_arp = skb_flow_dissector_target(flow_dissector,
					    FLOW_DISSECTOR_KEY_ARP,
					    target_container);

	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));

	/* Only store the lower byte of the opcode;
	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
	 */
	key_arp->op = ntohs(arp->ar_op) & 0xff;

	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);

	return FLOW_DISSECT_RET_OUT_GOOD;
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static enum flow_dissect_ret
__skb_flow_dissect_gre(const struct sk_buff *skb,
		       struct flow_dissector_key_control *key_control,
		       struct flow_dissector *flow_dissector,
		       void *target_container, void *data,
		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
		       unsigned int flags)
{
	struct flow_dissector_key_keyid *key_keyid;
	struct gre_base_hdr *hdr, _hdr;
	int offset = 0;
	u16 gre_ver;

	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
				   data, *p_hlen, &_hdr);
	if (!hdr)
		return FLOW_DISSECT_RET_OUT_BAD;

	/* Only look inside GRE without routing */
	if (hdr->flags & GRE_ROUTING)
		return FLOW_DISSECT_RET_OUT_GOOD;

	/* Only look inside GRE for version 0 and 1 */
	gre_ver = ntohs(hdr->flags & GRE_VERSION);
	if (gre_ver > 1)
		return FLOW_DISSECT_RET_OUT_GOOD;

	*p_proto = hdr->protocol;
	if (gre_ver) {
		/* Version1 must be PPTP, and check the flags */
		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
			return FLOW_DISSECT_RET_OUT_GOOD;
	}

	offset += sizeof(struct gre_base_hdr);

	if (hdr->flags & GRE_CSUM)
602 603
		offset += sizeof_field(struct gre_full_hdr, csum) +
			  sizeof_field(struct gre_full_hdr, reserved1);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

	if (hdr->flags & GRE_KEY) {
		const __be32 *keyid;
		__be32 _keyid;

		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
					     sizeof(_keyid),
					     data, *p_hlen, &_keyid);
		if (!keyid)
			return FLOW_DISSECT_RET_OUT_BAD;

		if (dissector_uses_key(flow_dissector,
				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
			key_keyid = skb_flow_dissector_target(flow_dissector,
							      FLOW_DISSECTOR_KEY_GRE_KEYID,
							      target_container);
			if (gre_ver == 0)
				key_keyid->keyid = *keyid;
			else
				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
		}
625
		offset += sizeof_field(struct gre_full_hdr, key);
626 627 628
	}

	if (hdr->flags & GRE_SEQ)
629
		offset += sizeof_field(struct pptp_gre_header, seq);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

	if (gre_ver == 0) {
		if (*p_proto == htons(ETH_P_TEB)) {
			const struct ethhdr *eth;
			struct ethhdr _eth;

			eth = __skb_header_pointer(skb, *p_nhoff + offset,
						   sizeof(_eth),
						   data, *p_hlen, &_eth);
			if (!eth)
				return FLOW_DISSECT_RET_OUT_BAD;
			*p_proto = eth->h_proto;
			offset += sizeof(*eth);

			/* Cap headers that we access via pointers at the
			 * end of the Ethernet header as our maximum alignment
			 * at that point is only 2 bytes.
			 */
			if (NET_IP_ALIGN)
				*p_hlen = *p_nhoff + offset;
		}
	} else { /* version 1, must be PPTP */
		u8 _ppp_hdr[PPP_HDRLEN];
		u8 *ppp_hdr;

		if (hdr->flags & GRE_ACK)
656
			offset += sizeof_field(struct pptp_gre_header, ack);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
					       sizeof(_ppp_hdr),
					       data, *p_hlen, _ppp_hdr);
		if (!ppp_hdr)
			return FLOW_DISSECT_RET_OUT_BAD;

		switch (PPP_PROTOCOL(ppp_hdr)) {
		case PPP_IP:
			*p_proto = htons(ETH_P_IP);
			break;
		case PPP_IPV6:
			*p_proto = htons(ETH_P_IPV6);
			break;
		default:
			/* Could probably catch some more like MPLS */
			break;
		}

		offset += PPP_HDRLEN;
	}

	*p_nhoff += offset;
	key_control->flags |= FLOW_DIS_ENCAPSULATION;
	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
		return FLOW_DISSECT_RET_OUT_GOOD;

