sata_rcar.c 26.5 KB
Newer Older
1 2 3 4
/*
 * Renesas R-Car SATA driver
 *
 * Author: Vladimir Barinov <source@cogentembedded.com>
5 6
 * Copyright (C) 2013-2015 Cogent Embedded, Inc.
 * Copyright (C) 2013-2015 Renesas Solutions Corp.
7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ata.h>
#include <linux/libata.h>
18
#include <linux/of_device.h>
19 20
#include <linux/platform_device.h>
#include <linux/clk.h>
21
#include <linux/err.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#define DRV_NAME "sata_rcar"

/* SH-Navi2G/ATAPI-ATA compatible task registers */
#define DATA_REG			0x100
#define SDEVCON_REG			0x138

/* SH-Navi2G/ATAPI module compatible control registers */
#define ATAPI_CONTROL1_REG		0x180
#define ATAPI_STATUS_REG		0x184
#define ATAPI_INT_ENABLE_REG		0x188
#define ATAPI_DTB_ADR_REG		0x198
#define ATAPI_DMA_START_ADR_REG		0x19C
#define ATAPI_DMA_TRANS_CNT_REG		0x1A0
#define ATAPI_CONTROL2_REG		0x1A4
#define ATAPI_SIG_ST_REG		0x1B0
#define ATAPI_BYTE_SWAP_REG		0x1BC

/* ATAPI control 1 register (ATAPI_CONTROL1) bits */
#define ATAPI_CONTROL1_ISM		BIT(16)
#define ATAPI_CONTROL1_DTA32M		BIT(11)
#define ATAPI_CONTROL1_RESET		BIT(7)
#define ATAPI_CONTROL1_DESE		BIT(3)
#define ATAPI_CONTROL1_RW		BIT(2)
#define ATAPI_CONTROL1_STOP		BIT(1)
#define ATAPI_CONTROL1_START		BIT(0)

/* ATAPI status register (ATAPI_STATUS) bits */
#define ATAPI_STATUS_SATAINT		BIT(11)
#define ATAPI_STATUS_DNEND		BIT(6)
#define ATAPI_STATUS_DEVTRM		BIT(5)
#define ATAPI_STATUS_DEVINT		BIT(4)
#define ATAPI_STATUS_ERR		BIT(2)
#define ATAPI_STATUS_NEND		BIT(1)
#define ATAPI_STATUS_ACT		BIT(0)

/* Interrupt enable register (ATAPI_INT_ENABLE) bits */
#define ATAPI_INT_ENABLE_SATAINT	BIT(11)
#define ATAPI_INT_ENABLE_DNEND		BIT(6)
#define ATAPI_INT_ENABLE_DEVTRM		BIT(5)
#define ATAPI_INT_ENABLE_DEVINT		BIT(4)
#define ATAPI_INT_ENABLE_ERR		BIT(2)
#define ATAPI_INT_ENABLE_NEND		BIT(1)
#define ATAPI_INT_ENABLE_ACT		BIT(0)

/* Access control registers for physical layer control register */
#define SATAPHYADDR_REG			0x200
#define SATAPHYWDATA_REG		0x204
#define SATAPHYACCEN_REG		0x208
#define SATAPHYRESET_REG		0x20C
#define SATAPHYRDATA_REG		0x210
#define SATAPHYACK_REG			0x214

/* Physical layer control address command register (SATAPHYADDR) bits */
#define SATAPHYADDR_PHYRATEMODE		BIT(10)
#define SATAPHYADDR_PHYCMD_READ		BIT(9)
#define SATAPHYADDR_PHYCMD_WRITE	BIT(8)

/* Physical layer control enable register (SATAPHYACCEN) bits */
#define SATAPHYACCEN_PHYLANE		BIT(0)

/* Physical layer control reset register (SATAPHYRESET) bits */
#define SATAPHYRESET_PHYRST		BIT(1)
#define SATAPHYRESET_PHYSRES		BIT(0)

/* Physical layer control acknowledge register (SATAPHYACK) bits */
#define SATAPHYACK_PHYACK		BIT(0)

/* Serial-ATA HOST control registers */
#define BISTCONF_REG			0x102C
#define SDATA_REG			0x1100
#define SSDEVCON_REG			0x1204

#define SCRSSTS_REG			0x1400
#define SCRSERR_REG			0x1404
#define SCRSCON_REG			0x1408
#define SCRSACT_REG			0x140C

#define SATAINTSTAT_REG			0x1508
#define SATAINTMASK_REG			0x150C

/* SATA INT status register (SATAINTSTAT) bits */
#define SATAINTSTAT_SERR		BIT(3)
#define SATAINTSTAT_ATA			BIT(0)

