intel_lrc.c 152 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_perf.h"
138
#include "i915_trace.h"
139
#include "i915_vgpu.h"
140
#include "intel_context.h"
141
#include "intel_engine_pm.h"
142
#include "intel_gt.h"
143
#include "intel_gt_pm.h"
144
#include "intel_gt_requests.h"
145
#include "intel_lrc_reg.h"
146
#include "intel_mocs.h"
147
#include "intel_reset.h"
148
#include "intel_ring.h"
149
#include "intel_workarounds.h"
150

151 152 153 154 155 156 157 158 159 160 161 162 163
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
164

165
#define GEN8_CTX_STATUS_COMPLETED_MASK \
166
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
167

168 169
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

170 171 172 173 174 175 176
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID		0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)

177 178
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

205 206 207 208 209 210 211 212 213 214 215 216
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

217 218 219 220 221 222 223 224 225 226 227
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

228 229 230
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine);

231
static void execlists_init_reg_state(u32 *reg_state,
232 233 234 235
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
				     bool close);
236 237
static void
__execlists_update_reg_state(const struct intel_context *ce,
238 239
			     const struct intel_engine_cs *engine,
			     u32 head);
240

241 242 243 244 245 246 247 248 249 250 251
static u32 intel_context_get_runtime(const struct intel_context *ce)
{
	/*
	 * We can use either ppHWSP[16] which is recorded before the context
	 * switch (and so excludes the cost of context switches) or use the
	 * value from the context image itself, which is saved/restored earlier
	 * and so includes the cost of the save.
	 */
	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
}

252 253
static void mark_eio(struct i915_request *rq)
{
254 255 256 257 258
	if (i915_request_completed(rq))
		return;

	GEM_BUG_ON(i915_request_signaled(rq));

259
	i915_request_set_error_once(rq, -EIO);
260 261 262
	i915_request_mark_complete(rq);
}

263 264
static struct i915_request *
active_request(const struct intel_timeline * const tl, struct i915_request *rq)
265
{
266
	struct i915_request *active = rq;
267 268

	rcu_read_lock();
269
	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
270 271 272 273 274 275 276 277 278 279
		if (i915_request_completed(rq))
			break;

		active = rq;
	}
	rcu_read_unlock();

	return active;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
296 297
	if (state)
		wmb();
298 299
}

300 301 302 303 304 305 306
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
307
	return READ_ONCE(rq->sched.attr.priority);
308 309
}

310 311
static int effective_prio(const struct i915_request *rq)
{
312 313
	int prio = rq_prio(rq);

314 315 316 317 318 319 320 321 322 323 324
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

325 326
	/*
	 * On unwinding the active request, we give it a priority bump
327 328 329
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
330
	 */
331 332
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
333

334
	/* Restrict mere WAIT boosts from triggering preemption */
335
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
336
	return prio | __NO_PREEMPTION;
337 338
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

356
static inline bool need_preempt(const struct intel_engine_cs *engine,
357 358
				const struct i915_request *rq,
				struct rb_node *rb)
359
{
360
	int last_prio;
361

362 363 364
	if (!intel_engine_has_semaphores(engine))
		return false;

365 366 367 368 369 370 371 372 373 374 375
	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
376 377 378 379 380 381
	 *
	 * More naturally we would write
	 *      prio >= max(0, last);
	 * except that we wish to prevent triggering preemption at the same
	 * priority level: the task that is running should remain running
	 * to preserve FIFO ordering of dependencies.
382
	 */
383 384
	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
	if (engine->execlists.queue_priority_hint <= last_prio)
385 386 387 388 389 390
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
391 392
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
393 394
		return true;

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

414 415 416 417 418 419 420 421 422 423 424 425 426 427
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
428
assert_priority_queue(const struct i915_request *prev,
429
		      const struct i915_request *next)
430
{
431 432 433 434 435 436 437
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
438
	if (i915_request_is_active(prev))
439 440 441
		return true;

	return rq_prio(prev) >= rq_prio(next);
442 443
}

444
/*
445 446 447 448 449
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
450 451
 * This is what a descriptor looks like, from LSB to MSB::
 *
452
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
453
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
454
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
455 456
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
457 458 459 460 461 462 463 464 465 466 467 468
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
469
 */
470 471
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
472
{
473
	u64 desc;
474

475 476 477 478 479 480 481 482
	desc = INTEL_LEGACY_32B_CONTEXT;
	if (i915_vm_is_4lvl(ce->vm))
		desc = INTEL_LEGACY_64B_CONTEXT;
	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;

	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
	if (IS_GEN(engine->i915, 8))
		desc |= GEN8_CTX_L3LLC_COHERENT;
483

484
	desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */
485 486 487 488 489
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
490
	if (INTEL_GEN(engine->i915) >= 11) {
491 492 493 494 495 496
		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	}
497

498
	return desc;
499 500
}

501 502 503 504 505 506
static inline unsigned int dword_in_page(void *addr)
{
	return offset_in_page(addr) / sizeof(u32);
}

static void set_offsets(u32 *regs,
507
			const u8 *data,
508 509
			const struct intel_engine_cs *engine,
			bool clear)
510
#define NOP(x) (BIT(7) | (x))
511
#define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
512 513 514 515 516
#define POSTED BIT(0)
#define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
#define REG16(x) \
	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
	(((x) >> 2) & 0x7f)
517
#define END(x) 0, (x)
518 519 520 521 522 523 524
{
	const u32 base = engine->mmio_base;

	while (*data) {
		u8 count, flags;

		if (*data & BIT(7)) { /* skip */
525 526 527 528
			count = *data++ & ~BIT(7);
			if (clear)
				memset32(regs, MI_NOOP, count);
			regs += count;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
			continue;
		}

		count = *data & 0x3f;
		flags = *data >> 6;
		data++;

		*regs = MI_LOAD_REGISTER_IMM(count);
		if (flags & POSTED)
			*regs |= MI_LRI_FORCE_POSTED;
		if (INTEL_GEN(engine->i915) >= 11)
			*regs |= MI_LRI_CS_MMIO;
		regs++;

		GEM_BUG_ON(!count);
		do {
			u32 offset = 0;
			u8 v;

			do {
				v = *data++;
				offset <<= 7;
				offset |= v & ~BIT(7);
			} while (v & BIT(7));

554 555 556
			regs[0] = base + (offset << 2);
			if (clear)
				regs[1] = 0;
557 558 559 560
			regs += 2;
		} while (--count);
	}

561 562 563 564 565 566 567 568 569 570 571 572
	if (clear) {
		u8 count = *++data;

		/* Clear past the tail for HW access */
		GEM_BUG_ON(dword_in_page(regs) > count);
		memset32(regs, MI_NOOP, count - dword_in_page(regs));

		/* Close the batch; used mainly by live_lrc_layout() */
		*regs = MI_BATCH_BUFFER_END;
		if (INTEL_GEN(engine->i915) >= 10)
			*regs |= BIT(0);
	}
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
}

static const u8 gen8_xcs_offsets[] = {
	NOP(1),
	LRI(11, 0),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),

	NOP(9),
	LRI(9, 0),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(2, 0),
	REG16(0x200),
	REG(0x028),

607
	END(80)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
};

static const u8 gen9_xcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, POSTED),
	REG16(0x200),

	NOP(13),
	LRI(44, POSTED),
	REG(0x028),
	REG(0x09c),
	REG(0x0c0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x068),

691
	END(176)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
};

static const u8 gen12_xcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

723
	END(80)
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
};

static const u8 gen8_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0x0c8),

760
	END(80)
761 762
};

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static const u8 gen9_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x34),
	REG(0x30),
	REG(0x38),
	REG(0x3c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0xc8),

	NOP(13),
	LRI(44, POSTED),
	REG(0x28),
	REG(0x9c),
	REG(0xc0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x68),

844
	END(176)
845 846
};

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static const u8 gen11_rcs_offsets[] = {
	NOP(1),
	LRI(15, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),

	NOP(1),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(1, POSTED),
	REG(0x1b0),

	NOP(10),
	LRI(1, 0),
	REG(0x0c8),

885
	END(80)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
};

static const u8 gen12_rcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(3, POSTED),
	REG(0x1b0),
	REG16(0x5a8),
	REG16(0x5ac),

	NOP(6),
	LRI(1, 0),
	REG(0x0c8),

926
	END(80)
927 928 929 930 931 932 933 934 935 936
};

#undef END
#undef REG16
#undef REG
#undef LRI
#undef NOP

static const u8 *reg_offsets(const struct intel_engine_cs *engine)
{
937 938 939 940 941 942 943 944 945
	/*
	 * The gen12+ lists only have the registers we program in the basic
	 * default state. We rely on the context image using relative
	 * addressing to automatic fixup the register state between the
	 * physical engines for virtual engine.
	 */
	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
		   !intel_engine_has_relative_mmio(engine));

946 947 948 949 950
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_rcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 11)
			return gen11_rcs_offsets;
951 952
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_rcs_offsets;
953 954 955 956 957 958 959 960 961 962 963 964
		else
			return gen8_rcs_offsets;
	} else {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_xcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_xcs_offsets;
		else
			return gen8_xcs_offsets;
	}
}

965
static struct i915_request *
966
__unwind_incomplete_requests(struct intel_engine_cs *engine)
967
{
968
	struct i915_request *rq, *rn, *active = NULL;
969
	struct list_head *uninitialized_var(pl);
970
	int prio = I915_PRIORITY_INVALID;
971

972
	lockdep_assert_held(&engine->active.lock);
973 974

	list_for_each_entry_safe_reverse(rq, rn,
975 976
					 &engine->active.requests,
					 sched.link) {
977
		if (i915_request_completed(rq))
978
			continue; /* XXX */
979

980
		__i915_request_unsubmit(rq);
981

982 983 984 985 986 987 988
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
989
		if (likely(rq->execution_mask == engine->mask)) {
990 991 992 993 994 995
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
996

997
			list_move(&rq->sched.link, pl);
998 999
			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

1000 1001
			active = rq;
		} else {
1002
			struct intel_engine_cs *owner = rq->context->engine;
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012
			/*
			 * Decouple the virtual breadcrumb before moving it
			 * back to the virtual engine -- we don't want the
			 * request to complete in the background and try
			 * and cancel the breadcrumb on the virtual engine
			 * (instead of the old engine where it is linked)!
			 */
			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
				     &rq->fence.flags)) {
1013 1014
				spin_lock_nested(&rq->lock,
						 SINGLE_DEPTH_NESTING);
1015 1016 1017
				i915_request_cancel_breadcrumb(rq);
				spin_unlock(&rq->lock);
			}
1018
			WRITE_ONCE(rq->engine, owner);
1019 1020 1021
			owner->submit_request(rq);
			active = NULL;
		}
1022 1023
	}

1024
	return active;
1025 1026
}

1027
struct i915_request *
1028 1029 1030 1031 1032
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

1033
	return __unwind_incomplete_requests(engine);
1034 1035
}

1036
static inline void
1037
execlists_context_status_change(struct i915_request *rq, unsigned long status)
1038
{
1039 1040 1041 1042 1043 1044
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
1045

1046 1047
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

static void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
{
	if (INTEL_GEN(engine->i915) >= 12)
		return 0x60;
	else if (INTEL_GEN(engine->i915) >= 9)
		return 0x54;
	else if (engine->class == RENDER_CLASS)
		return 0x58;
	else
		return -1;
}

static void
execlists_check_context(const struct intel_context *ce,
			const struct intel_engine_cs *engine)
{
	const struct intel_ring *ring = ce->ring;
	u32 *regs = ce->lrc_reg_state;
	bool valid = true;
	int x;

	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_START],
		       i915_ggtt_offset(ring->vma));
		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
		valid = false;
	}

	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_CTL],
		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
		valid = false;
	}

	x = lrc_ring_mi_mode(engine);
	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
		       engine->name, regs[x + 1]);
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
		valid = false;
	}

	WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static void restore_default_state(struct intel_context *ce,
				  struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	if (engine->pinned_default_state)
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);

	execlists_init_reg_state(regs, ce, engine, ce->ring, false);
1168
	ce->runtime.last = intel_context_get_runtime(ce);
1169 1170 1171 1172 1173
}

static void reset_active(struct i915_request *rq,
			 struct intel_engine_cs *engine)
{
1174
	struct intel_context * const ce = rq->context;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	u32 head;