684
	return FLOW_DISSECT_RET_PROTO_AGAIN;
685 686
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * __skb_flow_dissect_batadv() - dissect batman-adv header
 * @skb: sk_buff to with the batman-adv header
 * @key_control: flow dissectors control key
 * @data: raw buffer pointer to the packet, if NULL use skb->data
 * @p_proto: pointer used to update the protocol to process next
 * @p_nhoff: pointer used to update inner network header offset
 * @hlen: packet header length
 * @flags: any combination of FLOW_DISSECTOR_F_*
 *
 * ETH_P_BATMAN packets are tried to be dissected. Only
 * &struct batadv_unicast packets are actually processed because they contain an
 * inner ethernet header and are usually followed by actual network header. This
 * allows the flow dissector to continue processing the packet.
 *
 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
 *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
 *  otherwise FLOW_DISSECT_RET_OUT_BAD
 */
static enum flow_dissect_ret
__skb_flow_dissect_batadv(const struct sk_buff *skb,
			  struct flow_dissector_key_control *key_control,
			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
			  unsigned int flags)
{
	struct {
		struct batadv_unicast_packet batadv_unicast;
		struct ethhdr eth;
	} *hdr, _hdr;

	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
				   &_hdr);
	if (!hdr)
		return FLOW_DISSECT_RET_OUT_BAD;

	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
		return FLOW_DISSECT_RET_OUT_BAD;

	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
		return FLOW_DISSECT_RET_OUT_BAD;

	*p_proto = hdr->eth.h_proto;
	*p_nhoff += sizeof(*hdr);

	key_control->flags |= FLOW_DIS_ENCAPSULATION;
	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
		return FLOW_DISSECT_RET_OUT_GOOD;

	return FLOW_DISSECT_RET_PROTO_AGAIN;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void
__skb_flow_dissect_tcp(const struct sk_buff *skb,
		       struct flow_dissector *flow_dissector,
		       void *target_container, void *data, int thoff, int hlen)
{
	struct flow_dissector_key_tcp *key_tcp;
	struct tcphdr *th, _th;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
		return;

	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
	if (!th)
		return;

	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
		return;

	key_tcp = skb_flow_dissector_target(flow_dissector,
					    FLOW_DISSECTOR_KEY_TCP,
					    target_container);
	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static void
__skb_flow_dissect_ports(const struct sk_buff *skb,
			 struct flow_dissector *flow_dissector,
			 void *target_container, void *data, int nhoff,
			 u8 ip_proto, int hlen)
{
	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
	struct flow_dissector_key_ports *key_ports;

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
	else if (dissector_uses_key(flow_dissector,
				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;

	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
		return;

	key_ports = skb_flow_dissector_target(flow_dissector,
					      dissector_ports,
					      target_container);
	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
						data, hlen);
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static void
__skb_flow_dissect_ipv4(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container, void *data, const struct iphdr *iph)
{
	struct flow_dissector_key_ip *key_ip;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
		return;

	key_ip = skb_flow_dissector_target(flow_dissector,
					   FLOW_DISSECTOR_KEY_IP,
					   target_container);
	key_ip->tos = iph->tos;
	key_ip->ttl = iph->ttl;
}

static void
__skb_flow_dissect_ipv6(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container, void *data, const struct ipv6hdr *iph)
{
	struct flow_dissector_key_ip *key_ip;

	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
		return;

	key_ip = skb_flow_dissector_target(flow_dissector,
					   FLOW_DISSECTOR_KEY_IP,
					   target_container);
	key_ip->tos = ipv6_get_dsfield(iph);
	key_ip->ttl = iph->hop_limit;
}

821 822 823 824 825 826 827 828 829 830 831 832
/* Maximum number of protocol headers that can be parsed in
 * __skb_flow_dissect
 */
#define MAX_FLOW_DISSECT_HDRS	15

static bool skb_flow_dissect_allowed(int *num_hdrs)
{
	++*num_hdrs;

	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
}

833 834 835 836 837 838 839 840
static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
				     struct flow_dissector *flow_dissector,
				     void *target_container)
{
	struct flow_dissector_key_control *key_control;
	struct flow_dissector_key_basic *key_basic;
	struct flow_dissector_key_addrs *key_addrs;
	struct flow_dissector_key_ports *key_ports;
841
	struct flow_dissector_key_tags *key_tags;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	key_control = skb_flow_dissector_target(flow_dissector,
						FLOW_DISSECTOR_KEY_CONTROL,
						target_container);
	key_control->thoff = flow_keys->thoff;
	if (flow_keys->is_frag)
		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
	if (flow_keys->is_first_frag)
		key_control->flags |= FLOW_DIS_FIRST_FRAG;
	if (flow_keys->is_encap)
		key_control->flags |= FLOW_DIS_ENCAPSULATION;

	key_basic = skb_flow_dissector_target(flow_dissector,
					      FLOW_DISSECTOR_KEY_BASIC,
					      target_container);
	key_basic->n_proto = flow_keys->n_proto;
	key_basic->ip_proto = flow_keys->ip_proto;

	if (flow_keys->addr_proto == ETH_P_IP &&
	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
		key_addrs = skb_flow_dissector_target(flow_dissector,
						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
						      target_container);
		key_addrs->v4addrs.src = flow_keys->ipv4_src;
		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
		   dissector_uses_key(flow_dissector,
				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
		key_addrs = skb_flow_dissector_target(flow_dissector,
						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
						      target_container);
		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
		       sizeof(key_addrs->v6addrs));
		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
	}