/* SATA INT mask register (SATAINTSTAT) bits */
#define SATAINTMASK_SERRMSK		BIT(3)
#define SATAINTMASK_ERRMSK		BIT(2)
#define SATAINTMASK_ERRCRTMSK		BIT(1)
#define SATAINTMASK_ATAMSK		BIT(0)

#define SATA_RCAR_INT_MASK		(SATAINTMASK_SERRMSK | \
					 SATAINTMASK_ATAMSK)

/* Physical Layer Control Registers */
#define SATAPCTLR1_REG			0x43
#define SATAPCTLR2_REG			0x52
#define SATAPCTLR3_REG			0x5A
#define SATAPCTLR4_REG			0x60

/* Descriptor table word 0 bit (when DTA32M = 1) */
#define SATA_RCAR_DTEND			BIT(0)

125 126
#define SATA_RCAR_DMA_BOUNDARY		0x1FFFFFFEUL

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Gen2 Physical Layer Control Registers */
#define RCAR_GEN2_PHY_CTL1_REG		0x1704
#define RCAR_GEN2_PHY_CTL1		0x34180002
#define RCAR_GEN2_PHY_CTL1_SS		0xC180	/* Spread Spectrum */

#define RCAR_GEN2_PHY_CTL2_REG		0x170C
#define RCAR_GEN2_PHY_CTL2		0x00002303

#define RCAR_GEN2_PHY_CTL3_REG		0x171C
#define RCAR_GEN2_PHY_CTL3		0x000B0194

#define RCAR_GEN2_PHY_CTL4_REG		0x1724
#define RCAR_GEN2_PHY_CTL4		0x00030994

#define RCAR_GEN2_PHY_CTL5_REG		0x1740
#define RCAR_GEN2_PHY_CTL5		0x03004001
#define RCAR_GEN2_PHY_CTL5_DC		BIT(1)	/* DC connection */
#define RCAR_GEN2_PHY_CTL5_TR		BIT(2)	/* Termination Resistor */

enum sata_rcar_type {
	RCAR_GEN1_SATA,
	RCAR_GEN2_SATA,
149
	RCAR_R8A7790_ES1_SATA,
150 151
};

152 153 154
struct sata_rcar_priv {
	void __iomem *base;
	struct clk *clk;
155
	enum sata_rcar_type type;
156 157
};

158
static void sata_rcar_gen1_phy_preinit(struct sata_rcar_priv *priv)
159
{
160 161
	void __iomem *base = priv->base;

162
	/* idle state */
163
	iowrite32(0, base + SATAPHYADDR_REG);
164
	/* reset */
165
	iowrite32(SATAPHYRESET_PHYRST, base + SATAPHYRESET_REG);
166 167
	udelay(10);
	/* deassert reset */
168
	iowrite32(0, base + SATAPHYRESET_REG);
169 170
}

171 172
static void sata_rcar_gen1_phy_write(struct sata_rcar_priv *priv, u16 reg,
				     u32 val, int group)
173
{
174
	void __iomem *base = priv->base;
175 176 177
	int timeout;

	/* deassert reset */
178
	iowrite32(0, base + SATAPHYRESET_REG);
179
	/* lane 1 */
180
	iowrite32(SATAPHYACCEN_PHYLANE, base + SATAPHYACCEN_REG);
181
	/* write phy register value */
182
	iowrite32(val, base + SATAPHYWDATA_REG);
183 184 185 186
	/* set register group */
	if (group)
		reg |= SATAPHYADDR_PHYRATEMODE;
	/* write command */
187
	iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, base + SATAPHYADDR_REG);
188 189
	/* wait for ack */
	for (timeout = 0; timeout < 100; timeout++) {
190
		val = ioread32(base + SATAPHYACK_REG);
191 192 193 194 195 196
		if (val & SATAPHYACK_PHYACK)
			break;
	}
	if (timeout >= 100)
		pr_err("%s timeout\n", __func__);
	/* idle state */
197
	iowrite32(0, base + SATAPHYADDR_REG);
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static void sata_rcar_gen1_phy_init(struct sata_rcar_priv *priv)
{
	sata_rcar_gen1_phy_preinit(priv);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1);
	sata_rcar_gen1_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0);
}

static void sata_rcar_gen2_phy_init(struct sata_rcar_priv *priv)
{
	void __iomem *base = priv->base;

	iowrite32(RCAR_GEN2_PHY_CTL1, base + RCAR_GEN2_PHY_CTL1_REG);
	iowrite32(RCAR_GEN2_PHY_CTL2, base + RCAR_GEN2_PHY_CTL2_REG);
	iowrite32(RCAR_GEN2_PHY_CTL3, base + RCAR_GEN2_PHY_CTL3_REG);
	iowrite32(RCAR_GEN2_PHY_CTL4, base + RCAR_GEN2_PHY_CTL4_REG);
	iowrite32(RCAR_GEN2_PHY_CTL5 | RCAR_GEN2_PHY_CTL5_DC |
		  RCAR_GEN2_PHY_CTL5_TR, base + RCAR_GEN2_PHY_CTL5_REG);
}

