buffered_read.c 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// SPDX-License-Identifier: GPL-2.0-or-later
/* Network filesystem high-level buffered read support.
 *
 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#include <linux/export.h>
#include <linux/task_io_accounting_ops.h>
#include "internal.h"

/*
13
 * Unlock the folios in a read operation.  We need to set PG_writeback on any
14
 * folios we're going to write back before we unlock them.
15 16 17
 *
 * Note that if the deprecated NETFS_RREQ_USE_PGPRIV2 is set then we use
 * PG_private_2 and do a direct write to the cache from here instead.
18 19 20 21
 */
void netfs_rreq_unlock_folios(struct netfs_io_request *rreq)
{
	struct netfs_io_subrequest *subreq;
22
	struct netfs_folio *finfo;
23 24 25
	struct folio *folio;
	pgoff_t start_page = rreq->start / PAGE_SIZE;
	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
David Howells's avatar
David Howells committed
26
	size_t account = 0;
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	bool subreq_failed = false;

	XA_STATE(xas, &rreq->mapping->i_pages, start_page);

	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
		__clear_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
			__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
		}
	}

	/* Walk through the pagecache and the I/O request lists simultaneously.
	 * We may have a mixture of cached and uncached sections and we only
	 * really want to write out the uncached sections.  This is slightly
	 * complicated by the possibility that we might have huge pages with a
	 * mixture inside.
	 */
	subreq = list_first_entry(&rreq->subrequests,
				  struct netfs_io_subrequest, rreq_link);
	subreq_failed = (subreq->error < 0);

	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);

	rcu_read_lock();
	xas_for_each(&xas, folio, last_page) {
David Howells's avatar
David Howells committed
52
		loff_t pg_end;
53
		bool pg_failed = false;
54 55
		bool wback_to_cache = false;
		bool folio_started = false;
56

57 58 59
		if (xas_retry(&xas, folio))
			continue;

David Howells's avatar
David Howells committed
60
		pg_end = folio_pos(folio) + folio_size(folio) - 1;
61

62
		for (;;) {
David Howells's avatar
David Howells committed
63 64
			loff_t sreq_end;

65 66 67 68
			if (!subreq) {
				pg_failed = true;
				break;
			}
69 70 71 72
			if (test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
				if (!folio_started && test_bit(NETFS_SREQ_COPY_TO_CACHE,
							       &subreq->flags)) {
					trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
73
					folio_start_private_2(folio);
74 75 76 77 78
					folio_started = true;
				}
			} else {
				wback_to_cache |=
					test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
79
			}
80
			pg_failed |= subreq_failed;
David Howells's avatar
David Howells committed
81 82
			sreq_end = subreq->start + subreq->len - 1;
			if (pg_end < sreq_end)
83 84 85 86 87 88 89 90 91 92
				break;

			account += subreq->transferred;
			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
				subreq = list_next_entry(subreq, rreq_link);
				subreq_failed = (subreq->error < 0);
			} else {
				subreq = NULL;
				subreq_failed = false;
			}
David Howells's avatar
David Howells committed
93 94

			if (pg_end == sreq_end)
95 96 97 98 99
				break;
		}

		if (!pg_failed) {
			flush_dcache_folio(folio);
100 101 102 103 104 105 106 107 108
			finfo = netfs_folio_info(folio);
			if (finfo) {
				trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
				if (finfo->netfs_group)
					folio_change_private(folio, finfo->netfs_group);
				else
					folio_detach_private(folio);
				kfree(finfo);
			}
109
			folio_mark_uptodate(folio);
110 111 112 113 114
			if (wback_to_cache && !WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
				folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
				filemap_dirty_folio(folio->mapping, folio);
			}
115 116 117
		}