	/*
	 * The executing context has been cancelled. We want to prevent
	 * further execution along this context and propagate the error on
	 * to anything depending on its results.
	 *
	 * In __i915_request_submit(), we apply the -EIO and remove the
	 * requests' payloads for any banned requests. But first, we must
	 * rewind the context back to the start of the incomplete request so
	 * that we do not jump back into the middle of the batch.
	 *
	 * We preserve the breadcrumbs and semaphores of the incomplete
	 * requests so that inter-timeline dependencies (i.e other timelines)
	 * remain correctly ordered. And we defer to __i915_request_submit()
	 * so that all asynchronous waits are correctly handled.
	 */
1192 1193
	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
		     rq->fence.context, rq->fence.seqno);
1194 1195 1196 1197 1198 1199

	/* On resubmission of the active request, payload will be scrubbed */
	if (i915_request_completed(rq))
		head = rq->tail;
	else
		head = active_request(ce->timeline, rq)->head;
1200
	head = intel_ring_wrap(ce->ring, head);
1201 1202 1203

	/* Scrub the context image to prevent replaying the previous batch */
	restore_default_state(ce, engine);
1204
	__execlists_update_reg_state(ce, engine, head);
1205 1206 1207 1208 1209

	/* We've switched away, so this should be a no-op, but intent matters */
	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
}

1210 1211 1212 1213 1214 1215 1216 1217
static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
{
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
	ce->runtime.num_underflow += dt < 0;
	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
#endif
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static void intel_context_update_runtime(struct intel_context *ce)
{
	u32 old;
	s32 dt;

	if (intel_context_is_barrier(ce))
		return;

	old = ce->runtime.last;
	ce->runtime.last = intel_context_get_runtime(ce);
	dt = ce->runtime.last - old;

	if (unlikely(dt <= 0)) {
		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
			 old, ce->runtime.last, dt);
1233
		st_update_runtime_underflow(ce, dt);
1234 1235 1236 1237 1238 1239 1240
		return;
	}

	ewma_runtime_add(&ce->runtime.avg, dt);
	ce->runtime.total += dt;
}

1241 1242 1243 1244
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
	struct intel_engine_cs * const engine = rq->engine;
1245
	struct intel_context * const ce = rq->context;
1246 1247 1248

	intel_context_get(ce);

1249
	if (unlikely(intel_context_is_banned(ce)))
1250 1251
		reset_active(rq, engine);

1252
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1253
		execlists_check_context(ce, engine);
1254

1255
	ce->lrc_desc &= ~GENMASK_ULL(47, 37);
1256 1257 1258 1259 1260 1261
	if (ce->tag) {
		/* Use a fixed tag for OA and friends */
		ce->lrc_desc |= (u64)ce->tag << 32;
	} else {
		/* We don't need a strict matching tag, just different values */
		ce->lrc_desc |=
1262
			(u64)(++engine->context_tag % NUM_CONTEXT_TAG) <<
1263 1264 1265 1266
			GEN11_SW_CTX_ID_SHIFT;
		BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID);
	}

1267
	__intel_gt_pm_get(engine->gt);
1268 1269 1270 1271 1272 1273
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
	intel_engine_context_in(engine);

	return engine;
}

1274 1275
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
1276
{
1277
	struct intel_context * const ce = rq->context;
1278
	struct intel_engine_cs *old;
1279

1280
	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1281
	trace_i915_request_in(rq, idx);
1282

1283 1284 1285 1286 1287 1288 1289
	old = READ_ONCE(ce->inflight);
	do {
		if (!old) {
			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
			break;
		}
	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1290 1291 1292

	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
	return i915_request_get(rq);
1293 1294
}

1295
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1296
{
1297
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1298 1299 1300 1301 1302 1303
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

1304
static inline void
1305 1306
__execlists_schedule_out(struct i915_request *rq,
			 struct intel_engine_cs * const engine)
1307
{
1308
	struct intel_context * const ce = rq->context;
1309

1310 1311 1312 1313 1314 1315
	/*
	 * NB process_csb() is not under the engine->active.lock and hence
	 * schedule_out can race with schedule_in meaning that we should
	 * refrain from doing non-trivial work here.
	 */

1316 1317 1318 1319
	/*
	 * If we have just completed this context, the engine may now be
	 * idle and we want to re-enter powersaving.
	 */
1320
	if (list_is_last_rcu(&rq->link, &ce->timeline->requests) &&
1321 1322 1323
	    i915_request_completed(rq))
		intel_engine_add_retire(engine, ce->timeline);

1324
	intel_context_update_runtime(ce);
1325 1326
	intel_engine_context_out(engine);
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1327
	intel_gt_pm_put_async(engine->gt);
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * If this is part of a virtual engine, its next request may
	 * have been blocked waiting for access to the active context.
	 * We have to kick all the siblings again in case we need to
	 * switch (e.g. the next request is not runnable on this
	 * engine). Hopefully, we will already have submitted the next
	 * request before the tasklet runs and do not need to rebuild
	 * each virtual tree and kick everyone again.
	 */
	if (ce->engine != engine)
		kick_siblings(rq, ce);
1340

1341 1342
	intel_context_put(ce);
}
1343

1344 1345 1346
static inline void
execlists_schedule_out(struct i915_request *rq)
{
1347
	struct intel_context * const ce = rq->context;
1348
	struct intel_engine_cs *cur, *old;
1349

1350 1351 1352 1353 1354 1355 1356 1357
	trace_i915_request_out(rq);

	old = READ_ONCE(ce->inflight);
	do
		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
	while (!try_cmpxchg(&ce->inflight, &old, cur));
	if (!cur)
		__execlists_schedule_out(rq, old);
1358 1359

	i915_request_put(rq);
1360 1361
}

1362
static u64 execlists_update_context(struct i915_request *rq)
1363
{
1364
	struct intel_context *ce = rq->context;
1365
	u64 desc = ce->lrc_desc;
1366
	u32 tail, prev;
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * WaIdleLiteRestore:bdw,skl
	 *
	 * We should never submit the context with the same RING_TAIL twice
	 * just in case we submit an empty ring, which confuses the HW.
	 *
	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
	 * the normal request to be able to always advance the RING_TAIL on
	 * subsequent resubmissions (for lite restore). Should that fail us,
	 * and we try and submit the same tail again, force the context
	 * reload.
1379 1380 1381 1382 1383
	 *
	 * If we need to return to a preempted context, we need to skip the
	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
	 * HW has a tendency to ignore us rewinding the TAIL to the end of
	 * an earlier request.
1384 1385
	 */
	tail = intel_ring_set_tail(rq->ring, rq->tail);
1386 1387
	prev = ce->lrc_reg_state[CTX_RING_TAIL];
	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1388 1389 1390
		desc |= CTX_DESC_FORCE_RESTORE;
	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
	rq->tail = rq->wa_tail;
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
	 */
1402
	wmb();
1403

1404
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
1405
	return desc;
1406 1407
}

1408
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
1409
{
1410 1411 1412 1413 1414 1415 1416
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static __maybe_unused char *
dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
{
	if (!rq)
		return "";

	snprintf(buf, buflen, "%s%llx:%lld%s prio %d",
		 prefix,
		 rq->fence.context, rq->fence.seqno,
		 i915_request_completed(rq) ? "!" :
		 i915_request_started(rq) ? "*" :
		 "",
		 rq_prio(rq));

	return buf;
}

1436 1437 1438 1439 1440 1441 1442
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
1443
	char __maybe_unused p0[40], p1[40];
1444

1445 1446 1447
	if (!ports[0])
		return;

1448 1449 1450
	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
		     dump_port(p0, sizeof(p0), "", ports[0]),
		     dump_port(p1, sizeof(p1), ", ", ports[1]));
1451 1452
}

1453 1454 1455 1456 1457 1458
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1459 1460 1461 1462 1463 1464
static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;
1465
	bool sentinel = false;
1466 1467 1468

	trace_ports(execlists, msg, execlists->pending);

1469 1470 1471 1472
	/* We may be messing around with the lists during reset, lalala */
	if (reset_in_progress(execlists))
		return true;

1473 1474
	if (!execlists->pending[0]) {
		GEM_TRACE_ERR("Nothing pending for promotion!\n");
1475
		return false;
1476
	}
1477

1478 1479 1480
	if (execlists->pending[execlists_num_ports(execlists)]) {
		GEM_TRACE_ERR("Excess pending[%d] for promotion!\n",
			      execlists_num_ports(execlists));
1481
		return false;
1482
	}
1483 1484

	for (port = execlists->pending; (rq = *port); port++) {
1485 1486 1487
		unsigned long flags;
		bool ok = true;

1488 1489 1490
		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
		GEM_BUG_ON(!i915_request_is_active(rq));

1491
		if (ce == rq->context) {
1492 1493
			GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1494
				      port - execlists->pending);
1495
			return false;
1496
		}
1497
		ce = rq->context;
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		/*
		 * Sentinels are supposed to be lonely so they flush the
		 * current exection off the HW. Check that they are the
		 * only request in the pending submission.
		 */
		if (sentinel) {
			GEM_TRACE_ERR("context:%llx after sentinel in pending[%zd]\n",
				      ce->timeline->fence_context,
				      port - execlists->pending);
			return false;
		}

		sentinel = i915_request_has_sentinel(rq);
		if (sentinel && port != execlists->pending) {
			GEM_TRACE_ERR("sentinel context:%llx not in prime position[%zd]\n",
				      ce->timeline->fence_context,
				      port - execlists->pending);
			return false;
		}

1519
		/* Hold tightly onto the lock to prevent concurrent retires! */
1520 1521
		if (!spin_trylock_irqsave(&rq->lock, flags))
			continue;
1522

1523
		if (i915_request_completed(rq))
1524
			goto unlock;
1525

1526 1527
		if (i915_active_is_idle(&ce->active) &&
		    !intel_context_is_barrier(ce)) {
1528 1529
			GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1530
				      port - execlists->pending);
1531 1532
			ok = false;
			goto unlock;
1533 1534 1535
		}

		if (!i915_vma_is_pinned(ce->state)) {
1536 1537
			GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1538
				      port - execlists->pending);
1539 1540
			ok = false;
			goto unlock;
1541
		}
1542

1543
		if (!i915_vma_is_pinned(ce->ring->vma)) {
1544 1545
			GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1546
				      port - execlists->pending);
1547 1548
			ok = false;
			goto unlock;
1549
		}
1550 1551 1552 1553 1554

unlock:
		spin_unlock_irqrestore(&rq->lock, flags);
		if (!ok)
			return false;
1555 1556 1557 1558 1559
	}

	return ce;
}

1560
static void execlists_submit_ports(struct intel_engine_cs *engine)
1561
{
1562
	struct intel_engine_execlists *execlists = &engine->execlists;
1563
	unsigned int n;
1564

1565 1566
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

1567 1568 1569 1570 1571 1572 1573 1574
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
1575
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1576

1577 1578 1579 1580 1581 1582 1583
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
1584
		struct i915_request *rq = execlists->pending[n];
1585

1586 1587 1588
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
1589
	}
1590 1591 1592 1593

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1594 1595
}

1596
static bool ctx_single_port_submission(const struct intel_context *ce)
1597
{
1598
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1599
		intel_context_force_single_submission(ce));
1600
}
1601

1602 1603
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
1604 1605 1606
{
	if (prev != next)
		return false;
1607

1608 1609
	if (ctx_single_port_submission(prev))
		return false;
1610

1611
	return true;
1612 1613
}

1614 1615 1616 1617 1618
static unsigned long i915_request_flags(const struct i915_request *rq)
{
	return READ_ONCE(rq->fence.flags);
}

1619 1620 1621
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
1622
	GEM_BUG_ON(prev == next);
1623 1624
	GEM_BUG_ON(!assert_priority_queue(prev, next));

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * We do not submit known completed requests. Therefore if the next
	 * request is already completed, we can pretend to merge it in
	 * with the previous context (and we will skip updating the ELSP
	 * and tracking). Thus hopefully keeping the ELSP full with active
	 * contexts, despite the best efforts of preempt-to-busy to confuse
	 * us.
	 */
	if (i915_request_completed(next))
		return true;

1636
	if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) &
1637 1638
		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
		      BIT(I915_FENCE_FLAG_SENTINEL))))
1639 1640
		return false;

1641
	if (!can_merge_ctx(prev->context, next->context))
1642 1643
		return false;

1644
	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
1645 1646 1647
	return true;
}