	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
		key_ports = skb_flow_dissector_target(flow_dissector,
						      FLOW_DISSECTOR_KEY_PORTS,
						      target_container);
		key_ports->src = flow_keys->sport;
		key_ports->dst = flow_keys->dport;
	}
886 887 888 889 890 891 892 893

	if (dissector_uses_key(flow_dissector,
			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
		key_tags = skb_flow_dissector_target(flow_dissector,
						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
						     target_container);
		key_tags->flow_label = ntohl(flow_keys->flow_label);
	}
894 895
}

896
bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
897
		      __be16 proto, int nhoff, int hlen, unsigned int flags)
898 899 900
{
	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
	u32 result;
901 902 903

	/* Pass parameters to the BPF program */
	memset(flow_keys, 0, sizeof(*flow_keys));
904 905
	flow_keys->n_proto = proto;
	flow_keys->nhoff = nhoff;
906 907
	flow_keys->thoff = flow_keys->nhoff;

908 909 910 911 912 913 914 915
	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
	flow_keys->flags = flags;

916
	preempt_disable();
917
	result = BPF_PROG_RUN(prog, ctx);
918
	preempt_enable();
919

920
	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
921
	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
922
				   flow_keys->nhoff, hlen);
923 924 925 926

	return result == BPF_OK;
}

927 928
/**
 * __skb_flow_dissect - extract the flow_keys struct and return it
929
 * @net: associated network namespace, derived from @skb if NULL
930
 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
931 932
 * @flow_dissector: list of keys to dissect
 * @target_container: target structure to put dissected values into
933 934 935 936
 * @data: raw buffer pointer to the packet, if NULL use skb->data
 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
937
 * @flags: flags that control the dissection process, e.g.
938
 *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
939
 *
940 941 942 943 944
 * The function will try to retrieve individual keys into target specified
 * by flow_dissector from either the skbuff or a raw buffer specified by the
 * rest parameters.
 *
 * Caller must take care of zeroing target container memory.
945
 */
946 947
bool __skb_flow_dissect(const struct net *net,
			const struct sk_buff *skb,
948 949
			struct flow_dissector *flow_dissector,
			void *target_container,
950 951
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags)
952
{
953
	struct flow_dissector_key_control *key_control;
954 955
	struct flow_dissector_key_basic *key_basic;
	struct flow_dissector_key_addrs *key_addrs;
956
	struct flow_dissector_key_tags *key_tags;
957
	struct flow_dissector_key_vlan *key_vlan;
958
	struct bpf_prog *attached = NULL;
959
	enum flow_dissect_ret fdret;
960
	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
961
	int num_hdrs = 0;
962
	u8 ip_proto = 0;
963
	bool ret;
964

965 966
	if (!data) {
		data = skb->data;
967 968
		proto = skb_vlan_tag_present(skb) ?
			 skb->vlan_proto : skb->protocol;
969
		nhoff = skb_network_offset(skb);
970
		hlen = skb_headlen(skb);
971
#if IS_ENABLED(CONFIG_NET_DSA)
972 973
		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
			     proto == htons(ETH_P_XDSA))) {
974
			const struct dsa_device_ops *ops;
975
			int offset = 0;
976 977 978 979 980 981 982 983

			ops = skb->dev->dsa_ptr->tag_ops;
			if (ops->flow_dissect &&
			    !ops->flow_dissect(skb, &proto, &offset)) {
				hlen -= offset;
				nhoff += offset;
			}
		}
984
#endif
985 986
	}

987 988 989 990 991 992 993
	/* It is ensured by skb_flow_dissector_init() that control key will
	 * be always present.
	 */
	key_control = skb_flow_dissector_target(flow_dissector,
						FLOW_DISSECTOR_KEY_CONTROL,
						target_container);

994 995 996 997 998 999
	/* It is ensured by skb_flow_dissector_init() that basic key will
	 * be always present.
	 */
	key_basic = skb_flow_dissector_target(flow_dissector,
					      FLOW_DISSECTOR_KEY_BASIC,
					      target_container);
1000

1001
	if (skb) {
1002 1003 1004 1005 1006 1007
		if (!net) {
			if (skb->dev)
				net = dev_net(skb->dev);
			else if (skb->sk)
				net = sock_net(skb->sk);
		}
1008
	}
1009