		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
118
			if (folio->index == rreq->no_unlock_folio &&
119 120 121 122 123 124 125 126 127 128 129 130 131 132
			    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags))
				_debug("no unlock");
			else
				folio_unlock(folio);
		}
	}
	rcu_read_unlock();

	task_io_account_read(account);
	if (rreq->netfs_ops->done)
		rreq->netfs_ops->done(rreq);
}

static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
133 134 135
					 unsigned long long *_start,
					 unsigned long long *_len,
					 unsigned long long i_size)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;

	if (cres->ops && cres->ops->expand_readahead)
		cres->ops->expand_readahead(cres, _start, _len, i_size);
}

static void netfs_rreq_expand(struct netfs_io_request *rreq,
			      struct readahead_control *ractl)
{
	/* Give the cache a chance to change the request parameters.  The
	 * resultant request must contain the original region.
	 */
	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);

	/* Give the netfs a chance to change the request parameters.  The
	 * resultant request must contain the original region.
	 */
	if (rreq->netfs_ops->expand_readahead)
		rreq->netfs_ops->expand_readahead(rreq);

	/* Expand the request if the cache wants it to start earlier.  Note
	 * that the expansion may get further extended if the VM wishes to
	 * insert THPs and the preferred start and/or end wind up in the middle
	 * of THPs.
	 *
	 * If this is the case, however, the THP size should be an integer
	 * multiple of the cache granule size, so we get a whole number of
	 * granules to deal with.
	 */
	if (rreq->start  != readahead_pos(ractl) ||
	    rreq->len != readahead_length(ractl)) {
		readahead_expand(ractl, rreq->start, rreq->len);
		rreq->start  = readahead_pos(ractl);
		rreq->len = readahead_length(ractl);

		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
				 netfs_read_trace_expanded);
	}
}

177 178 179 180 181 182 183 184 185
/*
 * Begin an operation, and fetch the stored zero point value from the cookie if
 * available.
 */
static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
{
	return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/**
 * netfs_readahead - Helper to manage a read request
 * @ractl: The description of the readahead request
 *
 * Fulfil a readahead request by drawing data from the cache if possible, or
 * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
 * requests from different sources will get munged together.  If necessary, the
 * readahead window can be expanded in either direction to a more convenient
 * alighment for RPC efficiency or to make storage in the cache feasible.
 *
 * The calling netfs must initialise a netfs context contiguous to the vfs
 * inode before calling this.
 *
 * This is usable whether or not caching is enabled.
 */
void netfs_readahead(struct readahead_control *ractl)
{
	struct netfs_io_request *rreq;
204
	struct netfs_inode *ctx = netfs_inode(ractl->mapping->host);
205 206 207 208 209 210 211 212 213 214 215 216 217 218
	int ret;

	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));

	if (readahead_count(ractl) == 0)
		return;

	rreq = netfs_alloc_request(ractl->mapping, ractl->file,
				   readahead_pos(ractl),
				   readahead_length(ractl),
				   NETFS_READAHEAD);
	if (IS_ERR(rreq))
		return;

219 220 221
	ret = netfs_begin_cache_read(rreq, ctx);
	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
		goto cleanup_free;
222 223 224 225 226 227 228

	netfs_stat(&netfs_n_rh_readahead);
	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
			 netfs_read_trace_readahead);

	netfs_rreq_expand(rreq, ractl);

229 230 231 232
	/* Set up the output buffer */
	iov_iter_xarray(&rreq->iter, ITER_DEST, &ractl->mapping->i_pages,
			rreq->start, rreq->len);

233 234 235 236 237 238 239
	/* Drop the refs on the folios here rather than in the cache or
	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
	 */
	while (readahead_folio(ractl))
		;

	netfs_begin_read(rreq, false);
240
	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
241 242 243 244 245 246 247 248 249
	return;

cleanup_free:
	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
	return;
}
EXPORT_SYMBOL(netfs_readahead);