1648 1649 1650
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
1651
	set_offsets(regs, reg_offsets(engine), engine, false);
1652 1653 1654 1655 1656 1657
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
1658
	const struct intel_engine_cs *inflight;
1659

1660 1661 1662
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
1672
	inflight = intel_context_inflight(&ve->context);
1673
	if (inflight && inflight != engine)
1674 1675 1676 1677 1678 1679
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
1680
				     struct i915_request *rq)
1681 1682 1683 1684 1685 1686 1687
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		list_del_init(&ve->context.signal_link);

		/*
		 * We cannot acquire the new engine->breadcrumbs.irq_lock
		 * (as we are holding a breadcrumbs.irq_lock already),
		 * so attach this request to the signaler on submission.
		 * The queued irq_work will occur when we finally drop
		 * the engine->active.lock after dequeue.
		 */
		set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags);

		/* Also transfer the pending irq_work for the old breadcrumb. */
		intel_engine_signal_breadcrumbs(rq->engine);
1701 1702 1703 1704
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

1705 1706 1707 1708 1709
#define for_each_waiter(p__, rq__) \
	list_for_each_entry_lockless(p__, \
				     &(rq__)->sched.waiters_list, \
				     wait_link)

1710
#define for_each_signaler(p__, rq__) \
1711 1712 1713
	list_for_each_entry_rcu(p__, \
				&(rq__)->sched.signalers_list, \
				signal_link)
1714

1715
static void defer_request(struct i915_request *rq, struct list_head * const pl)
1716
{
1717
	LIST_HEAD(list);
1718 1719 1720 1721 1722 1723 1724 1725

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
1726 1727
	do {
		struct i915_dependency *p;
1728

1729 1730
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
1731

1732
		for_each_waiter(p, rq) {
1733 1734
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
1735

1736 1737 1738
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
1739

1740 1741 1742
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
1743

1744
			GEM_BUG_ON(i915_request_is_active(w));
1745 1746
			if (!i915_request_is_ready(w))
				continue;
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
1771 1772
need_timeslice(const struct intel_engine_cs *engine,
	       const struct i915_request *rq)
1773 1774 1775
{
	int hint;

1776
	if (!intel_engine_has_timeslices(engine))
1777 1778
		return false;

1779 1780 1781
	hint = engine->execlists.queue_priority_hint;
	if (!list_is_last(&rq->sched.link, &engine->active.requests))
		hint = max(hint, rq_prio(list_next_entry(rq, sched.link)));
1782

1783
	return hint >= effective_prio(rq);
1784 1785
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static bool
timeslice_yield(const struct intel_engine_execlists *el,
		const struct i915_request *rq)
{
	/*
	 * Once bitten, forever smitten!
	 *
	 * If the active context ever busy-waited on a semaphore,
	 * it will be treated as a hog until the end of its timeslice (i.e.
	 * until it is scheduled out and replaced by a new submission,
	 * possibly even its own lite-restore). The HW only sends an interrupt
	 * on the first miss, and we do know if that semaphore has been
	 * signaled, or even if it is now stuck on another semaphore. Play
	 * safe, yield if it might be stuck -- it will be given a fresh
	 * timeslice in the near future.
	 */
	return upper_32_bits(rq->context->lrc_desc) == READ_ONCE(el->yield);
}

static bool
timeslice_expired(const struct intel_engine_execlists *el,
		  const struct i915_request *rq)
{
	return timer_expired(&el->timer) || timeslice_yield(el, rq);
}

1812 1813 1814 1815 1816 1817 1818 1819 1820
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return INT_MIN;

	return rq_prio(list_next_entry(rq, sched.link));
}

1821 1822 1823 1824 1825 1826
static inline unsigned long
timeslice(const struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->props.timeslice_duration_ms);
}

1827
static unsigned long active_timeslice(const struct intel_engine_cs *engine)
1828
{
1829 1830
	const struct intel_engine_execlists *execlists = &engine->execlists;
	const struct i915_request *rq = *execlists->active;
1831

1832
	if (!rq || i915_request_completed(rq))
1833
		return 0;
1834

1835
	if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq))
1836 1837 1838 1839 1840 1841 1842
		return 0;

	return timeslice(engine);
}

static void set_timeslice(struct intel_engine_cs *engine)
{
1843 1844
	unsigned long duration;

1845 1846 1847
	if (!intel_engine_has_timeslices(engine))
		return;

1848 1849 1850 1851
	duration = active_timeslice(engine);
	ENGINE_TRACE(engine, "bump timeslicing, interval:%lu", duration);

	set_timer_ms(&engine->execlists.timer, duration);
1852 1853
}

1854 1855 1856
static void start_timeslice(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists *execlists = &engine->execlists;
1857 1858 1859 1860 1861
	const int prio = queue_prio(execlists);
	unsigned long duration;

	if (!intel_engine_has_timeslices(engine))
		return;
1862

1863 1864 1865
	WRITE_ONCE(execlists->switch_priority_hint, prio);
	if (prio == INT_MIN)
		return;
1866 1867 1868 1869

	if (timer_pending(&execlists->timer))
		return;

1870 1871 1872 1873 1874 1875
	duration = timeslice(engine);
	ENGINE_TRACE(engine,
		     "start timeslicing, prio:%d, interval:%lu",
		     prio, duration);

	set_timer_ms(&execlists->timer, duration);
1876 1877
}

1878 1879 1880 1881 1882
static void record_preemption(struct intel_engine_execlists *execlists)
{
	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}

1883 1884
static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
					    const struct i915_request *rq)
1885 1886 1887 1888
{
	if (!rq)
		return 0;

1889
	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1890
	if (unlikely(intel_context_is_banned(rq->context)))
1891 1892
		return 1;

1893 1894 1895
	return READ_ONCE(engine->props.preempt_timeout_ms);
}

1896 1897
static void set_preempt_timeout(struct intel_engine_cs *engine,
				const struct i915_request *rq)
1898 1899 1900 1901 1902
{
	if (!intel_engine_has_preempt_reset(engine))
		return;

	set_timer_ms(&engine->execlists.preempt,
1903
		     active_preempt_timeout(engine, rq));
1904 1905
}

1906 1907 1908 1909 1910
static inline void clear_ports(struct i915_request **ports, int count)
{
	memset_p((void **)ports, NULL, count);
}

1911
static void execlists_dequeue(struct intel_engine_cs *engine)
1912
{
1913
	struct intel_engine_execlists * const execlists = &engine->execlists;
1914 1915
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
1916
	struct i915_request * const *active;
1917
	struct i915_request *last;
1918
	struct rb_node *rb;
1919 1920
	bool submit = false;

1921 1922
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
1941
	 */
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
1971 1972
	active = READ_ONCE(execlists->active);

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * In theory we can skip over completed contexts that have not
	 * yet been processed by events (as those events are in flight):
	 *
	 * while ((last = *active) && i915_request_completed(last))
	 *	active++;
	 *
	 * However, the GPU cannot handle this as it will ultimately
	 * find itself trying to jump back into a context it has just
	 * completed and barf.
	 */

	if ((last = *active)) {
1986
		if (need_preempt(engine, last, rb)) {
1987 1988 1989 1990 1991
			if (i915_request_completed(last)) {
				tasklet_hi_schedule(&execlists->tasklet);
				return;
			}

1992 1993 1994 1995 1996 1997
			ENGINE_TRACE(engine,
				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
				     execlists->queue_priority_hint);
1998 1999
			record_preemption(execlists);

2000 2001 2002 2003 2004 2005
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
2006

2007 2008 2009 2010 2011 2012 2013 2014
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
2015

2016
			last = NULL;
2017
		} else if (need_timeslice(engine, last) &&
2018
			   timeslice_expired(execlists, last)) {
2019 2020 2021 2022 2023
			if (i915_request_completed(last)) {
				tasklet_hi_schedule(&execlists->tasklet);
				return;
			}

2024
			ENGINE_TRACE(engine,
2025
				     "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
2026 2027 2028
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
2029 2030
				     execlists->queue_priority_hint,
				     yesno(timeslice_yield(execlists, last)));
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
2060 2061 2062 2063 2064
					  &engine->active.requests)) {
				/*
				 * Even if ELSP[1] is occupied and not worthy
				 * of timeslices, our queue might be.
				 */
2065
				start_timeslice(engine);
2066
				return;
2067
			}
2068
		}
2069 2070
	}

2071 2072 2073 2074 2075
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

2076
		spin_lock(&ve->base.active.lock);
2077 2078 2079

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
2080
			spin_unlock(&ve->base.active.lock);
2081 2082 2083 2084 2085 2086 2087 2088
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
2089
		GEM_BUG_ON(rq->context != &ve->context);
2090 2091 2092

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
2093
				spin_unlock(&ve->base.active.lock);
2094 2095 2096 2097 2098
				rb = rb_next(rb);
				continue;
			}

			if (last && !can_merge_rq(last, rq)) {
2099
				spin_unlock(&ve->base.active.lock);
2100 2101
				start_timeslice(engine);
				return; /* leave this for another sibling */
2102 2103
			}

2104 2105 2106 2107 2108 2109 2110 2111
			ENGINE_TRACE(engine,
				     "virtual rq=%llx:%lld%s, new engine? %s\n",
				     rq->fence.context,
				     rq->fence.seqno,
				     i915_request_completed(rq) ? "!" :
				     i915_request_started(rq) ? "*" :
				     "",
				     yesno(engine != ve->siblings[0]));
2112

2113 2114 2115
			WRITE_ONCE(ve->request, NULL);
			WRITE_ONCE(ve->base.execlists.queue_priority_hint,
				   INT_MIN);
2116 2117 2118
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

2119
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2120
			WRITE_ONCE(rq->engine, engine);
2121 2122 2123 2124 2125

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

2126
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
2127 2128 2129 2130

				if (!intel_engine_has_relative_mmio(engine))
					virtual_update_register_offsets(regs,
									engine);
2131 2132

				if (!list_empty(&ve->context.signals))
2133
					virtual_xfer_breadcrumbs(ve, rq);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

2153
			if (__i915_request_submit(rq)) {
2154 2155 2156
				submit = true;
				last = rq;
			}
2157
			i915_request_put(rq);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

			/*
			 * Hmm, we have a bunch of virtual engine requests,
			 * but the first one was already completed (thanks
			 * preempt-to-busy!). Keep looking at the veng queue
			 * until we have no more relevant requests (i.e.
			 * the normal submit queue has higher priority).
			 */
			if (!submit) {
				spin_unlock(&ve->base.active.lock);
				rb = rb_first_cached(&execlists->virtual);
				continue;
			}
2171 2172
		}

2173
		spin_unlock(&ve->base.active.lock);
2174 2175 2176
		break;
	}

2177
	while ((rb = rb_first_cached(&execlists->queue))) {
2178
		struct i915_priolist *p = to_priolist(rb);
2179
		struct i915_request *rq, *rn;
2180
		int i;
2181

2182
		priolist_for_each_request_consume(rq, rn, p, i) {
2183
			bool merge = true;
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
2195
			 */
2196
			if (last && !can_merge_rq(last, rq)) {
2197 2198 2199 2200 2201
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
2202
				if (port == last_port)
2203 2204
					goto done;

2205 2206 2207 2208 2209
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
2210
				if (last->context == rq->context)
2211 2212
					goto done;

2213 2214 2215
				if (i915_request_has_sentinel(last))
					goto done;

2216 2217 2218 2219 2220 2221 2222
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
2223 2224
				if (ctx_single_port_submission(last->context) ||
				    ctx_single_port_submission(rq->context))
2225 2226
					goto done;

2227
				merge = false;
2228
			}
2229

2230 2231 2232 2233 2234 2235 2236 2237
			if (__i915_request_submit(rq)) {
				if (!merge) {
					*port = execlists_schedule_in(last, port - execlists->pending);
					port++;
					last = NULL;
				}

				GEM_BUG_ON(last &&
2238 2239
					   !can_merge_ctx(last->context,
							  rq->context));
2240 2241 2242
				GEM_BUG_ON(last &&
					   i915_seqno_passed(last->fence.seqno,
							     rq->fence.seqno));
2243 2244 2245 2246

				submit = true;
				last = rq;
			}
2247
		}
2248

2249
		rb_erase_cached(&p->node, &execlists->queue);
2250
		i915_priolist_free(p);
2251
	}
2252