223 224 225 226 227 228 229 230 231 232 233 234 235
static void sata_rcar_freeze(struct ata_port *ap)
{
	struct sata_rcar_priv *priv = ap->host->private_data;

	/* mask */
	iowrite32(0x7ff, priv->base + SATAINTMASK_REG);

	ata_sff_freeze(ap);
}

static void sata_rcar_thaw(struct ata_port *ap)
{
	struct sata_rcar_priv *priv = ap->host->private_data;
236
	void __iomem *base = priv->base;
237 238

	/* ack */
239
	iowrite32(~(u32)SATA_RCAR_INT_MASK, base + SATAINTSTAT_REG);
240 241 242 243

	ata_sff_thaw(ap);

	/* unmask */
244
	iowrite32(0x7ff & ~SATA_RCAR_INT_MASK, base + SATAINTMASK_REG);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count)
{
	u16 *ptr = buffer;

	while (count--) {
		u16 data = ioread32(reg);

		*ptr++ = data;
	}
}

static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count)
{
	const u16 *ptr = buffer;

	while (count--)
		iowrite32(*ptr++, reg);
}

static u8 sata_rcar_check_status(struct ata_port *ap)
{
	return ioread32(ap->ioaddr.status_addr);
}

static u8 sata_rcar_check_altstatus(struct ata_port *ap)
{
	return ioread32(ap->ioaddr.altstatus_addr);
}

static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl)
{
	iowrite32(ctl, ap->ioaddr.ctl_addr);
}

static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device)
{
	iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr);
	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
}

static unsigned int sata_rcar_ata_devchk(struct ata_port *ap,
					 unsigned int device)
{
	struct ata_ioports *ioaddr = &ap->ioaddr;
	u8 nsect, lbal;

	sata_rcar_dev_select(ap, device);

	iowrite32(0x55, ioaddr->nsect_addr);
	iowrite32(0xaa, ioaddr->lbal_addr);

	iowrite32(0xaa, ioaddr->nsect_addr);
	iowrite32(0x55, ioaddr->lbal_addr);

	iowrite32(0x55, ioaddr->nsect_addr);
	iowrite32(0xaa, ioaddr->lbal_addr);

	nsect = ioread32(ioaddr->nsect_addr);
	lbal  = ioread32(ioaddr->lbal_addr);

	if (nsect == 0x55 && lbal == 0xaa)
		return 1;	/* found a device */

	return 0;		/* nothing found */
}

static int sata_rcar_wait_after_reset(struct ata_link *link,
				      unsigned long deadline)
{
	struct ata_port *ap = link->ap;

	ata_msleep(ap, ATA_WAIT_AFTER_RESET);

	return ata_sff_wait_ready(link, deadline);
}

static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline)
{
	struct ata_ioports *ioaddr = &ap->ioaddr;

	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);

	/* software reset.  causes dev0 to be selected */
	iowrite32(ap->ctl, ioaddr->ctl_addr);
	udelay(20);
	iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
	udelay(20);
	iowrite32(ap->ctl, ioaddr->ctl_addr);
	ap->last_ctl = ap->ctl;

	/* wait the port to become ready */
	return sata_rcar_wait_after_reset(&ap->link, deadline);
}

static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes,
			       unsigned long deadline)
{
	struct ata_port *ap = link->ap;
	unsigned int devmask = 0;
	int rc;
	u8 err;

	/* determine if device 0 is present */
	if (sata_rcar_ata_devchk(ap, 0))
		devmask |= 1 << 0;

	/* issue bus reset */
	DPRINTK("about to softreset, devmask=%x\n", devmask);
	rc = sata_rcar_bus_softreset(ap, deadline);
	/* if link is occupied, -ENODEV too is an error */
	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
		return rc;
	}

	/* determine by signature whether we have ATA or ATAPI devices */
	classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err);