/**
250
 * netfs_read_folio - Helper to manage a read_folio request
251
 * @file: The file to read from
252
 * @folio: The folio to read
253
 *
254 255 256
 * Fulfil a read_folio request by drawing data from the cache if
 * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
 * Multiple I/O requests from different sources will get munged together.
257 258 259 260 261 262
 *
 * The calling netfs must initialise a netfs context contiguous to the vfs
 * inode before calling this.
 *
 * This is usable whether or not caching is enabled.
 */
263
int netfs_read_folio(struct file *file, struct folio *folio)
264
{
265
	struct address_space *mapping = folio->mapping;
266
	struct netfs_io_request *rreq;
267
	struct netfs_inode *ctx = netfs_inode(mapping->host);
268
	struct folio *sink = NULL;
269 270
	int ret;

271
	_enter("%lx", folio->index);
272 273 274 275 276 277 278 279 280

	rreq = netfs_alloc_request(mapping, file,
				   folio_file_pos(folio), folio_size(folio),
				   NETFS_READPAGE);
	if (IS_ERR(rreq)) {
		ret = PTR_ERR(rreq);
		goto alloc_error;
	}

281 282 283
	ret = netfs_begin_cache_read(rreq, ctx);
	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
		goto discard;
284 285 286

	netfs_stat(&netfs_n_rh_readpage);
	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
287 288

	/* Set up the output buffer */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	if (folio_test_dirty(folio)) {
		/* Handle someone trying to read from an unflushed streaming
		 * write.  We fiddle the buffer so that a gap at the beginning
		 * and/or a gap at the end get copied to, but the middle is
		 * discarded.
		 */
		struct netfs_folio *finfo = netfs_folio_info(folio);
		struct bio_vec *bvec;
		unsigned int from = finfo->dirty_offset;
		unsigned int to = from + finfo->dirty_len;
		unsigned int off = 0, i = 0;
		size_t flen = folio_size(folio);
		size_t nr_bvec = flen / PAGE_SIZE + 2;
		size_t part;

		ret = -ENOMEM;
		bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
		if (!bvec)
			goto discard;

		sink = folio_alloc(GFP_KERNEL, 0);
		if (!sink)
			goto discard;

		trace_netfs_folio(folio, netfs_folio_trace_read_gaps);

		rreq->direct_bv = bvec;
		rreq->direct_bv_count = nr_bvec;
		if (from > 0) {
			bvec_set_folio(&bvec[i++], folio, from, 0);
			off = from;
		}
		while (off < to) {
			part = min_t(size_t, to - off, PAGE_SIZE);
			bvec_set_folio(&bvec[i++], sink, part, 0);
			off += part;
		}
		if (to < flen)
			bvec_set_folio(&bvec[i++], folio, flen - to, to);
		iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
	} else {
		iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
				rreq->start, rreq->len);
	}
333

334
	ret = netfs_begin_read(rreq, true);
335 336
	if (sink)
		folio_put(sink);
337
	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
338
	return ret < 0 ? ret : 0;
339 340 341 342 343 344 345

discard:
	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
alloc_error:
	folio_unlock(folio);
	return ret;
}
346
EXPORT_SYMBOL(netfs_read_folio);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

/*
 * Prepare a folio for writing without reading first
 * @folio: The folio being prepared
 * @pos: starting position for the write
 * @len: length of write
 * @always_fill: T if the folio should always be completely filled/cleared
 *
 * In some cases, write_begin doesn't need to read at all:
 * - full folio write
 * - write that lies in a folio that is completely beyond EOF
 * - write that covers the folio from start to EOF or beyond it
 *
 * If any of these criteria are met, then zero out the unwritten parts
 * of the folio and return true. Otherwise, return false.
 */
static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
				 bool always_fill)
{
	struct inode *inode = folio_inode(folio);
	loff_t i_size = i_size_read(inode);
	size_t offset = offset_in_folio(folio, pos);
	size_t plen = folio_size(folio);

	if (unlikely(always_fill)) {
		if (pos - offset + len <= i_size)
			return false; /* Page entirely before EOF */
		zero_user_segment(&folio->page, 0, plen);
		folio_mark_uptodate(folio);
		return true;
	}