1010 1011 1012
	WARN_ON_ONCE(!net);
	if (net) {
		rcu_read_lock();
1013 1014 1015 1016
		attached = rcu_dereference(init_net.flow_dissector_prog);

		if (!attached)
			attached = rcu_dereference(net->flow_dissector_prog);
1017

1018
		if (attached) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
			struct bpf_flow_keys flow_keys;
			struct bpf_flow_dissector ctx = {
				.flow_keys = &flow_keys,
				.data = data,
				.data_end = data + hlen,
			};
			__be16 n_proto = proto;

			if (skb) {
				ctx.skb = skb;
				/* we can't use 'proto' in the skb case
				 * because it might be set to skb->vlan_proto
				 * which has been pulled from the data
				 */
				n_proto = skb->protocol;
			}

			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1037
					       hlen, flags);
1038 1039 1040 1041 1042
			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
						 target_container);
			rcu_read_unlock();
			return ret;
		}
1043 1044 1045
		rcu_read_unlock();
	}

1046 1047
	if (dissector_uses_key(flow_dissector,
			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1048 1049 1050 1051 1052 1053 1054 1055 1056
		struct ethhdr *eth = eth_hdr(skb);
		struct flow_dissector_key_eth_addrs *key_eth_addrs;

		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
							  target_container);
		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
	}

1057
proto_again:
1058 1059
	fdret = FLOW_DISSECT_RET_CONTINUE;

1060
	switch (proto) {
1061
	case htons(ETH_P_IP): {
1062 1063
		const struct iphdr *iph;
		struct iphdr _iph;
1064

1065
		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1066 1067 1068 1069 1070
		if (!iph || iph->ihl < 5) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}

1071
		nhoff += iph->ihl * 4;
1072

1073 1074
		ip_proto = iph->protocol;

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		if (dissector_uses_key(flow_dissector,
				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
			key_addrs = skb_flow_dissector_target(flow_dissector,
							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
							      target_container);

			memcpy(&key_addrs->v4addrs, &iph->saddr,
			       sizeof(key_addrs->v4addrs));
			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
		}
1085 1086

		if (ip_is_fragment(iph)) {
1087
			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1088 1089

			if (iph->frag_off & htons(IP_OFFSET)) {
1090 1091
				fdret = FLOW_DISSECT_RET_OUT_GOOD;
				break;
1092
			} else {
1093
				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1094 1095 1096 1097 1098
				if (!(flags &
				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
					fdret = FLOW_DISSECT_RET_OUT_GOOD;
					break;
				}
1099 1100 1101
			}
		}

1102 1103 1104
		__skb_flow_dissect_ipv4(skb, flow_dissector,
					target_container, data, iph);

1105 1106
		break;
	}
1107
	case htons(ETH_P_IPV6): {
1108 1109
		const struct ipv6hdr *iph;
		struct ipv6hdr _iph;
1110

1111
		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1112 1113 1114 1115
		if (!iph) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}
1116 1117 1118

		ip_proto = iph->nexthdr;
		nhoff += sizeof(struct ipv6hdr);
1119

1120 1121
		if (dissector_uses_key(flow_dissector,
				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1122 1123 1124
			key_addrs = skb_flow_dissector_target(flow_dissector,
							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
							      target_container);
1125

1126 1127
			memcpy(&key_addrs->v6addrs, &iph->saddr,
			       sizeof(key_addrs->v6addrs));
1128
			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1129
		}
1130

1131 1132 1133 1134 1135 1136
		if ((dissector_uses_key(flow_dissector,
					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
		    ip6_flowlabel(iph)) {
			__be32 flow_label = ip6_flowlabel(iph);

1137 1138
			if (dissector_uses_key(flow_dissector,
					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1139 1140 1141 1142
				key_tags = skb_flow_dissector_target(flow_dissector,
								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
								     target_container);
				key_tags->flow_label = ntohl(flow_label);
1143
			}
1144 1145 1146 1147
			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
				fdret = FLOW_DISSECT_RET_OUT_GOOD;
				break;
			}
1148 1149
		}

1150 1151 1152
		__skb_flow_dissect_ipv6(skb, flow_dissector,
					target_container, data, iph);

1153 1154
		break;
	}
1155 1156
	case htons(ETH_P_8021AD):
	case htons(ETH_P_8021Q): {
1157
		const struct vlan_hdr *vlan = NULL;
1158
		struct vlan_hdr _vlan;
1159
		__be16 saved_vlan_tpid = proto;
1160

1161 1162
		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
		    skb && skb_vlan_tag_present(skb)) {
1163
			proto = skb->protocol;
1164
		} else {
1165 1166
			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
						    data, hlen, &_vlan);
1167 1168 1169 1170 1171
			if (!vlan) {
				fdret = FLOW_DISSECT_RET_OUT_BAD;
				break;
			}

1172 1173 1174
			proto = vlan->h_vlan_encapsulated_proto;
			nhoff += sizeof(*vlan);
		}
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
		} else {
			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
			break;
		}