	DPRINTK("classes[0]=%u\n", classes[0]);
	return 0;
}

static void sata_rcar_tf_load(struct ata_port *ap,
			      const struct ata_taskfile *tf)
{
	struct ata_ioports *ioaddr = &ap->ioaddr;
	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;

	if (tf->ctl != ap->last_ctl) {
		iowrite32(tf->ctl, ioaddr->ctl_addr);
		ap->last_ctl = tf->ctl;
		ata_wait_idle(ap);
	}

	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
		iowrite32(tf->hob_feature, ioaddr->feature_addr);
		iowrite32(tf->hob_nsect, ioaddr->nsect_addr);
		iowrite32(tf->hob_lbal, ioaddr->lbal_addr);
		iowrite32(tf->hob_lbam, ioaddr->lbam_addr);
		iowrite32(tf->hob_lbah, ioaddr->lbah_addr);
		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
			tf->hob_feature,
			tf->hob_nsect,
			tf->hob_lbal,
			tf->hob_lbam,
			tf->hob_lbah);
	}

	if (is_addr) {
		iowrite32(tf->feature, ioaddr->feature_addr);
		iowrite32(tf->nsect, ioaddr->nsect_addr);
		iowrite32(tf->lbal, ioaddr->lbal_addr);
		iowrite32(tf->lbam, ioaddr->lbam_addr);
		iowrite32(tf->lbah, ioaddr->lbah_addr);
		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
			tf->feature,
			tf->nsect,
			tf->lbal,
			tf->lbam,
			tf->lbah);
	}

	if (tf->flags & ATA_TFLAG_DEVICE) {
		iowrite32(tf->device, ioaddr->device_addr);
		VPRINTK("device 0x%X\n", tf->device);
	}

	ata_wait_idle(ap);
}

static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
	struct ata_ioports *ioaddr = &ap->ioaddr;

	tf->command = sata_rcar_check_status(ap);
	tf->feature = ioread32(ioaddr->error_addr);
	tf->nsect = ioread32(ioaddr->nsect_addr);
	tf->lbal = ioread32(ioaddr->lbal_addr);
	tf->lbam = ioread32(ioaddr->lbam_addr);
	tf->lbah = ioread32(ioaddr->lbah_addr);
	tf->device = ioread32(ioaddr->device_addr);

	if (tf->flags & ATA_TFLAG_LBA48) {
		iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
		tf->hob_feature = ioread32(ioaddr->error_addr);
		tf->hob_nsect = ioread32(ioaddr->nsect_addr);
		tf->hob_lbal = ioread32(ioaddr->lbal_addr);
		tf->hob_lbam = ioread32(ioaddr->lbam_addr);
		tf->hob_lbah = ioread32(ioaddr->lbah_addr);
		iowrite32(tf->ctl, ioaddr->ctl_addr);
		ap->last_ctl = tf->ctl;
	}
}

static void sata_rcar_exec_command(struct ata_port *ap,
				   const struct ata_taskfile *tf)
{
	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);

	iowrite32(tf->command, ap->ioaddr.command_addr);
	ata_sff_pause(ap);
}

static unsigned int sata_rcar_data_xfer(struct ata_device *dev,
					      unsigned char *buf,
					      unsigned int buflen, int rw)
{
	struct ata_port *ap = dev->link->ap;
	void __iomem *data_addr = ap->ioaddr.data_addr;
	unsigned int words = buflen >> 1;

	/* Transfer multiple of 2 bytes */
	if (rw == READ)
		sata_rcar_ioread16_rep(data_addr, buf, words);
	else
		sata_rcar_iowrite16_rep(data_addr, buf, words);

	/* Transfer trailing byte, if any. */
	if (unlikely(buflen & 0x01)) {
		unsigned char pad[2] = { };

		/* Point buf to the tail of buffer */
		buf += buflen - 1;

		/*
		 * Use io*16_rep() accessors here as well to avoid pointlessly
		 * swapping bytes to and from on the big endian machines...
		 */
		if (rw == READ) {
			sata_rcar_ioread16_rep(data_addr, pad, 1);
			*buf = pad[0];
		} else {
			pad[0] = *buf;
			sata_rcar_iowrite16_rep(data_addr, pad, 1);
		}
		words++;
	}

	return words << 1;
}

static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc)
{
	int count;
	struct ata_port *ap;

	/* We only need to flush incoming data when a command was running */
	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
		return;

	ap = qc->ap;
	/* Drain up to 64K of data before we give up this recovery method */
	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) &&
			count < 65536; count += 2)
		ioread32(ap->ioaddr.data_addr);

	/* Can become DEBUG later */
	if (count)
		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
}

static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg,
			      u32 *val)
{
	if (sc_reg > SCR_ACTIVE)
		return -EINVAL;