2253
done:
2254 2255 2256
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
2257
	 * We choose the priority hint such that if we add a request of greater
2258 2259 2260
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
2261
	 * HW. We derive the priority hint then as the first "hole" in
2262 2263 2264 2265
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
2266
	 * user, see queue_request(), the priority hint is bumped to that
2267 2268 2269
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
2270
	execlists->queue_priority_hint = queue_prio(execlists);
2271

2272
	if (submit) {
2273
		*port = execlists_schedule_in(last, port - execlists->pending);
2274 2275
		execlists->switch_priority_hint =
			switch_prio(engine, *execlists->pending);
2276 2277 2278 2279 2280

		/*
		 * Skip if we ended up with exactly the same set of requests,
		 * e.g. trying to timeslice a pair of ordered contexts
		 */
2281
		if (!memcmp(active, execlists->pending,
2282 2283 2284 2285 2286 2287 2288
			    (port - execlists->pending + 1) * sizeof(*port))) {
			do
				execlists_schedule_out(fetch_and_zero(port));
			while (port-- != execlists->pending);

			goto skip_submit;
		}
2289
		clear_ports(port + 1, last_port - port);
2290

2291
		WRITE_ONCE(execlists->yield, -1);
2292
		execlists_submit_ports(engine);
2293
		set_preempt_timeout(engine, *active);
2294
	} else {
2295
skip_submit:
2296
		ring_set_paused(engine, 0);
2297
	}
2298 2299
}

2300 2301
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
2302
{
2303
	struct i915_request * const *port;
2304

2305 2306
	for (port = execlists->pending; *port; port++)
		execlists_schedule_out(*port);
2307
	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2308

2309
	/* Mark the end of active before we overwrite *active */
2310 2311
	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
		execlists_schedule_out(*port);
2312 2313
	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));

2314
	smp_wmb(); /* complete the seqlock for execlists_active() */
2315
	WRITE_ONCE(execlists->active, execlists->inflight);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/*
 * Starting with Gen12, the status has a new format:
 *
 *     bit  0:     switched to new queue
 *     bit  1:     reserved
 *     bit  2:     semaphore wait mode (poll or signal), only valid when
 *                 switch detail is set to "wait on semaphore"
 *     bits 3-5:   engine class
 *     bits 6-11:  engine instance
 *     bits 12-14: reserved
 *     bits 15-25: sw context id of the lrc the GT switched to
 *     bits 26-31: sw counter of the lrc the GT switched to
 *     bits 32-35: context switch detail
 *                  - 0: ctx complete
 *                  - 1: wait on sync flip
 *                  - 2: wait on vblank
 *                  - 3: wait on scanline
 *                  - 4: wait on semaphore
 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
 *                       WAIT_FOR_EVENT)
 *     bit  36:    reserved
 *     bits 37-43: wait detail (for switch detail 1 to 4)
 *     bits 44-46: reserved
 *     bits 47-57: sw context id of the lrc the GT switched away from
 *     bits 58-63: sw counter of the lrc the GT switched away from
 */
2351
static inline bool
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
	u32 lower_dw = csb[0];
	u32 upper_dw = csb[1];
	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;

	/*
	 * The context switch detail is not guaranteed to be 5 when a preemption
	 * occurs, so we can't just check for that. The check below works for
	 * all the cases we care about, including preemptions of WAIT
	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
	 * would require some extra handling, but we don't support that.
	 */
2367 2368
	if (!ctx_away_valid || new_queue) {
		GEM_BUG_ON(!ctx_to_valid);
2369
		return true;
2370
	}
2371 2372 2373 2374 2375 2376 2377

	/*
	 * switch detail = 5 is covered by the case above and we do not expect a
	 * context switch on an unsuccessful wait instruction since we always
	 * use polling mode.
	 */
	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
2378
	return false;
2379 2380
}

2381
static inline bool
2382
gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2383
{
2384
	return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393
static inline void flush_hwsp(const struct i915_request *rq)
{
	mb();
	clflush((void *)READ_ONCE(rq->hwsp_seqno));
	mb();
}

2394
static void process_csb(struct intel_engine_cs *engine)
2395
{
2396
	struct intel_engine_execlists * const execlists = &engine->execlists;
2397
	const u32 * const buf = execlists->csb_status;
2398
	const u8 num_entries = execlists->csb_size;
2399
	u8 head, tail;
2400

2401 2402 2403 2404 2405 2406 2407
	/*
	 * As we modify our execlists state tracking we require exclusive
	 * access. Either we are inside the tasklet, or the tasklet is disabled
	 * and we assume that is only inside the reset paths and so serialised.
	 */
	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
		   !reset_in_progress(execlists));
2408
	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2409

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	if (unlikely(head == tail))
		return;
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
2434

2435
	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2436
	do {
2437
		bool promote;
2438

2439
		if (++head == num_entries)
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

2460 2461
		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
			     head, buf[2 * head + 0], buf[2 * head + 1]);
2462

2463
		if (INTEL_GEN(engine->i915) >= 12)
2464
			promote = gen12_csb_parse(execlists, buf + 2 * head);
2465
		else
2466 2467
			promote = gen8_csb_parse(execlists, buf + 2 * head);
		if (promote) {
2468 2469
			struct i915_request * const *old = execlists->active;

2470 2471
			ring_set_paused(engine, 0);

2472 2473
			/* Point active to the new ELSP; prevent overwriting */
			WRITE_ONCE(execlists->active, execlists->pending);
2474
			smp_wmb(); /* notify execlists_active() */
2475

2476
			/* cancel old inflight, prepare for switch */
2477 2478 2479
			trace_ports(execlists, "preempted", old);
			while (*old)
				execlists_schedule_out(*old++);
2480

2481
			/* switch pending to inflight */
2482
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2483 2484 2485 2486 2487 2488
			memcpy(execlists->inflight,
			       execlists->pending,
			       execlists_num_ports(execlists) *
			       sizeof(*execlists->pending));
			smp_wmb(); /* complete the seqlock */
			WRITE_ONCE(execlists->active, execlists->inflight);
2489

2490
			WRITE_ONCE(execlists->pending[0], NULL);
2491 2492
		} else {
			GEM_BUG_ON(!*execlists->active);
2493

2494
			/* port0 completed, advanced to port1 */
2495
			trace_ports(execlists, "completed", execlists->active);
2496

2497 2498 2499 2500 2501 2502
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
2503
			if (GEM_SHOW_DEBUG() &&
2504 2505
			    !i915_request_completed(*execlists->active)) {
				struct i915_request *rq = *execlists->active;
2506 2507
				const u32 *regs __maybe_unused =
					rq->context->lrc_reg_state;
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
				/*
				 * Flush the breadcrumb before crying foul.
				 *
				 * Since we have hit this on icl and seen the
				 * breadcrumb advance as we print out the debug
				 * info (so the problem corrected itself without
				 * lasting damage), and we know that icl suffers
				 * from missing global observation points in
				 * execlists, presume that affects even more
				 * coherency.
				 */
				flush_hwsp(rq);

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
				ENGINE_TRACE(engine,
					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
					     ENGINE_READ(engine, RING_START),
					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
					     ENGINE_READ(engine, RING_CTL),
					     ENGINE_READ(engine, RING_MI_MODE));
				ENGINE_TRACE(engine,
					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
					     i915_ggtt_offset(rq->ring->vma),
					     rq->head, rq->tail,
					     rq->fence.context,
					     lower_32_bits(rq->fence.seqno),
					     hwsp_seqno(rq));
				ENGINE_TRACE(engine,
					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
					     regs[CTX_RING_START],
					     regs[CTX_RING_HEAD],
					     regs[CTX_RING_TAIL]);

2542 2543 2544 2545
				/* Still? Declare it caput! */
				if (!i915_request_completed(rq) &&
				    !reset_in_progress(execlists))
					GEM_BUG_ON("context completed before request");
2546 2547
			}

2548
			execlists_schedule_out(*execlists->active++);
2549

2550 2551
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
2552
		}
2553
	} while (head != tail);
2554

2555
	execlists->csb_head = head;
2556
	set_timeslice(engine);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
2569
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2570
}
2571

2572
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2573
{
2574
	lockdep_assert_held(&engine->active.lock);
2575
	if (!READ_ONCE(engine->execlists.pending[0])) {
2576
		rcu_read_lock(); /* protect peeking at execlists->active */
2577
		execlists_dequeue(engine);
2578 2579
		rcu_read_unlock();
	}
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
static void __execlists_hold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

		if (i915_request_is_active(rq))
			__i915_request_unsubmit(rq);

		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
		i915_request_set_hold(rq);
2595
		RQ_TRACE(rq, "on hold\n");
2596

2597
		for_each_waiter(p, rq) {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;

			if (!i915_request_is_ready(w))
				continue;

			if (i915_request_completed(w))
				continue;

2611
			if (i915_request_on_hold(w))
2612 2613 2614 2615 2616 2617 2618 2619 2620
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

2621
static bool execlists_hold(struct intel_engine_cs *engine,
2622 2623 2624 2625
			   struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

2626 2627 2628 2629 2630
	if (i915_request_completed(rq)) { /* too late! */
		rq = NULL;
		goto unlock;
	}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	if (rq->engine != engine) { /* preempted virtual engine */
		struct virtual_engine *ve = to_virtual_engine(rq->engine);

		/*
		 * intel_context_inflight() is only protected by virtue
		 * of process_csb() being called only by the tasklet (or
		 * directly from inside reset while the tasklet is suspended).
		 * Assert that neither of those are allowed to run while we
		 * poke at the request queues.
		 */
		GEM_BUG_ON(!reset_in_progress(&engine->execlists));

		/*
		 * An unsubmitted request along a virtual engine will
		 * remain on the active (this) engine until we are able
		 * to process the context switch away (and so mark the
		 * context as no longer in flight). That cannot have happened
		 * yet, otherwise we would not be hanging!
		 */
		spin_lock(&ve->base.active.lock);
		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
		GEM_BUG_ON(ve->request != rq);
		ve->request = NULL;
		spin_unlock(&ve->base.active.lock);
		i915_request_put(rq);

		rq->engine = engine;
	}

2660 2661 2662 2663 2664 2665 2666 2667 2668
	/*
	 * Transfer this request onto the hold queue to prevent it
	 * being resumbitted to HW (and potentially completed) before we have
	 * released it. Since we may have already submitted following
	 * requests, we need to remove those as well.
	 */
	GEM_BUG_ON(i915_request_on_hold(rq));
	GEM_BUG_ON(rq->engine != engine);
	__execlists_hold(rq);
2669
	GEM_BUG_ON(list_empty(&engine->active.hold));
2670

2671
unlock:
2672
	spin_unlock_irq(&engine->active.lock);
2673
	return rq;
2674 2675 2676 2677 2678
}

static bool hold_request(const struct i915_request *rq)
{
	struct i915_dependency *p;
2679
	bool result = false;
2680 2681 2682 2683 2684

	/*
	 * If one of our ancestors is on hold, we must also be on hold,
	 * otherwise we will bypass it and execute before it.
	 */
2685
	rcu_read_lock();
2686
	for_each_signaler(p, rq) {
2687 2688 2689 2690 2691 2692
		const struct i915_request *s =
			container_of(p->signaler, typeof(*s), sched);

		if (s->engine != rq->engine)
			continue;

2693 2694 2695
		result = i915_request_on_hold(s);
		if (result)
			break;
2696
	}
2697
	rcu_read_unlock();
2698

2699
	return result;
2700 2701 2702 2703 2704 2705 2706 2707 2708
}

static void __execlists_unhold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

2709 2710
		RQ_TRACE(rq, "hold release\n");

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		GEM_BUG_ON(!i915_request_on_hold(rq));
		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));

		i915_request_clear_hold(rq);
		list_move_tail(&rq->sched.link,
			       i915_sched_lookup_priolist(rq->engine,
							  rq_prio(rq)));
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

		/* Also release any children on this engine that are ready */
2721
		for_each_waiter(p, rq) {
2722 2723 2724
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

2725 2726 2727 2728
			/* Propagate any change in error status */
			if (rq->fence.error)
				i915_request_set_error_once(w, rq->fence.error);

2729 2730 2731
			if (w->engine != rq->engine)
				continue;

2732
			if (!i915_request_on_hold(w))
2733 2734 2735
				continue;

			/* Check that no other parents are also on hold */
2736
			if (hold_request(w))
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

static void execlists_unhold(struct intel_engine_cs *engine,
			     struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