		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1186
			key_vlan = skb_flow_dissector_target(flow_dissector,
1187
							     dissector_vlan,
1188 1189
							     target_container);

1190
			if (!vlan) {
1191
				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1192
				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1193 1194
			} else {
				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1195
					VLAN_VID_MASK;
1196 1197 1198 1199
				key_vlan->vlan_priority =
					(ntohs(vlan->h_vlan_TCI) &
					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
			}
1200
			key_vlan->vlan_tpid = saved_vlan_tpid;
1201 1202
		}

1203 1204
		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
		break;
1205
	}
1206
	case htons(ETH_P_PPP_SES): {
1207 1208 1209 1210
		struct {
			struct pppoe_hdr hdr;
			__be16 proto;
		} *hdr, _hdr;
1211
		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1212 1213 1214 1215 1216
		if (!hdr) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}

1217 1218 1219
		proto = hdr->proto;
		nhoff += PPPOE_SES_HLEN;
		switch (proto) {
1220
		case htons(PPP_IP):
1221 1222 1223
			proto = htons(ETH_P_IP);
			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
			break;
1224
		case htons(PPP_IPV6):
1225 1226 1227
			proto = htons(ETH_P_IPV6);
			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
			break;
1228
		default:
1229 1230
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
1231
		}
1232
		break;
1233
	}
1234
	case htons(ETH_P_TIPC): {
1235 1236 1237 1238
		struct tipc_basic_hdr *hdr, _hdr;

		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
					   data, hlen, &_hdr);
1239 1240 1241 1242
		if (!hdr) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}
1243

1244
		if (dissector_uses_key(flow_dissector,
1245
				       FLOW_DISSECTOR_KEY_TIPC)) {
1246
			key_addrs = skb_flow_dissector_target(flow_dissector,
1247
							      FLOW_DISSECTOR_KEY_TIPC,
1248
							      target_container);
1249 1250
			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1251
		}
1252 1253
		fdret = FLOW_DISSECT_RET_OUT_GOOD;
		break;
1254
	}
1255 1256

	case htons(ETH_P_MPLS_UC):
1257
	case htons(ETH_P_MPLS_MC):
1258
		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1259
						target_container, data,
1260 1261
						nhoff, hlen);
		break;
1262
	case htons(ETH_P_FCOE):
1263 1264 1265 1266
		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}
1267 1268

		nhoff += FCOE_HEADER_LEN;
1269 1270
		fdret = FLOW_DISSECT_RET_OUT_GOOD;
		break;
Simon Horman's avatar
Simon Horman committed
1271 1272

	case htons(ETH_P_ARP):
1273
	case htons(ETH_P_RARP):
1274
		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1275
					       target_container, data,
1276 1277 1278
					       nhoff, hlen);
		break;

1279 1280 1281 1282 1283
	case htons(ETH_P_BATMAN):
		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
						  &proto, &nhoff, hlen, flags);
		break;

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	default:
		fdret = FLOW_DISSECT_RET_OUT_BAD;
		break;
	}

	/* Process result of proto processing */
	switch (fdret) {
	case FLOW_DISSECT_RET_OUT_GOOD:
		goto out_good;
	case FLOW_DISSECT_RET_PROTO_AGAIN:
1294 1295 1296
		if (skb_flow_dissect_allowed(&num_hdrs))
			goto proto_again;
		goto out_good;
1297 1298 1299 1300
	case FLOW_DISSECT_RET_CONTINUE:
	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
		break;
	case FLOW_DISSECT_RET_OUT_BAD:
1301
	default:
1302
		goto out_bad;
1303 1304
	}

1305
ip_proto_again:
1306 1307
	fdret = FLOW_DISSECT_RET_CONTINUE;

1308
	switch (ip_proto) {
1309
	case IPPROTO_GRE:
1310
		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1311
					       target_container, data,
1312 1313 1314
					       &proto, &nhoff, &hlen, flags);
		break;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	case NEXTHDR_HOP:
	case NEXTHDR_ROUTING:
	case NEXTHDR_DEST: {
		u8 _opthdr[2], *opthdr;

		if (proto != htons(ETH_P_IPV6))
			break;

		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
					      data, hlen, &_opthdr);
1325 1326 1327 1328
		if (!opthdr) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}
1329

1330 1331
		ip_proto = opthdr[0];
		nhoff += (opthdr[1] + 1) << 3;
1332

1333 1334
		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
		break;
1335
	}
1336 1337 1338 1339 1340 1341 1342 1343 1344
	case NEXTHDR_FRAGMENT: {
		struct frag_hdr _fh, *fh;

		if (proto != htons(ETH_P_IPV6))
			break;

		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
					  data, hlen, &_fh);

1345 1346 1347 1348
		if (!fh) {
			fdret = FLOW_DISSECT_RET_OUT_BAD;
			break;
		}
1349