	*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2));
	return 0;
}

static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg,
			       u32 val)
{
	if (sc_reg > SCR_ACTIVE)
		return -EINVAL;

	iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2));
	return 0;
}

static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct ata_bmdma_prd *prd = ap->bmdma_prd;
	struct scatterlist *sg;
533
	unsigned int si;
534 535

	for_each_sg(qc->sg, sg, qc->n_elem, si) {
536
		u32 addr, sg_len;
537 538 539 540 541 542 543 544

		/*
		 * Note: h/w doesn't support 64-bit, so we unconditionally
		 * truncate dma_addr_t to u32.
		 */
		addr = (u32)sg_dma_address(sg);
		sg_len = sg_dma_len(sg);

545 546 547
		prd[si].addr = cpu_to_le32(addr);
		prd[si].flags_len = cpu_to_le32(sg_len);
		VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", si, addr, sg_len);
548 549 550
	}

	/* end-of-table flag */
551
	prd[si - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
}

static void sata_rcar_qc_prep(struct ata_queued_cmd *qc)
{
	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
		return;

	sata_rcar_bmdma_fill_sg(qc);
}

static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE;
	struct sata_rcar_priv *priv = ap->host->private_data;
567 568
	void __iomem *base = priv->base;
	u32 dmactl;
569 570 571

	/* load PRD table addr. */
	mb();   /* make sure PRD table writes are visible to controller */
572
	iowrite32(ap->bmdma_prd_dma, base + ATAPI_DTB_ADR_REG);
573 574

	/* specify data direction, triple-check start bit is clear */
575
	dmactl = ioread32(base + ATAPI_CONTROL1_REG);
576 577 578 579 580 581 582
	dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP);
	if (dmactl & ATAPI_CONTROL1_START) {
		dmactl &= ~ATAPI_CONTROL1_START;
		dmactl |= ATAPI_CONTROL1_STOP;
	}
	if (!rw)
		dmactl |= ATAPI_CONTROL1_RW;
583
	iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
584 585 586 587 588 589 590 591 592

	/* issue r/w command */
	ap->ops->sff_exec_command(ap, &qc->tf);
}

static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct sata_rcar_priv *priv = ap->host->private_data;
593 594
	void __iomem *base = priv->base;
	u32 dmactl;
595 596

	/* start host DMA transaction */
597
	dmactl = ioread32(base + ATAPI_CONTROL1_REG);
598
	dmactl &= ~ATAPI_CONTROL1_STOP;
599
	dmactl |= ATAPI_CONTROL1_START;
600
	iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
601 602 603 604 605 606
}

static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct sata_rcar_priv *priv = ap->host->private_data;
607
	void __iomem *base = priv->base;
608 609 610
	u32 dmactl;

	/* force termination of DMA transfer if active */
611
	dmactl = ioread32(base + ATAPI_CONTROL1_REG);
612 613 614
	if (dmactl & ATAPI_CONTROL1_START) {
		dmactl &= ~ATAPI_CONTROL1_START;
		dmactl |= ATAPI_CONTROL1_STOP;
615
		iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
616 617 618 619 620 621 622 623 624 625
	}

	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
	ata_sff_dma_pause(ap);
}

static u8 sata_rcar_bmdma_status(struct ata_port *ap)
{
	struct sata_rcar_priv *priv = ap->host->private_data;
	u8 host_stat = 0;
626
	u32 status;
627 628 629 630 631 632 633 634 635 636 637

	status = ioread32(priv->base + ATAPI_STATUS_REG);
	if (status & ATAPI_STATUS_DEVINT)
		host_stat |= ATA_DMA_INTR;
	if (status & ATAPI_STATUS_ACT)
		host_stat |= ATA_DMA_ACTIVE;

	return host_stat;
}

static struct scsi_host_template sata_rcar_sht = {
638 639 640 641 642 643 644 645
	ATA_BASE_SHT(DRV_NAME),
	/*
	 * This controller allows transfer chunks up to 512MB which cross 64KB
	 * boundaries, therefore the DMA limits are more relaxed than standard
	 * ATA SFF.
	 */
	.sg_tablesize		= ATA_MAX_PRD,
	.dma_boundary		= SATA_RCAR_DMA_BOUNDARY,
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
};

static struct ata_port_operations sata_rcar_port_ops = {
	.inherits		= &ata_bmdma_port_ops,

	.freeze			= sata_rcar_freeze,
	.thaw			= sata_rcar_thaw,
	.softreset		= sata_rcar_softreset,