	/*
	 * Move this request back to the priority queue, and all of its
	 * children and grandchildren that were suspended along with it.
	 */
	__execlists_unhold(rq);

	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = rq_prio(rq);
		tasklet_hi_schedule(&engine->execlists.tasklet);
	}

	spin_unlock_irq(&engine->active.lock);
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
struct execlists_capture {
	struct work_struct work;
	struct i915_request *rq;
	struct i915_gpu_coredump *error;
};

static void execlists_capture_work(struct work_struct *work)
{
	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
	struct intel_engine_cs *engine = cap->rq->engine;
	struct intel_gt_coredump *gt = cap->error->gt;
	struct intel_engine_capture_vma *vma;

	/* Compress all the objects attached to the request, slow! */
	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
	if (vma) {
		struct i915_vma_compress *compress =
			i915_vma_capture_prepare(gt);

		intel_engine_coredump_add_vma(gt->engine, vma, compress);
		i915_vma_capture_finish(gt, compress);
	}

	gt->simulated = gt->engine->simulated;
	cap->error->simulated = gt->simulated;

	/* Publish the error state, and announce it to the world */
	i915_error_state_store(cap->error);
	i915_gpu_coredump_put(cap->error);

	/* Return this request and all that depend upon it for signaling */
	execlists_unhold(engine, cap->rq);
2798
	i915_request_put(cap->rq);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

	kfree(cap);
}

static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
{
	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
	struct execlists_capture *cap;

	cap = kmalloc(sizeof(*cap), gfp);
	if (!cap)
		return NULL;

	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
	if (!cap->error)
		goto err_cap;

	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
	if (!cap->error->gt)
		goto err_gpu;

	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
	if (!cap->error->gt->engine)
		goto err_gt;

	return cap;

err_gt:
	kfree(cap->error->gt);
err_gpu:
	kfree(cap->error);
err_cap:
	kfree(cap);
	return NULL;
}

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static struct i915_request *
active_context(struct intel_engine_cs *engine, u32 ccid)
{
	const struct intel_engine_execlists * const el = &engine->execlists;
	struct i915_request * const *port, *rq;

	/*
	 * Use the most recent result from process_csb(), but just in case
	 * we trigger an error (via interrupt) before the first CS event has
	 * been written, peek at the next submission.
	 */

	for (port = el->active; (rq = *port); port++) {
		if (upper_32_bits(rq->context->lrc_desc) == ccid) {
			ENGINE_TRACE(engine,
				     "ccid found at active:%zd\n",
				     port - el->active);
			return rq;
		}
	}

	for (port = el->pending; (rq = *port); port++) {
		if (upper_32_bits(rq->context->lrc_desc) == ccid) {
			ENGINE_TRACE(engine,
				     "ccid found at pending:%zd\n",
				     port - el->pending);
			return rq;
		}
	}

	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
	return NULL;
}

static u32 active_ccid(struct intel_engine_cs *engine)
{
	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
}

2874
static bool execlists_capture(struct intel_engine_cs *engine)
2875 2876 2877 2878
{
	struct execlists_capture *cap;

	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2879
		return true;
2880 2881 2882 2883 2884 2885 2886 2887

	/*
	 * We need to _quickly_ capture the engine state before we reset.
	 * We are inside an atomic section (softirq) here and we are delaying
	 * the forced preemption event.
	 */
	cap = capture_regs(engine);
	if (!cap)
2888
		return true;
2889

2890
	spin_lock_irq(&engine->active.lock);
2891
	cap->rq = active_context(engine, active_ccid(engine));
2892 2893 2894 2895 2896
	if (cap->rq) {
		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
		cap->rq = i915_request_get_rcu(cap->rq);
	}
	spin_unlock_irq(&engine->active.lock);
2897 2898
	if (!cap->rq)
		goto err_free;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919

	/*
	 * Remove the request from the execlists queue, and take ownership
	 * of the request. We pass it to our worker who will _slowly_ compress
	 * all the pages the _user_ requested for debugging their batch, after
	 * which we return it to the queue for signaling.
	 *
	 * By removing them from the execlists queue, we also remove the
	 * requests from being processed by __unwind_incomplete_requests()
	 * during the intel_engine_reset(), and so they will *not* be replayed
	 * afterwards.
	 *
	 * Note that because we have not yet reset the engine at this point,
	 * it is possible for the request that we have identified as being
	 * guilty, did in fact complete and we will then hit an arbitration
	 * point allowing the outstanding preemption to succeed. The likelihood
	 * of that is very low (as capturing of the engine registers should be
	 * fast enough to run inside an irq-off atomic section!), so we will
	 * simply hold that request accountable for being non-preemptible
	 * long enough to force the reset.
	 */
2920 2921
	if (!execlists_hold(engine, cap->rq))
		goto err_rq;
2922 2923 2924

	INIT_WORK(&cap->work, execlists_capture_work);
	schedule_work(&cap->work);
2925 2926 2927 2928 2929 2930 2931 2932
	return true;

err_rq:
	i915_request_put(cap->rq);
err_free:
	i915_gpu_coredump_put(cap->error);
	kfree(cap);
	return false;
2933 2934
}

2935
static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2936 2937 2938 2939
{
	const unsigned int bit = I915_RESET_ENGINE + engine->id;
	unsigned long *lock = &engine->gt->reset.flags;

2940
	if (!intel_has_reset_engine(engine->gt))
2941 2942 2943 2944 2945
		return;

	if (test_and_set_bit(bit, lock))
		return;

2946 2947
	ENGINE_TRACE(engine, "reset for %s\n", msg);

2948 2949 2950
	/* Mark this tasklet as disabled to avoid waiting for it to complete */
	tasklet_disable_nosync(&engine->execlists.tasklet);

2951
	ring_set_paused(engine, 1); /* Freeze the current request in place */
2952
	if (execlists_capture(engine))
2953
		intel_engine_reset(engine, msg);
2954 2955
	else
		ring_set_paused(engine, 0);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

	tasklet_enable(&engine->execlists.tasklet);
	clear_and_wake_up_bit(bit, lock);
}

static bool preempt_timeout(const struct intel_engine_cs *const engine)
{
	const struct timer_list *t = &engine->execlists.preempt;

	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
		return false;

	if (!timer_expired(t))
		return false;

	return READ_ONCE(engine->execlists.pending[0]);
}

2974 2975 2976 2977 2978 2979 2980
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
2981
	bool timeout = preempt_timeout(engine);
2982

2983
	process_csb(engine);
2984 2985 2986 2987 2988 2989 2990

	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
		engine->execlists.error_interrupt = 0;
		if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */
			execlists_reset(engine, "CS error");
	}

2991 2992 2993
	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
		unsigned long flags;

2994 2995 2996
		spin_lock_irqsave(&engine->active.lock, flags);
		__execlists_submission_tasklet(engine);
		spin_unlock_irqrestore(&engine->active.lock, flags);
2997 2998

		/* Recheck after serialising with direct-submission */
2999 3000
		if (unlikely(timeout && preempt_timeout(engine)))
			execlists_reset(engine, "preemption time out");
3001
	}
3002 3003
}

3004
static void __execlists_kick(struct intel_engine_execlists *execlists)
3005 3006
{
	/* Kick the tasklet for some interrupt coalescing and reset handling */
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	tasklet_hi_schedule(&execlists->tasklet);
}

#define execlists_kick(t, member) \
	__execlists_kick(container_of(t, struct intel_engine_execlists, member))

static void execlists_timeslice(struct timer_list *timer)
{
	execlists_kick(timer, timer);
}

static void execlists_preempt(struct timer_list *timer)
{
	execlists_kick(timer, preempt);
3021 3022
}

3023
static void queue_request(struct intel_engine_cs *engine,
3024
			  struct i915_request *rq)
3025
{
3026 3027 3028 3029
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3030 3031 3032 3033 3034 3035 3036 3037 3038
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

3039 3040 3041 3042 3043 3044 3045
	/* Hopefully we clear execlists->pending[] to let us through */
	if (READ_ONCE(execlists->pending[0]) &&
	    tasklet_trylock(&execlists->tasklet)) {
		process_csb(engine);
		tasklet_unlock(&execlists->tasklet);
	}

3046
	__execlists_submission_tasklet(engine);
3047 3048
}

3049 3050
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
3051
{
3052 3053 3054 3055 3056 3057 3058
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
3059 3060
}

3061 3062 3063 3064 3065 3066 3067
static bool ancestor_on_hold(const struct intel_engine_cs *engine,
			     const struct i915_request *rq)
{
	GEM_BUG_ON(i915_request_on_hold(rq));
	return !list_empty(&engine->active.hold) && hold_request(rq);
}

3068
static void execlists_submit_request(struct i915_request *request)
3069
{
3070
	struct intel_engine_cs *engine = request->engine;
3071
	unsigned long flags;
3072

3073
	/* Will be called from irq-context when using foreign fences. */
3074
	spin_lock_irqsave(&engine->active.lock, flags);
3075

3076
	if (unlikely(ancestor_on_hold(engine, request))) {
3077
		RQ_TRACE(request, "ancestor on hold\n");
3078 3079 3080 3081
		list_add_tail(&request->sched.link, &engine->active.hold);
		i915_request_set_hold(request);
	} else {
		queue_request(engine, request);
3082

3083 3084
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
		GEM_BUG_ON(list_empty(&request->sched.link));
3085

3086 3087
		submit_queue(engine, request);
	}
3088

3089
	spin_unlock_irqrestore(&engine->active.lock, flags);
3090 3091
}

3092
static void __execlists_context_fini(struct intel_context *ce)
3093
{
3094
	intel_ring_put(ce->ring);
3095
	i915_vma_put(ce->state);
3096 3097
}

3098
static void execlists_context_destroy(struct kref *kref)
3099
{
3100 3101
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

3102
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
3103
	GEM_BUG_ON(intel_context_is_pinned(ce));
3104 3105 3106 3107

	if (ce->state)
		__execlists_context_fini(ce);

3108
	intel_context_fini(ce);
3109 3110 3111
	intel_context_free(ce);
}

3112 3113 3114 3115 3116 3117 3118 3119
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

3120
	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
}

static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

3131
	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
3132
		drm_err_once(&engine->i915->drm,
3133 3134 3135 3136
			     "%s context redzone overwritten!\n",
			     engine->name);
}

3137
static void execlists_context_unpin(struct intel_context *ce)
3138
{
3139 3140 3141
	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
		      ce->engine);

3142
	i915_gem_object_unpin_map(ce->state->obj);
3143 3144
}

3145
static void
3146
__execlists_update_reg_state(const struct intel_context *ce,
3147 3148
			     const struct intel_engine_cs *engine,
			     u32 head)
3149 3150
{
	struct intel_ring *ring = ce->ring;
3151 3152
	u32 *regs = ce->lrc_reg_state;

3153
	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
3154
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
3155

3156
	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
3157
	regs[CTX_RING_HEAD] = head;
3158
	regs[CTX_RING_TAIL] = ring->tail;
3159
	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
3160 3161

	/* RPCS */
3162
	if (engine->class == RENDER_CLASS) {
3163
		regs[CTX_R_PWR_CLK_STATE] =
3164
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
3165

3166
		i915_oa_init_reg_state(ce, engine);
3167
	}
3168 3169
}

3170 3171 3172
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
3173
{
3174
	void *vaddr;
3175

3176
	GEM_BUG_ON(!ce->state);
3177
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3178

3179
	vaddr = i915_gem_object_pin_map(ce->state->obj,
3180
					i915_coherent_map_type(engine->i915) |
3181
					I915_MAP_OVERRIDE);
3182 3183
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);
3184

3185
	ce->lrc_desc = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
3186
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
3187
	__execlists_update_reg_state(ce, engine, ce->ring->tail);
3188

3189
	return 0;
3190 3191
}

3192
static int execlists_context_pin(struct intel_context *ce)
3193
{
3194
	return __execlists_context_pin(ce, ce->engine);
3195 3196
}

3197 3198 3199 3200 3201
static int execlists_context_alloc(struct intel_context *ce)
{
	return __execlists_context_alloc(ce, ce->engine);
}

3202 3203
static void execlists_context_reset(struct intel_context *ce)
{
3204 3205 3206 3207 3208 3209 3210 3211
	CE_TRACE(ce, "reset\n");
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	intel_ring_reset(ce->ring, ce->ring->emit);