1350
		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1351 1352

		nhoff += sizeof(_fh);
1353
		ip_proto = fh->nexthdr;
1354 1355

		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1356
			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1357 1358 1359 1360
			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
				break;
			}
1361
		}
1362 1363 1364

		fdret = FLOW_DISSECT_RET_OUT_GOOD;
		break;
1365
	}
1366
	case IPPROTO_IPIP:
1367
		proto = htons(ETH_P_IP);
1368

1369
		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1370 1371 1372 1373 1374 1375 1376
		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
			fdret = FLOW_DISSECT_RET_OUT_GOOD;
			break;
		}

		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
		break;
1377

1378 1379
	case IPPROTO_IPV6:
		proto = htons(ETH_P_IPV6);
1380

1381
		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1382 1383 1384 1385 1386 1387 1388 1389
		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
			fdret = FLOW_DISSECT_RET_OUT_GOOD;
			break;
		}

		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
		break;

1390

1391 1392
	case IPPROTO_MPLS:
		proto = htons(ETH_P_MPLS_UC);
1393 1394 1395
		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
		break;

1396 1397 1398 1399
	case IPPROTO_TCP:
		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
				       data, nhoff, hlen);
		break;
1400

1401 1402 1403 1404 1405 1406
	case IPPROTO_ICMP:
	case IPPROTO_ICMPV6:
		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
					data, nhoff, hlen);
		break;

1407 1408 1409 1410
	default:
		break;
	}

1411 1412 1413
	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
					 data, nhoff, ip_proto, hlen);
1414

1415 1416 1417
	/* Process result of IP proto processing */
	switch (fdret) {
	case FLOW_DISSECT_RET_PROTO_AGAIN:
1418 1419 1420
		if (skb_flow_dissect_allowed(&num_hdrs))
			goto proto_again;
		break;
1421
	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1422 1423 1424
		if (skb_flow_dissect_allowed(&num_hdrs))
			goto ip_proto_again;
		break;
1425 1426 1427 1428 1429 1430 1431 1432
	case FLOW_DISSECT_RET_OUT_GOOD:
	case FLOW_DISSECT_RET_CONTINUE:
		break;
	case FLOW_DISSECT_RET_OUT_BAD:
	default:
		goto out_bad;
	}

1433 1434 1435
out_good:
	ret = true;

1436
out:
1437
	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1438 1439 1440 1441
	key_basic->n_proto = proto;
	key_basic->ip_proto = ip_proto;

	return ret;
1442 1443 1444 1445

out_bad:
	ret = false;
	goto out;
1446
}
1447
EXPORT_SYMBOL(__skb_flow_dissect);
1448

1449
static siphash_key_t hashrnd __read_mostly;
1450 1451 1452 1453 1454
static __always_inline void __flow_hash_secret_init(void)
{
	net_get_random_once(&hashrnd, sizeof(hashrnd));
}

1455
static const void *flow_keys_hash_start(const struct flow_keys *flow)
1456
{
1457 1458
	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
	return &flow->FLOW_KEYS_HASH_START_FIELD;
1459 1460
}

1461
static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1462
{
1463
	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1464

1465
	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1466 1467 1468 1469 1470 1471 1472 1473

	switch (flow->control.addr_type) {
	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
		diff -= sizeof(flow->addrs.v4addrs);
		break;
	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
		diff -= sizeof(flow->addrs.v6addrs);
		break;
1474 1475
	case FLOW_DISSECTOR_KEY_TIPC:
		diff -= sizeof(flow->addrs.tipckey);
1476
		break;
1477
	}
1478
	return sizeof(*flow) - diff;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

__be32 flow_get_u32_src(const struct flow_keys *flow)
{
	switch (flow->control.addr_type) {
	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
		return flow->addrs.v4addrs.src;
	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
		return (__force __be32)ipv6_addr_hash(
			&flow->addrs.v6addrs.src);
1489 1490
	case FLOW_DISSECTOR_KEY_TIPC:
		return flow->addrs.tipckey.key;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	default:
		return 0;
	}
}
EXPORT_SYMBOL(flow_get_u32_src);

__be32 flow_get_u32_dst(const struct flow_keys *flow)
{
	switch (flow->control.addr_type) {
	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
		return flow->addrs.v4addrs.dst;
	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
		return (__force __be32)ipv6_addr_hash(
			&flow->addrs.v6addrs.dst);
	default:
		return 0;
	}
}
EXPORT_SYMBOL(flow_get_u32_dst);