	.scr_read		= sata_rcar_scr_read,
	.scr_write		= sata_rcar_scr_write,

	.sff_dev_select		= sata_rcar_dev_select,
	.sff_set_devctl		= sata_rcar_set_devctl,
	.sff_check_status	= sata_rcar_check_status,
	.sff_check_altstatus	= sata_rcar_check_altstatus,
	.sff_tf_load		= sata_rcar_tf_load,
	.sff_tf_read		= sata_rcar_tf_read,
	.sff_exec_command	= sata_rcar_exec_command,
	.sff_data_xfer		= sata_rcar_data_xfer,
	.sff_drain_fifo		= sata_rcar_drain_fifo,

	.qc_prep		= sata_rcar_qc_prep,

	.bmdma_setup		= sata_rcar_bmdma_setup,
	.bmdma_start		= sata_rcar_bmdma_start,
	.bmdma_stop		= sata_rcar_bmdma_stop,
	.bmdma_status		= sata_rcar_bmdma_status,
};

676
static void sata_rcar_serr_interrupt(struct ata_port *ap)
677 678 679 680 681 682 683 684
{
	struct sata_rcar_priv *priv = ap->host->private_data;
	struct ata_eh_info *ehi = &ap->link.eh_info;
	int freeze = 0;
	u32 serror;

	serror = ioread32(priv->base + SCRSERR_REG);
	if (!serror)
685
		return;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	DPRINTK("SError @host_intr: 0x%x\n", serror);

	/* first, analyze and record host port events */
	ata_ehi_clear_desc(ehi);

	if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
		/* Setup a soft-reset EH action */
		ata_ehi_hotplugged(ehi);
		ata_ehi_push_desc(ehi, "%s", "hotplug");

		freeze = serror & SERR_COMM_WAKE ? 0 : 1;
	}

	/* freeze or abort */
	if (freeze)
		ata_port_freeze(ap);
	else
		ata_port_abort(ap);
}

707
static void sata_rcar_ata_interrupt(struct ata_port *ap)
708 709 710 711 712 713 714 715
{
	struct ata_queued_cmd *qc;
	int handled = 0;

	qc = ata_qc_from_tag(ap, ap->link.active_tag);
	if (qc)
		handled |= ata_bmdma_port_intr(ap, qc);

716 717 718
	/* be sure to clear ATA interrupt */
	if (!handled)
		sata_rcar_check_status(ap);
719 720 721 722 723 724
}

static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance)
{
	struct ata_host *host = dev_instance;
	struct sata_rcar_priv *priv = host->private_data;
725
	void __iomem *base = priv->base;
726
	unsigned int handled = 0;
727
	struct ata_port *ap;
728 729 730 731 732
	u32 sataintstat;
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);

733
	sataintstat = ioread32(base + SATAINTSTAT_REG);
734
	sataintstat &= SATA_RCAR_INT_MASK;
735 736 737
	if (!sataintstat)
		goto done;
	/* ack */
738
	iowrite32(~sataintstat & 0x7ff, base + SATAINTSTAT_REG);
739 740 741 742

	ap = host->ports[0];

	if (sataintstat & SATAINTSTAT_ATA)
743
		sata_rcar_ata_interrupt(ap);
744 745

	if (sataintstat & SATAINTSTAT_SERR)
746
		sata_rcar_serr_interrupt(ap);
747

748
	handled = 1;
749 750 751 752 753 754 755 756 757 758 759
done:
	spin_unlock_irqrestore(&host->lock, flags);

	return IRQ_RETVAL(handled);
}

static void sata_rcar_setup_port(struct ata_host *host)
{
	struct ata_port *ap = host->ports[0];
	struct ata_ioports *ioaddr = &ap->ioaddr;
	struct sata_rcar_priv *priv = host->private_data;
760
	void __iomem *base = priv->base;
761 762 763 764 765 766

	ap->ops		= &sata_rcar_port_ops;
	ap->pio_mask	= ATA_PIO4;
	ap->udma_mask	= ATA_UDMA6;
	ap->flags	|= ATA_FLAG_SATA;

767 768 769
	if (priv->type == RCAR_R8A7790_ES1_SATA)
		ap->flags	|= ATA_FLAG_NO_DIPM;