	/* Scrub away the garbage */
	execlists_init_reg_state(ce->lrc_reg_state,
				 ce, ce->engine, ce->ring, true);
3212
	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3213 3214

	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
3215 3216
}

3217
static const struct intel_context_ops execlists_context_ops = {
3218 3219
	.alloc = execlists_context_alloc,

3220
	.pin = execlists_context_pin,
3221
	.unpin = execlists_context_unpin,
3222

3223 3224 3225
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

3226
	.reset = execlists_context_reset,
3227 3228 3229
	.destroy = execlists_context_destroy,
};

3230 3231 3232 3233
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

3234 3235
	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
		return 0;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3251
	*cs++ = i915_request_timeline(rq)->hwsp_offset;
3252 3253 3254 3255
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
3256 3257 3258 3259

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

3260 3261 3262
	return 0;
}

3263
static int execlists_request_alloc(struct i915_request *request)
3264
{
3265
	int ret;
3266

3267
	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3268

3269 3270
	/*
	 * Flush enough space to reduce the likelihood of waiting after
3271 3272 3273 3274 3275
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

3276 3277
	/*
	 * Note that after this point, we have committed to using
3278 3279 3280 3281 3282 3283
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

3284
	/* Unconditionally invalidate GPU caches and TLBs. */
3285
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3286 3287 3288
	if (ret)
		return ret;

3289 3290 3291 3292
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
3309 3310
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3311
{
3312
	/* NB no one else is allowed to scribble over scratch + 256! */
3313 3314
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3315 3316
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3317 3318 3319 3320 3321 3322
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

3323 3324 3325 3326
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
3327 3328 3329

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3330 3331
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3332 3333 3334
	*batch++ = 0;

	return batch;
3335 3336
}

3337 3338 3339 3340 3341 3342
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
3343
 *
3344 3345
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
3346
 *
3347 3348 3349 3350
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
3351
 */
3352
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3353
{
3354
	/* WaDisableCtxRestoreArbitration:bdw,chv */
3355
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3356

3357
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3358 3359
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3360

3361 3362
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
3363 3364
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
3365
				       PIPE_CONTROL_STORE_DATA_INDEX |
3366 3367
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
3368
				       LRC_PPHWSP_SCRATCH_ADDR);
3369

3370 3371
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3372
	/* Pad to end of cacheline */
3373 3374
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3375 3376 3377 3378 3379 3380 3381

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

3382
	return batch;
3383 3384
}

3385 3386 3387 3388 3389 3390
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3391
{
3392
	GEM_BUG_ON(!count || count > 63);
3393

3394 3395 3396 3397 3398 3399
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
3400

3401 3402
	return batch;
}
3403

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
3428

3429
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3430

3431 3432
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3433

3434 3435 3436 3437 3438 3439 3440 3441
	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_STORE_DATA_INDEX |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       LRC_PPHWSP_SCRATCH_ADDR);

3442
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3443

3444
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
3459 3460 3461 3462 3463 3464
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
3465 3466
	}

3467 3468
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3469
	/* Pad to end of cacheline */
3470 3471
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3472

3473
	return batch;
3474 3475
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

3510 3511 3512
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3513
{
3514 3515 3516
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
3517

3518
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3519 3520
	if (IS_ERR(obj))
		return PTR_ERR(obj);
3521

3522
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3523 3524 3525
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
3526 3527
	}

3528
	err = i915_ggtt_pin(vma, 0, PIN_HIGH);
3529 3530 3531 3532
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
3533
	return 0;
3534 3535 3536 3537

err:
	i915_gem_object_put(obj);
	return err;
3538 3539
}

3540
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3541
{
3542
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3543 3544
}

3545 3546
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

3547
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3548
{
3549
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3550 3551 3552
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
3553
	struct page *page;
3554 3555
	void *batch, *batch_ptr;
	unsigned int i;
3556
	int ret;
3557

3558 3559
	if (engine->class != RENDER_CLASS)
		return 0;
3560

3561
	switch (INTEL_GEN(engine->i915)) {
3562
	case 12:
3563 3564
	case 11:
		return 0;
3565
	case 10:
3566 3567 3568
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
3569 3570
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
3571
		wa_bb_fn[1] = NULL;
3572 3573 3574
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
3575
		wa_bb_fn[1] = NULL;
3576 3577 3578
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
3579
		return 0;
3580
	}
3581

3582
	ret = lrc_setup_wa_ctx(engine);
3583
	if (ret) {
3584 3585
		drm_dbg(&engine->i915->drm,
			"Failed to setup context WA page: %d\n", ret);
3586 3587 3588
		return ret;
	}

3589
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
3590
	batch = batch_ptr = kmap_atomic(page);
3591

3592 3593 3594 3595 3596 3597 3598
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
3599 3600
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
3601 3602 3603
			ret = -EINVAL;
			break;
		}
3604 3605
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
3606
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
3607 3608
	}

3609 3610
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

3611 3612
	kunmap_atomic(batch);
	if (ret)
3613
		lrc_destroy_wa_ctx(engine);
3614 3615 3616 3617

	return ret;
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void enable_error_interrupt(struct intel_engine_cs *engine)
{
	u32 status;

	engine->execlists.error_interrupt = 0;
	ENGINE_WRITE(engine, RING_EMR, ~0u);
	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */

	status = ENGINE_READ(engine, RING_ESR);
	if (unlikely(status)) {
3628
		drm_err(&engine->i915->drm,
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
			"engine '%s' resumed still in error: %08x\n",
			engine->name, status);
		__intel_gt_reset(engine->gt, engine->mask);
	}

	/*
	 * On current gen8+, we have 2 signals to play with
	 *
	 * - I915_ERROR_INSTUCTION (bit 0)
	 *
	 *    Generate an error if the command parser encounters an invalid
	 *    instruction
	 *
	 *    This is a fatal error.
	 *
	 * - CP_PRIV (bit 2)
	 *
	 *    Generate an error on privilege violation (where the CP replaces
	 *    the instruction with a no-op). This also fires for writes into
	 *    read-only scratch pages.
	 *
	 *    This is a non-fatal error, parsing continues.
	 *
	 * * there are a few others defined for odd HW that we do not use
	 *
	 * Since CP_PRIV fires for cases where we have chosen to ignore the
	 * error (as the HW is validating and suppressing the mistakes), we
	 * only unmask the instruction error bit.
	 */
	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
}

3661
static void enable_execlists(struct intel_engine_cs *engine)
3662
{
3663 3664 3665 3666
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

3667
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3668

3669
	if (INTEL_GEN(engine->i915) >= 11)
3670
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
3671
	else
3672 3673
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
3674

3675
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3676

3677 3678 3679
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
3680
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
3681

3682 3683
	enable_error_interrupt(engine);

3684
	engine->context_tag = 0;
3685 3686
}

3687 3688 3689 3690
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

3691
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
3692 3693
		drm_dbg(&engine->i915->drm,
			"STOP_RING still set in RING_MI_MODE\n");
3694 3695 3696 3697 3698 3699
		unexpected = true;
	}

	return unexpected;
}

3700
static int execlists_resume(struct intel_engine_cs *engine)
3701
{
3702
	intel_mocs_init_engine(engine);
3703

3704
	intel_engine_reset_breadcrumbs(engine);
3705

3706 3707 3708 3709 3710 3711
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

3712
	enable_execlists(engine);
3713

3714
	return 0;
3715 3716
}

3717
static void execlists_reset_prepare(struct intel_engine_cs *engine)
3718 3719
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
3720
	unsigned long flags;
3721

3722 3723
	ENGINE_TRACE(engine, "depth<-%d\n",
		     atomic_read(&execlists->tasklet.count));
3724 3725 3726 3727 3728 3729

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
3730
	 * calling engine->resume() and also writing the ELSP.
3731 3732 3733 3734
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
3735
	GEM_BUG_ON(!reset_in_progress(execlists));
3736

3737
	/* And flush any current direct submission. */
3738 3739
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
3753
	ring_set_paused(engine, 1);
3754
	intel_engine_stop_cs(engine);
3755 3756
}

3757
static void reset_csb_pointers(struct intel_engine_cs *engine)
3758
{
3759
	struct intel_engine_execlists * const execlists = &engine->execlists;
3760 3761
	const unsigned int reset_value = execlists->csb_size - 1;

3762 3763
	ring_set_paused(engine, 0);

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
3775
	wmb(); /* Make sure this is visible to HW (paranoia?) */
3776

3777 3778 3779 3780 3781 3782 3783 3784
	/*
	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
	 * Bludgeon them with a mmio update to be sure.
	 */
	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
		     reset_value << 8 | reset_value);
	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);

3785 3786 3787 3788
	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

3789
static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
3790
{
3791
	int x;
3792

3793 3794 3795 3796
	x = lrc_ring_mi_mode(engine);
	if (x != -1) {
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
3797 3798 3799
	}
}

3800 3801 3802 3803 3804 3805 3806 3807
static void __execlists_reset_reg_state(const struct intel_context *ce,
					const struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	__reset_stop_ring(regs, engine);
}

3808
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
3809
{
3810
	struct intel_engine_execlists * const execlists = &engine->execlists;
3811
	struct intel_context *ce;
3812
	struct i915_request *rq;
3813
	u32 head;
3814

3815 3816 3817 3818
	mb(); /* paranoia: read the CSB pointers from after the reset */
	clflush(execlists->csb_write);
	mb();

3819 3820 3821
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
3822
	reset_csb_pointers(engine);
3823 3824 3825 3826 3827 3828

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
3829 3830
	rq = execlists_active(execlists);
	if (!rq)
3831
		goto unwind;
3832

3833
	ce = rq->context;
3834
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3835

3836
	if (i915_request_completed(rq)) {
3837
		/* Idle context; tidy up the ring so we can restart afresh */
3838
		head = intel_ring_wrap(ce->ring, rq->tail);
3839
		goto out_replay;
3840 3841
	}

3842 3843 3844
	/* We still have requests in-flight; the engine should be active */
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));

3845 3846
	/* Context has requests still in-flight; it should not be idle! */
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3847

3848
	rq = active_request(ce->timeline, rq);
3849 3850
	head = intel_ring_wrap(ce->ring, rq->head);
	GEM_BUG_ON(head == ce->ring->tail);
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
3864
	if (!i915_request_started(rq))
3865
		goto out_replay;
3866

3867 3868
	/*
	 * If the request was innocent, we leave the request in the ELSP
3869 3870 3871 3872 3873 3874 3875 3876 3877
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
3878
	__i915_request_reset(rq, stalled);
3879
	if (!stalled)
3880
		goto out_replay;
3881

3882 3883
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
3884 3885 3886 3887 3888 3889
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
3890
	GEM_BUG_ON(!intel_context_is_pinned(ce));
3891
	restore_default_state(ce, engine);
3892

3893
out_replay:
3894
	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3895
		     head, ce->ring->tail);
3896
	__execlists_reset_reg_state(ce, engine);
3897
	__execlists_update_reg_state(ce, engine, head);
3898
	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
3899

3900
unwind:
3901
	/* Push back any incomplete requests for replay after the reset. */
3902
	cancel_port_requests(execlists);
3903
	__unwind_incomplete_requests(engine);
3904
}
3905

3906
static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3907 3908 3909
{
	unsigned long flags;

3910
	ENGINE_TRACE(engine, "\n");
3911

3912
	spin_lock_irqsave(&engine->active.lock, flags);
3913 3914 3915

	__execlists_reset(engine, stalled);

3916
	spin_unlock_irqrestore(&engine->active.lock, flags);
3917 3918 3919 3920
}

static void nop_submission_tasklet(unsigned long data)
{
3921 3922
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;

3923
	/* The driver is wedged; don't process any more events. */
3924
	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
3925 3926
}

3927
static void execlists_reset_cancel(struct intel_engine_cs *engine)
3928 3929 3930 3931 3932 3933
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

3934
	ENGINE_TRACE(engine, "\n");
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
3950
	spin_lock_irqsave(&engine->active.lock, flags);
3951 3952 3953 3954

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
3955 3956
	list_for_each_entry(rq, &engine->active.requests, sched.link)
		mark_eio(rq);
3957 3958 3959 3960 3961 3962 3963

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
3964
			mark_eio(rq);
3965 3966 3967 3968 3969 3970 3971
			__i915_request_submit(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

3972 3973 3974 3975
	/* On-hold requests will be flushed to timeline upon their release */
	list_for_each_entry(rq, &engine->active.hold, sched.link)
		mark_eio(rq);