1511 1512 1513
/* Sort the source and destination IP (and the ports if the IP are the same),
 * to have consistent hash within the two directions
 */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static inline void __flow_hash_consistentify(struct flow_keys *keys)
{
	int addr_diff, i;

	switch (keys->control.addr_type) {
	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
			    (__force u32)keys->addrs.v4addrs.src;
		if ((addr_diff < 0) ||
		    (addr_diff == 0 &&
		     ((__force u16)keys->ports.dst <
		      (__force u16)keys->ports.src))) {
			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
			swap(keys->ports.src, keys->ports.dst);
		}
		break;
	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
				   &keys->addrs.v6addrs.src,
				   sizeof(keys->addrs.v6addrs.dst));
		if ((addr_diff < 0) ||
		    (addr_diff == 0 &&
		     ((__force u16)keys->ports.dst <
		      (__force u16)keys->ports.src))) {
			for (i = 0; i < 4; i++)
				swap(keys->addrs.v6addrs.src.s6_addr32[i],
				     keys->addrs.v6addrs.dst.s6_addr32[i]);
			swap(keys->ports.src, keys->ports.dst);
		}
		break;
	}
1545 1546
}

1547 1548
static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
					const siphash_key_t *keyval)
1549 1550 1551
{
	u32 hash;

1552
	__flow_hash_consistentify(keys);
1553

1554 1555
	hash = siphash(flow_keys_hash_start(keys),
		       flow_keys_hash_length(keys), keyval);
1556 1557 1558 1559 1560 1561 1562 1563
	if (!hash)
		hash = 1;

	return hash;
}

u32 flow_hash_from_keys(struct flow_keys *keys)
{
1564
	__flow_hash_secret_init();
1565
	return __flow_hash_from_keys(keys, &hashrnd);
1566 1567 1568
}
EXPORT_SYMBOL(flow_hash_from_keys);

1569
static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1570 1571
				  struct flow_keys *keys,
				  const siphash_key_t *keyval)
1572
{
1573 1574
	skb_flow_dissect_flow_keys(skb, keys,
				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1575 1576 1577 1578

	return __flow_hash_from_keys(keys, keyval);
}

Tom Herbert's avatar
Tom Herbert committed
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
struct _flow_keys_digest_data {
	__be16	n_proto;
	u8	ip_proto;
	u8	padding;
	__be32	ports;
	__be32	src;
	__be32	dst;
};

void make_flow_keys_digest(struct flow_keys_digest *digest,
			   const struct flow_keys *flow)
{
	struct _flow_keys_digest_data *data =
	    (struct _flow_keys_digest_data *)digest;

	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));

	memset(digest, 0, sizeof(*digest));

1598 1599 1600
	data->n_proto = flow->basic.n_proto;
	data->ip_proto = flow->basic.ip_proto;
	data->ports = flow->ports.ports;
1601 1602
	data->src = flow->addrs.v4addrs.src;
	data->dst = flow->addrs.v4addrs.dst;
Tom Herbert's avatar
Tom Herbert committed
1603 1604 1605
}
EXPORT_SYMBOL(make_flow_keys_digest);

1606 1607
static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;

1608
u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1609 1610 1611 1612 1613 1614
{
	struct flow_keys keys;

	__flow_hash_secret_init();

	memset(&keys, 0, sizeof(keys));
1615 1616
	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
			   &keys, NULL, 0, 0, 0,
1617 1618
			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);

1619
	return __flow_hash_from_keys(&keys, &hashrnd);
1620 1621 1622
}
EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);

1623 1624 1625 1626 1627
/**
 * __skb_get_hash: calculate a flow hash
 * @skb: sk_buff to calculate flow hash from
 *
 * This function calculates a flow hash based on src/dst addresses
1628 1629
 * and src/dst port numbers.  Sets hash in skb to non-zero hash value
 * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1630 1631
 * if hash is a canonical 4-tuple hash over transport ports.
 */
1632
void __skb_get_hash(struct sk_buff *skb)
1633 1634
{
	struct flow_keys keys;
1635
	u32 hash;
1636

1637 1638
	__flow_hash_secret_init();

1639
	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1640 1641

	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1642
}
1643
EXPORT_SYMBOL(__skb_get_hash);
1644

1645 1646
__u32 skb_get_hash_perturb(const struct sk_buff *skb,
			   const siphash_key_t *perturb)
1647 1648 1649 1650 1651 1652 1653
{
	struct flow_keys keys;

	return ___skb_get_hash(skb, &keys, perturb);
}
EXPORT_SYMBOL(skb_get_hash_perturb);

1654
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1655
		   const struct flow_keys_basic *keys, int hlen)
1656
{
1657
	u32 poff = keys->control.thoff;
1658

1659 1660 1661 1662 1663
	/* skip L4 headers for fragments after the first */
	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
		return poff;

1664
	switch (keys->basic.ip_proto) {
1665
	case IPPROTO_TCP: {
1666 1667 1668
		/* access doff as u8 to avoid unaligned access */
		const u8 *doff;
		u8 _doff;
1669

1670 1671 1672
		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
					    data, hlen, &_doff);
		if (!doff)
1673 1674
			return poff;