	/* Full folio write */
	if (offset == 0 && len >= plen)
		return true;

	/* Page entirely beyond the end of the file */
	if (pos - offset >= i_size)
		goto zero_out;

	/* Write that covers from the start of the folio to EOF or beyond */
	if (offset == 0 && (pos + len) >= i_size)
		goto zero_out;

	return false;
zero_out:
	zero_user_segments(&folio->page, 0, offset, offset + len, plen);
	return true;
}

/**
 * netfs_write_begin - Helper to prepare for writing
399
 * @ctx: The netfs context
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
 * @file: The file to read from
 * @mapping: The mapping to read from
 * @pos: File position at which the write will begin
 * @len: The length of the write (may extend beyond the end of the folio chosen)
 * @_folio: Where to put the resultant folio
 * @_fsdata: Place for the netfs to store a cookie
 *
 * Pre-read data for a write-begin request by drawing data from the cache if
 * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
 * Multiple I/O requests from different sources will get munged together.  If
 * necessary, the readahead window can be expanded in either direction to a
 * more convenient alighment for RPC efficiency or to make storage in the cache
 * feasible.
 *
 * The calling netfs must provide a table of operations, only one of which,
 * issue_op, is mandatory.
 *
 * The check_write_begin() operation can be provided to check for and flush
 * conflicting writes once the folio is grabbed and locked.  It is passed a
 * pointer to the fsdata cookie that gets returned to the VM to be passed to
 * write_end.  It is permitted to sleep.  It should return 0 if the request
421 422 423
 * should go ahead or it may return an error.  It may also unlock and put the
 * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
 * will cause the folio to be re-got and the process to be retried.
424 425 426 427 428 429
 *
 * The calling netfs must initialise a netfs context contiguous to the vfs
 * inode before calling this.
 *
 * This is usable whether or not caching is enabled.
 */
430 431
int netfs_write_begin(struct netfs_inode *ctx,
		      struct file *file, struct address_space *mapping,
432 433
		      loff_t pos, unsigned int len, struct folio **_folio,
		      void **_fsdata)
434 435 436 437 438 439 440 441 442
{
	struct netfs_io_request *rreq;
	struct folio *folio;
	pgoff_t index = pos >> PAGE_SHIFT;
	int ret;

	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);

retry:
Matthew Wilcox's avatar
Matthew Wilcox committed
443
	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
444
				    mapping_gfp_mask(mapping));
445 446
	if (IS_ERR(folio))
		return PTR_ERR(folio);
447 448 449

	if (ctx->ops->check_write_begin) {
		/* Allow the netfs (eg. ceph) to flush conflicts. */
450
		ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
451 452 453 454
		if (ret < 0) {
			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
			goto error;
		}
455 456
		if (!folio)
			goto retry;
457 458 459 460 461 462 463 464 465 466 467 468
	}

	if (folio_test_uptodate(folio))
		goto have_folio;

	/* If the page is beyond the EOF, we want to clear it - unless it's
	 * within the cache granule containing the EOF, in which case we need
	 * to preload the granule.
	 */
	if (!netfs_is_cache_enabled(ctx) &&
	    netfs_skip_folio_read(folio, pos, len, false)) {
		netfs_stat(&netfs_n_rh_write_zskip);
469
		goto have_folio;
470 471 472 473 474 475 476 477 478
	}

	rreq = netfs_alloc_request(mapping, file,
				   folio_file_pos(folio), folio_size(folio),
				   NETFS_READ_FOR_WRITE);
	if (IS_ERR(rreq)) {
		ret = PTR_ERR(rreq);
		goto error;
	}
479
	rreq->no_unlock_folio	= folio->index;
480 481
	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);

482 483 484
	ret = netfs_begin_cache_read(rreq, ctx);
	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
		goto error_put;
485 486 487 488 489 490 491 492 493 494

	netfs_stat(&netfs_n_rh_write_begin);
	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);