3976 3977 3978 3979 3980 3981 3982 3983
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

3984
		spin_lock(&ve->base.active.lock);
3985 3986 3987 3988 3989 3990
		rq = fetch_and_zero(&ve->request);
		if (rq) {
			mark_eio(rq);

			rq->engine = engine;
			__i915_request_submit(rq);
3991
			i915_request_put(rq);
3992

3993 3994
			ve->base.execlists.queue_priority_hint = INT_MIN;
		}
3995
		spin_unlock(&ve->base.active.lock);
3996 3997
	}

3998 3999 4000 4001 4002 4003 4004
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
4005

4006
	spin_unlock_irqrestore(&engine->active.lock, flags);
4007 4008
}

4009 4010
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
4011 4012
	struct intel_engine_execlists * const execlists = &engine->execlists;

4013
	/*
4014 4015 4016
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
4017
	 */
4018
	GEM_BUG_ON(!reset_in_progress(execlists));
4019 4020
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
4021

4022 4023 4024
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
4025 4026
	ENGINE_TRACE(engine, "depth->%d\n",
		     atomic_read(&execlists->tasklet.count));
4027 4028
}

4029 4030 4031
static int gen8_emit_bb_start_noarb(struct i915_request *rq,
				    u64 offset, u32 len,
				    const unsigned int flags)
4032
{
4033
	u32 *cs;
4034

4035
	cs = intel_ring_begin(rq, 4);
4036 4037
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4038

4039 4040 4041 4042 4043 4044 4045
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
4046 4047 4048 4049 4050
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
4051
	 */
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

4065
static int gen8_emit_bb_start(struct i915_request *rq,
4066 4067 4068 4069 4070 4071 4072 4073 4074
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

4075 4076
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

4077
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4078
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4079 4080
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
4081 4082 4083

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
4084

4085
	intel_ring_advance(rq, cs);
4086 4087 4088 4089

	return 0;
}

4090
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
4091
{
4092 4093 4094
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
4095 4096
}

4097
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
4098
{
4099
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
4100 4101
}

4102
static int gen8_emit_flush(struct i915_request *request, u32 mode)
4103
{
4104
	u32 cmd, *cs;
4105

4106 4107 4108
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4109 4110 4111

	cmd = MI_FLUSH_DW + 1;

4112 4113 4114 4115 4116 4117 4118
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

4119
	if (mode & EMIT_INVALIDATE) {
4120
		cmd |= MI_INVALIDATE_TLB;
4121
		if (request->engine->class == VIDEO_DECODE_CLASS)
4122
			cmd |= MI_INVALIDATE_BSD;
4123 4124
	}

4125
	*cs++ = cmd;
4126
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4127 4128 4129
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
4130 4131 4132 4133

	return 0;
}

4134
static int gen8_emit_flush_render(struct i915_request *request,
4135
				  u32 mode)
4136
{
4137
	bool vf_flush_wa = false, dc_flush_wa = false;
4138
	u32 *cs, flags = 0;
4139
	int len;
4140 4141 4142

	flags |= PIPE_CONTROL_CS_STALL;

4143
	if (mode & EMIT_FLUSH) {
4144 4145
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4146
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4147
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4148 4149
	}

4150
	if (mode & EMIT_INVALIDATE) {
4151 4152 4153 4154 4155 4156 4157
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
4158
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4159

4160 4161 4162 4163
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
4164
		if (IS_GEN(request->i915, 9))
4165
			vf_flush_wa = true;
4166 4167 4168 4169

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
4170
	}
4171

4172 4173 4174 4175 4176 4177 4178 4179
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

4180 4181 4182
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4183

4184 4185
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
4186

4187 4188 4189
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
4190

4191
	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4192

4193 4194
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
4195

4196
	intel_ring_advance(request, cs);
4197 4198 4199 4200

	return 0;
}

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
static int gen11_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_QW_WRITE;
4216
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4217 4218 4219 4220 4221

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4222
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4223 4224 4225 4226 4227 4228 4229 4230 4231
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

4232
		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4233 4234 4235 4236 4237 4238 4239
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
4240
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4241 4242 4243 4244 4245

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4246
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4247 4248 4249 4250 4251 4252
		intel_ring_advance(request, cs);
	}

	return 0;
}

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
static u32 preparser_disable(bool state)
{
	return MI_ARB_CHECK | 1 << 8 | state;
}

static int gen12_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4268 4269
		/* Wa_1409600907:tgl */
		flags |= PIPE_CONTROL_DEPTH_STALL;
4270 4271
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4272
		flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
4273

4274
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4275 4276 4277 4278 4279 4280 4281 4282
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4283
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4298
		flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE;
4299

4300
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(request, 8);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		/*
		 * Prevent the pre-parser from skipping past the TLB
		 * invalidate and loading a stale page for the batch
		 * buffer / request payload.
		 */
		*cs++ = preparser_disable(true);

4316
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4317 4318 4319 4320 4321 4322 4323 4324

		*cs++ = preparser_disable(false);
		intel_ring_advance(request, cs);
	}

	return 0;
}

4325 4326 4327 4328 4329
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
4330
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4331
{
4332 4333
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
4334 4335
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
4336 4337

	return cs;
4338
}
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

4353 4354 4355
static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
				 u32 *cs)
4356
{
4357
	*cs++ = MI_USER_INTERRUPT;
4358

4359
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4360 4361
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
4362

4363
	request->tail = intel_ring_offset(request, cs);
4364
	assert_ring_tail_valid(request->ring, request->tail);
4365

4366
	return gen8_emit_wa_tail(request, cs);
4367
}
4368

4369 4370 4371 4372
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
4373
				  i915_request_active_timeline(request)->hwsp_offset,
4374 4375 4376 4377 4378
				  0);

	return gen8_emit_fini_breadcrumb_footer(request, cs);
}

4379
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4380
{
4381 4382 4383 4384 4385 4386 4387
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				    PIPE_CONTROL_DC_FLUSH_ENABLE,
				    0);

	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4388
	cs = gen8_emit_ggtt_write_rcs(cs,
4389
				      request->fence.seqno,
4390
				      i915_request_active_timeline(request)->hwsp_offset,
4391 4392
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);
4393

4394 4395
	return gen8_emit_fini_breadcrumb_footer(request, cs);
}
4396

4397 4398 4399 4400 4401
static u32 *
gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
4402
				      i915_request_active_timeline(request)->hwsp_offset,
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE);

	return gen8_emit_fini_breadcrumb_footer(request, cs);
}

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
/*
 * Note that the CS instruction pre-parser will not stall on the breadcrumb
 * flush and will continue pre-fetching the instructions after it before the
 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
 * of the next request before the memory has been flushed, we're guaranteed that
 * we won't access the batch itself too early.
 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
 * so, if the current request is modifying an instruction in the next request on
 * the same intel_context, we might pre-fetch and then execute the pre-update
 * instruction. To avoid this, the users of self-modifying code should either
 * disable the parser around the code emitting the memory writes, via a new flag
 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
 * the in-kernel use-cases we've opted to use a separate context, see
 * reloc_gpu() as an example.
 * All the above applies only to the instructions themselves. Non-inline data
 * used by the instructions is not pre-fetched.
 */
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;

	return cs;
}

static __always_inline u32*
gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_USER_INTERRUPT;

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	if (intel_engine_has_semaphores(request->engine))
		cs = gen12_emit_preempt_busywait(request, cs);

	request->tail = intel_ring_offset(request, cs);
	assert_ring_tail_valid(request->ring, request->tail);

	return gen8_emit_wa_tail(request, cs);
}

static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
4466
				  i915_request_active_timeline(request)->hwsp_offset,
4467 4468 4469 4470 4471 4472 4473
				  0);

	return gen12_emit_fini_breadcrumb_footer(request, cs);
}

static u32 *
gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4474 4475 4476
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
4477
				      i915_request_active_timeline(request)->hwsp_offset,
4478 4479 4480 4481
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4482 4483
				      /* Wa_1409600907:tgl */
				      PIPE_CONTROL_DEPTH_STALL |
4484
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4485 4486
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_HDC_PIPELINE_FLUSH);
4487

4488
	return gen12_emit_fini_breadcrumb_footer(request, cs);
4489
}
4490

4491 4492
static void execlists_park(struct intel_engine_cs *engine)
{
4493
	cancel_timer(&engine->execlists.timer);
4494
	cancel_timer(&engine->execlists.preempt);
4495 4496
}

4497
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
4498
{
4499
	engine->submit_request = execlists_submit_request;
4500
	engine->schedule = i915_schedule;
4501
	engine->execlists.tasklet.func = execlists_submission_tasklet;
4502

4503
	engine->reset.prepare = execlists_reset_prepare;
4504 4505
	engine->reset.rewind = execlists_reset_rewind;
	engine->reset.cancel = execlists_reset_cancel;
4506
	engine->reset.finish = execlists_reset_finish;
4507

4508
	engine->park = execlists_park;
4509
	engine->unpark = NULL;
4510 4511

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4512
	if (!intel_vgpu_active(engine->i915)) {
4513
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4514 4515 4516
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
	}
4517

4518
	if (INTEL_GEN(engine->i915) >= 12)
4519
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
4520 4521 4522 4523 4524

	if (intel_engine_has_preemption(engine))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen8_emit_bb_start_noarb;
4525 4526
}

4527 4528 4529 4530 4531 4532 4533 4534
static void execlists_shutdown(struct intel_engine_cs *engine)
{
	/* Synchronise with residual timers and any softirq they raise */
	del_timer_sync(&engine->execlists.timer);
	del_timer_sync(&engine->execlists.preempt);
	tasklet_kill(&engine->execlists.tasklet);
}

4535
static void execlists_release(struct intel_engine_cs *engine)
4536
{
4537 4538
	execlists_shutdown(engine);

4539 4540 4541 4542
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
}

4543
static void
4544
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
4545 4546
{
	/* Default vfuncs which can be overriden by each engine. */
4547

4548
	engine->resume = execlists_resume;
4549

4550
	engine->cops = &execlists_context_ops;
4551 4552
	engine->request_alloc = execlists_request_alloc;

4553
	engine->emit_flush = gen8_emit_flush;
4554 4555
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
4556 4557
	if (INTEL_GEN(engine->i915) >= 12)
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
4558

4559
	engine->set_default_submission = intel_execlists_set_default_submission;
4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
4572 4573
}

4574
static inline void
4575
logical_ring_default_irqs(struct intel_engine_cs *engine)
4576
{
4577 4578 4579 4580
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
4581 4582 4583 4584 4585
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
4586 4587 4588 4589 4590
		};

		shift = irq_shifts[engine->id];
	}

4591 4592
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
4593
	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
4594
	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
4595 4596
}

4597 4598 4599 4600
static void rcs_submission_override(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 12:
4601
		engine->emit_flush = gen12_emit_flush_render;
4602 4603
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	case 11:
		engine->emit_flush = gen11_emit_flush_render;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
	}
}

4615
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
4616
{
4617 4618 4619 4620 4621
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
	u32 base = engine->mmio_base;

4622 4623
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
4624 4625
	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
4626 4627 4628

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
4629

4630 4631
	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);
4632 4633 4634 4635 4636 4637 4638

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
4639
		drm_err(&i915->drm, "WA batch buffer initialization failed\n");
4640

4641
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
4642
		execlists->submit_reg = uncore->regs +
4643
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
4644
		execlists->ctrl_reg = uncore->regs +
4645
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
4646
	} else {
4647
		execlists->submit_reg = uncore->regs +
4648
			i915_mmio_reg_offset(RING_ELSP(base));
4649
	}
4650

4651
	execlists->csb_status =
4652
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
4653

4654
	execlists->csb_write =
4655
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
4656

4657
	if (INTEL_GEN(i915) < 11)
4658 4659 4660
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
4661

4662
	reset_csb_pointers(engine);
4663

4664 4665 4666
	/* Finally, take ownership and responsibility for cleanup! */
	engine->release = execlists_release;

4667 4668 4669
	return 0;
}

4670
static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine)
4671 4672 4673
{
	u32 indirect_ctx_offset;

4674
	switch (INTEL_GEN(engine->i915)) {
4675
	default:
4676
		MISSING_CASE(INTEL_GEN(engine->i915));
4677
		/* fall through */
4678 4679 4680 4681
	case 12:
		indirect_ctx_offset =
			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4682 4683 4684 4685
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4686 4687 4688 4689
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