1675
		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		break;
	}
	case IPPROTO_UDP:
	case IPPROTO_UDPLITE:
		poff += sizeof(struct udphdr);
		break;
	/* For the rest, we do not really care about header
	 * extensions at this point for now.
	 */
	case IPPROTO_ICMP:
		poff += sizeof(struct icmphdr);
		break;
	case IPPROTO_ICMPV6:
		poff += sizeof(struct icmp6hdr);
		break;
	case IPPROTO_IGMP:
		poff += sizeof(struct igmphdr);
		break;
	case IPPROTO_DCCP:
		poff += sizeof(struct dccp_hdr);
		break;
	case IPPROTO_SCTP:
		poff += sizeof(struct sctphdr);
		break;
	}

	return poff;
}

1705 1706 1707 1708 1709 1710
/**
 * skb_get_poff - get the offset to the payload
 * @skb: sk_buff to get the payload offset from
 *
 * The function will get the offset to the payload as far as it could
 * be dissected.  The main user is currently BPF, so that we can dynamically
1711 1712 1713 1714 1715
 * truncate packets without needing to push actual payload to the user
 * space and can analyze headers only, instead.
 */
u32 skb_get_poff(const struct sk_buff *skb)
{
1716
	struct flow_keys_basic keys;
1717

1718 1719
	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
					      NULL, 0, 0, 0, 0))
1720 1721 1722 1723
		return 0;

	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
}
1724

1725
__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
{
	memset(keys, 0, sizeof(*keys));

	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
	    sizeof(keys->addrs.v6addrs.src));
	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
	    sizeof(keys->addrs.v6addrs.dst));
	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
	keys->ports.src = fl6->fl6_sport;
	keys->ports.dst = fl6->fl6_dport;
	keys->keyid.keyid = fl6->fl6_gre_key;
1737
	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1738 1739 1740 1741 1742 1743
	keys->basic.ip_proto = fl6->flowi6_proto;

	return flow_hash_from_keys(keys);
}
EXPORT_SYMBOL(__get_hash_from_flowi6);

1744
static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1745 1746 1747 1748
	{
		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
		.offset = offsetof(struct flow_keys, control),
	},
1749 1750 1751 1752 1753 1754
	{
		.key_id = FLOW_DISSECTOR_KEY_BASIC,
		.offset = offsetof(struct flow_keys, basic),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1755 1756 1757 1758 1759
		.offset = offsetof(struct flow_keys, addrs.v4addrs),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1760
	},
1761
	{
1762 1763
		.key_id = FLOW_DISSECTOR_KEY_TIPC,
		.offset = offsetof(struct flow_keys, addrs.tipckey),
1764
	},
1765 1766 1767 1768
	{
		.key_id = FLOW_DISSECTOR_KEY_PORTS,
		.offset = offsetof(struct flow_keys, ports),
	},
1769
	{
1770 1771
		.key_id = FLOW_DISSECTOR_KEY_VLAN,
		.offset = offsetof(struct flow_keys, vlan),
1772
	},
1773 1774 1775 1776
	{
		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
		.offset = offsetof(struct flow_keys, tags),
	},
1777 1778 1779 1780
	{
		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
		.offset = offsetof(struct flow_keys, keyid),
	},
1781 1782
};

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
	{
		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
		.offset = offsetof(struct flow_keys, control),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_BASIC,
		.offset = offsetof(struct flow_keys, basic),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
		.offset = offsetof(struct flow_keys, addrs.v4addrs),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
		.offset = offsetof(struct flow_keys, addrs.v6addrs),
	},
	{
		.key_id = FLOW_DISSECTOR_KEY_PORTS,
		.offset = offsetof(struct flow_keys, ports),
	},
};

1806
static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1807 1808 1809 1810
	{
		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
		.offset = offsetof(struct flow_keys, control),
	},
1811 1812 1813 1814 1815 1816 1817 1818 1819
	{
		.key_id = FLOW_DISSECTOR_KEY_BASIC,
		.offset = offsetof(struct flow_keys, basic),
	},
};

struct flow_dissector flow_keys_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_dissector);

1820 1821
struct flow_dissector flow_keys_basic_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_basic_dissector);
1822 1823 1824 1825 1826 1827

static int __init init_default_flow_dissectors(void)
{
	skb_flow_dissector_init(&flow_keys_dissector,
				flow_keys_dissector_keys,
				ARRAY_SIZE(flow_keys_dissector_keys));
1828 1829 1830
	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
				flow_keys_dissector_symmetric_keys,
				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1831 1832 1833
	skb_flow_dissector_init(&flow_keys_basic_dissector,
				flow_keys_basic_dissector_keys,
				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1834 1835 1836
	return 0;
}

1837
core_initcall(init_default_flow_dissectors);