770 771 772
	ioaddr->cmd_addr = base + SDATA_REG;
	ioaddr->ctl_addr = base + SSDEVCON_REG;
	ioaddr->scr_addr = base + SCRSSTS_REG;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	ioaddr->altstatus_addr = ioaddr->ctl_addr;

	ioaddr->data_addr	= ioaddr->cmd_addr + (ATA_REG_DATA << 2);
	ioaddr->error_addr	= ioaddr->cmd_addr + (ATA_REG_ERR << 2);
	ioaddr->feature_addr	= ioaddr->cmd_addr + (ATA_REG_FEATURE << 2);
	ioaddr->nsect_addr	= ioaddr->cmd_addr + (ATA_REG_NSECT << 2);
	ioaddr->lbal_addr	= ioaddr->cmd_addr + (ATA_REG_LBAL << 2);
	ioaddr->lbam_addr	= ioaddr->cmd_addr + (ATA_REG_LBAM << 2);
	ioaddr->lbah_addr	= ioaddr->cmd_addr + (ATA_REG_LBAH << 2);
	ioaddr->device_addr	= ioaddr->cmd_addr + (ATA_REG_DEVICE << 2);
	ioaddr->status_addr	= ioaddr->cmd_addr + (ATA_REG_STATUS << 2);
	ioaddr->command_addr	= ioaddr->cmd_addr + (ATA_REG_CMD << 2);
}

static void sata_rcar_init_controller(struct ata_host *host)
{
	struct sata_rcar_priv *priv = host->private_data;
790
	void __iomem *base = priv->base;
791 792 793
	u32 val;

	/* reset and setup phy */
794 795 796 797 798
	switch (priv->type) {
	case RCAR_GEN1_SATA:
		sata_rcar_gen1_phy_init(priv);
		break;
	case RCAR_GEN2_SATA:
799
	case RCAR_R8A7790_ES1_SATA:
800 801 802 803 804 805
		sata_rcar_gen2_phy_init(priv);
		break;
	default:
		dev_warn(host->dev, "SATA phy is not initialized\n");
		break;
	}
806 807

	/* SATA-IP reset state */
808
	val = ioread32(base + ATAPI_CONTROL1_REG);
809
	val |= ATAPI_CONTROL1_RESET;
810
	iowrite32(val, base + ATAPI_CONTROL1_REG);
811 812

	/* ISM mode, PRD mode, DTEND flag at bit 0 */
813
	val = ioread32(base + ATAPI_CONTROL1_REG);
814 815 816
	val |= ATAPI_CONTROL1_ISM;
	val |= ATAPI_CONTROL1_DESE;
	val |= ATAPI_CONTROL1_DTA32M;
817
	iowrite32(val, base + ATAPI_CONTROL1_REG);
818 819

	/* Release the SATA-IP from the reset state */
820
	val = ioread32(base + ATAPI_CONTROL1_REG);
821
	val &= ~ATAPI_CONTROL1_RESET;
822
	iowrite32(val, base + ATAPI_CONTROL1_REG);
823 824

	/* ack and mask */
825 826
	iowrite32(0, base + SATAINTSTAT_REG);
	iowrite32(0x7ff, base + SATAINTMASK_REG);
827
	/* enable interrupts */
828
	iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG);
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844
static struct of_device_id sata_rcar_match[] = {
	{
		/* Deprecated by "renesas,sata-r8a7779" */
		.compatible = "renesas,rcar-sata",
		.data = (void *)RCAR_GEN1_SATA,
	},
	{
		.compatible = "renesas,sata-r8a7779",
		.data = (void *)RCAR_GEN1_SATA,
	},
	{
		.compatible = "renesas,sata-r8a7790",
		.data = (void *)RCAR_GEN2_SATA
	},
845 846 847 848
	{
		.compatible = "renesas,sata-r8a7790-es1",
		.data = (void *)RCAR_R8A7790_ES1_SATA
	},
849 850 851 852
	{
		.compatible = "renesas,sata-r8a7791",
		.data = (void *)RCAR_GEN2_SATA
	},
853 854 855 856
	{
		.compatible = "renesas,sata-r8a7793",
		.data = (void *)RCAR_GEN2_SATA
	},
857 858 859 860
	{
		.compatible = "renesas,sata-r8a7795",
		.data = (void *)RCAR_GEN2_SATA
	},
861 862 863 864
	{ },
};
MODULE_DEVICE_TABLE(of, sata_rcar_match);

865 866
static int sata_rcar_probe(struct platform_device *pdev)
{
867
	const struct of_device_id *of_id;
868 869 870 871 872 873 874
	struct ata_host *host;
	struct sata_rcar_priv *priv;
	struct resource *mem;
	int irq;
	int ret = 0;

	irq = platform_get_irq(pdev, 0);
875 876 877
	if (irq < 0)
		return irq;
	if (!irq)
878 879 880 881 882 883 884
		return -EINVAL;

	priv = devm_kzalloc(&pdev->dev, sizeof(struct sata_rcar_priv),
			   GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