4703

4704
static void init_common_reg_state(u32 * const regs,
4705
				  const struct intel_engine_cs *engine,
4706 4707
				  const struct intel_ring *ring,
				  bool inhibit)
4708
{
4709 4710 4711 4712 4713 4714
	u32 ctl;

	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
	if (inhibit)
		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
4715
	if (INTEL_GEN(engine->i915) < 11)
4716 4717 4718
		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					   CTX_CTRL_RS_CTX_ENABLE);
	regs[CTX_CONTEXT_CONTROL] = ctl;
4719

4720
	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
4721
	regs[CTX_TIMESTAMP] = 0;
4722
}
4723

4724
static void init_wa_bb_reg_state(u32 * const regs,
4725
				 const struct intel_engine_cs *engine,
4726 4727
				 u32 pos_bb_per_ctx)
{
4728 4729 4730 4731 4732 4733 4734 4735
	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;

	if (wa_ctx->per_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);

		regs[pos_bb_per_ctx] =
			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
	}
4736

4737 4738
	if (wa_ctx->indirect_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
4739

4740
		regs[pos_bb_per_ctx + 2] =
4741 4742
			(ggtt_offset + wa_ctx->indirect_ctx.offset) |
			(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
4743

4744
		regs[pos_bb_per_ctx + 4] =
4745
			intel_lr_indirect_ctx_offset(engine) << 6;
4746
	}
4747 4748
}

4749
static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
4750
{
4751
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
4752 4753 4754 4755
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
4756
		ASSIGN_CTX_PML4(ppgtt, regs);
4757
	} else {
4758 4759 4760 4761
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
4762
	}
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
}

static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
	if (i915_is_ggtt(vm))
		return i915_vm_to_ggtt(vm)->alias;
	else
		return i915_vm_to_ppgtt(vm);
}

static void execlists_init_reg_state(u32 *regs,
4774 4775 4776
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
4777
				     bool inhibit)
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
{
	/*
	 * A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 *
	 * Must keep consistent with virtual_update_register_offsets().
	 */
4789
	set_offsets(regs, reg_offsets(engine), engine, inhibit);
4790

4791
	init_common_reg_state(regs, engine, ring, inhibit);
4792 4793 4794 4795 4796 4797
	init_ppgtt_reg_state(regs, vm_alias(ce->vm));

	init_wa_bb_reg_state(regs, engine,
			     INTEL_GEN(engine->i915) >= 12 ?
			     GEN12_CTX_BB_PER_CTX_PTR :
			     CTX_BB_PER_CTX_PTR);
4798 4799

	__reset_stop_ring(regs, engine);
4800 4801
}

4802
static int
4803
populate_lr_context(struct intel_context *ce,
4804 4805 4806 4807
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
4808
	bool inhibit = true;
4809 4810 4811 4812 4813 4814
	void *vaddr;
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
4815 4816
		drm_dbg(&engine->i915->drm,
			"Could not map object pages! (%d)\n", ret);
4817 4818 4819
		return ret;
	}

4820 4821
	set_redzone(vaddr, engine);

4822 4823 4824 4825 4826
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
4827 4828 4829 4830
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
4831

4832
		memcpy(vaddr, defaults, engine->context_size);
4833
		i915_gem_object_unpin_map(engine->default_state);
4834
		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
4835
		inhibit = false;
4836 4837
	}

4838 4839 4840 4841 4842 4843 4844
	/* Clear the ppHWSP (inc. per-context counters) */
	memset(vaddr, 0, PAGE_SIZE);

	/*
	 * The second page of the context object contains some registers which
	 * must be set up prior to the first execution.
	 */
4845 4846
	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ce, engine, ring, inhibit);
4847

4848
	ret = 0;
4849
err_unpin_ctx:
4850
	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
4851
	i915_gem_object_unpin_map(ctx_obj);
4852
	return ret;
4853 4854
}

4855 4856
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine)
4857
{
4858
	struct drm_i915_gem_object *ctx_obj;
4859
	struct intel_ring *ring;
4860
	struct i915_vma *vma;
4861
	u32 context_size;
4862 4863
	int ret;

4864
	GEM_BUG_ON(ce->state);
4865
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
4866

4867 4868
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
4869

4870
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
4871 4872
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
4873

4874
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
4875 4876 4877 4878 4879
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

4880 4881
	if (!ce->timeline) {
		struct intel_timeline *tl;
4882 4883 4884 4885 4886 4887 4888 4889 4890
		struct i915_vma *hwsp;

		/*
		 * Use the static global HWSP for the kernel context, and
		 * a dynamically allocated cacheline for everyone else.
		 */
		hwsp = NULL;
		if (unlikely(intel_context_is_barrier(ce)))
			hwsp = engine->status_page.vma;
4891

4892
		tl = intel_timeline_create(engine->gt, hwsp);
4893 4894 4895 4896 4897 4898
		if (IS_ERR(tl)) {
			ret = PTR_ERR(tl);
			goto error_deref_obj;
		}

		ce->timeline = tl;
4899 4900
	}

4901
	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
4902 4903
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
4904
		goto error_deref_obj;
4905 4906
	}

4907
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
4908
	if (ret) {
4909 4910
		drm_dbg(&engine->i915->drm,
			"Failed to populate LRC: %d\n", ret);
4911
		goto error_ring_free;
4912 4913
	}

4914
	ce->ring = ring;
4915
	ce->state = vma;
4916 4917

	return 0;
4918

4919
error_ring_free:
4920
	intel_ring_put(ring);
4921
error_deref_obj:
4922
	i915_gem_object_put(ctx_obj);
4923
	return ret;
4924
}
4925

4926 4927 4928 4929 4930
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

4931 4932 4933 4934 4935 4936
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

4937
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
4938
	GEM_BUG_ON(ve->request);
4939
	GEM_BUG_ON(ve->context.inflight);
4940 4941 4942 4943

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;
4944
		unsigned long flags;
4945 4946 4947 4948

		if (RB_EMPTY_NODE(node))
			continue;

4949
		spin_lock_irqsave(&sibling->active.lock, flags);
4950 4951 4952 4953 4954

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

4955
		spin_unlock_irqrestore(&sibling->active.lock, flags);
4956 4957 4958 4959 4960
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);
4961
	intel_context_fini(&ve->context);
4962

4963 4964
	intel_engine_free_request_pool(&ve->base);

4965
	kfree(ve->bonds);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
4991 4992 4993
	if (!intel_engine_has_relative_mmio(ve->siblings[0]))
		virtual_update_register_offsets(ve->context.lrc_reg_state,
						ve->siblings[0]);
4994 4995
}

4996 4997 4998 4999 5000 5001 5002
static int virtual_context_alloc(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);

	return __execlists_context_alloc(ce, ve->siblings[0]);
}

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
5024 5025

	intel_timeline_enter(ce->timeline);
5026 5027 5028 5029 5030 5031 5032
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

5033 5034
	intel_timeline_exit(ce->timeline);

5035 5036 5037 5038 5039
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
5040 5041
	.alloc = virtual_context_alloc,

5042 5043 5044 5045 5046 5047 5048 5049 5050
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
5064
		i915_request_set_error_once(rq, -ENODEV);
5065 5066 5067
		mask = ve->siblings[0]->mask;
	}

5068 5069 5070
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
		     rq->fence.context, rq->fence.seqno,
		     mask, ve->base.execlists.queue_priority_hint);
5071 5072 5073 5074

	return mask;
}

5075 5076 5077
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
5078
	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
5079
	intel_engine_mask_t mask;
5080 5081
	unsigned int n;

5082 5083 5084 5085 5086 5087
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

5088 5089 5090 5091 5092 5093 5094
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

5095 5096
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
5097
				spin_lock(&sibling->active.lock);
5098 5099 5100
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
5101
				spin_unlock(&sibling->active.lock);
5102 5103 5104 5105
			}
			continue;
		}

5106
		spin_lock(&sibling->active.lock);
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
5145
		if (first && prio > sibling->execlists.queue_priority_hint)
5146 5147
			tasklet_hi_schedule(&sibling->execlists.tasklet);

5148
		spin_unlock(&sibling->active.lock);
5149 5150 5151 5152 5153 5154 5155
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5156 5157
	struct i915_request *old;
	unsigned long flags;
5158

5159 5160 5161
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
		     rq->fence.context,
		     rq->fence.seqno);
5162 5163 5164

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

5165 5166 5167 5168 5169 5170 5171 5172
	spin_lock_irqsave(&ve->base.active.lock, flags);

	old = ve->request;
	if (old) { /* background completion event from preempt-to-busy */
		GEM_BUG_ON(!i915_request_completed(old));
		__i915_request_submit(old);
		i915_request_put(old);
	}
5173

5174 5175
	if (i915_request_completed(rq)) {
		__i915_request_submit(rq);
5176

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
		ve->base.execlists.queue_priority_hint = INT_MIN;
		ve->request = NULL;
	} else {
		ve->base.execlists.queue_priority_hint = rq_prio(rq);
		ve->request = i915_request_get(rq);

		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
		list_move_tail(&rq->sched.link, virtual_queue(ve));

		tasklet_schedule(&ve->base.execlists.tasklet);
	}
5188

5189
	spin_unlock_irqrestore(&ve->base.active.lock, flags);
5190 5191
}

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5210
	intel_engine_mask_t allowed, exec;
5211 5212
	struct ve_bond *bond;

5213 5214
	allowed = ~to_request(signal)->engine->mask;

5215
	bond = virtual_find_bond(ve, to_request(signal)->engine);
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	if (bond)
		allowed &= bond->sibling_mask;

	/* Restrict the bonded request to run on only the available engines */
	exec = READ_ONCE(rq->execution_mask);
	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
		;

	/* Prevent the master from being re-run on the bonded engines */
	to_request(signal)->execution_mask &= ~allowed;
5226 5227
}

5228
struct intel_context *
5229
intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
5240
		return intel_context_create(siblings[0]);
5241 5242 5243 5244 5245

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

5246
	ve->base.i915 = siblings[0]->i915;
5247
	ve->base.gt = siblings[0]->gt;
5248
	ve->base.uncore = siblings[0]->uncore;
5249
	ve->base.id = -1;
5250

5251 5252 5253
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5254
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

5271 5272
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

5273
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5274
	intel_engine_init_breadcrumbs(&ve->base);
5275 5276 5277 5278 5279 5280 5281
	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
5282
	ve->base.bond_execute = virtual_bond_execute;
5283

5284
	INIT_LIST_HEAD(virtual_queue(ve));
5285 5286 5287 5288 5289
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

5290
	intel_context_init(&ve->context, &ve->base);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
5351 5352

		ve->base.flags = sibling->flags;
5353 5354
	}

5355 5356
	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;

5357 5358 5359 5360 5361 5362 5363 5364
	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
5365
intel_execlists_clone_virtual(struct intel_engine_cs *src)
5366 5367 5368 5369
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

5370
	dst = intel_execlists_create_virtual(se->siblings,
5371 5372 5373 5374
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

5389 5390 5391
	return dst;
}

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
struct intel_engine_cs *
intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
				 unsigned int sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);

	if (sibling >= ve->num_siblings)
		return NULL;

	return ve->siblings[sibling];
}

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

5453
	spin_lock_irqsave(&engine->active.lock, flags);
5454 5455 5456

	last = NULL;
	count = 0;
5457
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

5472 5473
	if (execlists->switch_priority_hint != INT_MIN)
		drm_printf(m, "\t\tSwitch priority hint: %d\n",
5474
			   READ_ONCE(execlists->switch_priority_hint));
5475 5476
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
5477
			   READ_ONCE(execlists->queue_priority_hint));
5478 5479 5480

	last = NULL;
	count = 0;
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

5524
	spin_unlock_irqrestore(&engine->active.lock, flags);
5525 5526
}

5527 5528 5529 5530 5531
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
5532 5533
	GEM_BUG_ON(!intel_context_is_pinned(ce));

5534 5535 5536 5537 5538 5539 5540 5541
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
5542 5543
	if (scrub)
		restore_default_state(ce, engine);
5544 5545

	/* Rerun the request; its payload has been neutered (if guilty). */
5546
	__execlists_update_reg_state(ce, engine, head);
5547 5548
}

5549 5550 5551 5552 5553 5554 5555
bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
{
	return engine->set_default_submission ==
	       intel_execlists_set_default_submission;
}

5556
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5557
#include "selftest_lrc.c"
5558
#endif