	/* Expand the request to meet caching requirements and download
	 * preferences.
	 */
	ractl._nr_pages = folio_nr_pages(folio);
	netfs_rreq_expand(rreq, &ractl);

495 496 497 498
	/* Set up the output buffer */
	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
			rreq->start, rreq->len);

499 500 501 502 503 504 505 506
	/* We hold the folio locks, so we can drop the references */
	folio_get(folio);
	while (readahead_folio(&ractl))
		;

	ret = netfs_begin_read(rreq, true);
	if (ret < 0)
		goto error;
507
	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
508 509 510 511 512 513 514 515 516

have_folio:
	*_folio = folio;
	_leave(" = 0");
	return 0;

error_put:
	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
error:
517 518 519 520
	if (folio) {
		folio_unlock(folio);
		folio_put(folio);
	}
521 522 523 524
	_leave(" = %d", ret);
	return ret;
}
EXPORT_SYMBOL(netfs_write_begin);
525 526 527 528 529 530 531 532

/*
 * Preload the data into a page we're proposing to write into.
 */
int netfs_prefetch_for_write(struct file *file, struct folio *folio,
			     size_t offset, size_t len)
{
	struct netfs_io_request *rreq;
533
	struct address_space *mapping = folio->mapping;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	struct netfs_inode *ctx = netfs_inode(mapping->host);
	unsigned long long start = folio_pos(folio);
	size_t flen = folio_size(folio);
	int ret;

	_enter("%zx @%llx", flen, start);

	ret = -ENOMEM;

	rreq = netfs_alloc_request(mapping, file, start, flen,
				   NETFS_READ_FOR_WRITE);
	if (IS_ERR(rreq)) {
		ret = PTR_ERR(rreq);
		goto error;
	}

550
	rreq->no_unlock_folio = folio->index;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
	ret = netfs_begin_cache_read(rreq, ctx);
	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
		goto error_put;

	netfs_stat(&netfs_n_rh_write_begin);
	trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);

	/* Set up the output buffer */
	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
			rreq->start, rreq->len);

	ret = netfs_begin_read(rreq, true);
	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
	return ret;

error_put:
	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
error:
	_leave(" = %d", ret);
	return ret;
}
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

/**
 * netfs_buffered_read_iter - Filesystem buffered I/O read routine
 * @iocb: kernel I/O control block
 * @iter: destination for the data read
 *
 * This is the ->read_iter() routine for all filesystems that can use the page
 * cache directly.
 *
 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
 * returned when no data can be read without waiting for I/O requests to
 * complete; it doesn't prevent readahead.
 *
 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
 * shall be made for the read or for readahead.  When no data can be read,
 * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
 * possibly empty read shall be returned.
 *
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
 */
ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
	struct inode *inode = file_inode(iocb->ki_filp);
	struct netfs_inode *ictx = netfs_inode(inode);
	ssize_t ret;

	if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
			 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
		return -EINVAL;

	ret = netfs_start_io_read(inode);
	if (ret == 0) {
		ret = filemap_read(iocb, iter, 0);
		netfs_end_io_read(inode);
	}
	return ret;
}
EXPORT_SYMBOL(netfs_buffered_read_iter);

/**
 * netfs_file_read_iter - Generic filesystem read routine
 * @iocb: kernel I/O control block
 * @iter: destination for the data read
 *
 * This is the ->read_iter() routine for all filesystems that can use the page
 * cache directly.
 *
 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
 * returned when no data can be read without waiting for I/O requests to
 * complete; it doesn't prevent readahead.
 *
 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
 * shall be made for the read or for readahead.  When no data can be read,
 * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
 * possibly empty read shall be returned.
 *
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
 */
ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
	struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);

	if ((iocb->ki_flags & IOCB_DIRECT) ||
	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
		return netfs_unbuffered_read_iter(iocb, iter);

	return netfs_buffered_read_iter(iocb, iter);
}
EXPORT_SYMBOL(netfs_file_read_iter);