885
	of_id = of_match_device(sata_rcar_match, &pdev->dev);
886 887
	if (!of_id)
		return -ENODEV;
888

889
	priv->type = (enum sata_rcar_type)of_id->data;
890 891 892 893 894
	priv->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(priv->clk)) {
		dev_err(&pdev->dev, "failed to get access to sata clock\n");
		return PTR_ERR(priv->clk);
	}
895 896 897 898

	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;
899 900 901 902 903 904 905 906 907 908

	host = ata_host_alloc(&pdev->dev, 1);
	if (!host) {
		dev_err(&pdev->dev, "ata_host_alloc failed\n");
		ret = -ENOMEM;
		goto cleanup;
	}

	host->private_data = priv;

909
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
910 911 912
	priv->base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(priv->base)) {
		ret = PTR_ERR(priv->base);
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		goto cleanup;
	}

	/* setup port */
	sata_rcar_setup_port(host);

	/* initialize host controller */
	sata_rcar_init_controller(host);

	ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0,
				&sata_rcar_sht);
	if (!ret)
		return 0;

cleanup:
928
	clk_disable_unprepare(priv->clk);
929 930 931 932 933 934

	return ret;
}

static int sata_rcar_remove(struct platform_device *pdev)
{
935
	struct ata_host *host = platform_get_drvdata(pdev);
936
	struct sata_rcar_priv *priv = host->private_data;
937
	void __iomem *base = priv->base;
938 939 940 941

	ata_host_detach(host);

	/* disable interrupts */
942
	iowrite32(0, base + ATAPI_INT_ENABLE_REG);
943
	/* ack and mask */
944 945
	iowrite32(0, base + SATAINTSTAT_REG);
	iowrite32(0x7ff, base + SATAINTMASK_REG);
946

947
	clk_disable_unprepare(priv->clk);
948 949 950 951

	return 0;
}

952
#ifdef CONFIG_PM_SLEEP
953 954 955 956
static int sata_rcar_suspend(struct device *dev)
{
	struct ata_host *host = dev_get_drvdata(dev);
	struct sata_rcar_priv *priv = host->private_data;
957
	void __iomem *base = priv->base;
958 959 960 961 962
	int ret;

	ret = ata_host_suspend(host, PMSG_SUSPEND);
	if (!ret) {
		/* disable interrupts */
963
		iowrite32(0, base + ATAPI_INT_ENABLE_REG);
964
		/* mask */
965
		iowrite32(0x7ff, base + SATAINTMASK_REG);
966

967
		clk_disable_unprepare(priv->clk);
968 969 970 971 972 973 974 975 976
	}

	return ret;
}

static int sata_rcar_resume(struct device *dev)
{
	struct ata_host *host = dev_get_drvdata(dev);
	struct sata_rcar_priv *priv = host->private_data;
977
	void __iomem *base = priv->base;
978
	int ret;
979

980 981 982
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;
983 984

	/* ack and mask */
985 986
	iowrite32(0, base + SATAINTSTAT_REG);
	iowrite32(0x7ff, base + SATAINTMASK_REG);
987
	/* enable interrupts */
988
	iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG);
989 990 991 992 993 994

	ata_host_resume(host);

	return 0;
}

995 996 997 998
static int sata_rcar_restore(struct device *dev)
{
	struct ata_host *host = dev_get_drvdata(dev);
	struct sata_rcar_priv *priv = host->private_data;
999
	int ret;
1000

1001 1002 1003
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	sata_rcar_setup_port(host);

	/* initialize host controller */
	sata_rcar_init_controller(host);

	ata_host_resume(host);

	return 0;
}

1015 1016 1017
static const struct dev_pm_ops sata_rcar_pm_ops = {
	.suspend	= sata_rcar_suspend,
	.resume		= sata_rcar_resume,
1018 1019 1020 1021
	.freeze		= sata_rcar_suspend,
	.thaw		= sata_rcar_resume,
	.poweroff	= sata_rcar_suspend,
	.restore	= sata_rcar_restore,
1022 1023 1024 1025 1026 1027 1028 1029 1030
};
#endif

static struct platform_driver sata_rcar_driver = {
	.probe		= sata_rcar_probe,
	.remove		= sata_rcar_remove,
	.driver = {
		.name		= DRV_NAME,
		.of_match_table	= sata_rcar_match,
1031
#ifdef CONFIG_PM_SLEEP
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		.pm		= &sata_rcar_pm_ops,
#endif
	},
};

module_platform_driver(sata_rcar_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");