• Vladimir Oltean's avatar
    net: bridge: switchdev: let drivers inform which bridge ports are offloaded · 2f5dc00f
    Vladimir Oltean authored
    On reception of an skb, the bridge checks if it was marked as 'already
    forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
    is, it assigns the source hardware domain of that skb based on the
    hardware domain of the ingress port. Then during forwarding, it enforces
    that the egress port must have a different hardware domain than the
    ingress one (this is done in nbp_switchdev_allowed_egress).
    
    Non-switchdev drivers don't report any physical switch id (neither
    through devlink nor .ndo_get_port_parent_id), therefore the bridge
    assigns them a hardware domain of 0, and packets coming from them will
    always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
    
    Problems appear due to the fact that DSA would like to perform software
    fallback for bonding and team interfaces that the physical switch cannot
    offload.
    
           +-- br0 ---+
          / /   |      \
         / /    |       \
        /  |    |      bond0
       /   |    |     /    \
     swp0 swp1 swp2 swp3 swp4
    
    There, it is desirable that the presence of swp3 and swp4 under a
    non-offloaded LAG does not preclude us from doing hardware bridging
    beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
    enough that software bridging between {swp0,swp1,swp2} and bond0 is not
    impractical.
    
    But this creates an impossible paradox given the current way in which
    port hardware domains are assigned. When the driver receives a packet
    from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
    something.
    
    - If we set it to 0, then the bridge will forward it towards swp1, swp2
      and bond0. But the switch has already forwarded it towards swp1 and
      swp2 (not to bond0, remember, that isn't offloaded, so as far as the
      switch is concerned, ports swp3 and swp4 are not looking up the FDB,
      and the entire bond0 is a destination that is strictly behind the
      CPU). But we don't want duplicated traffic towards swp1 and swp2, so
      it's not ok to set skb->offload_fwd_mark = 0.
    
    - If we set it to 1, then the bridge will not forward the skb towards
      the ports with the same switchdev mark, i.e. not to swp1, swp2 and
      bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
      have forwarded the skb there.
    
    So the real issue is that bond0 will be assigned the same hardware
    domain as {swp0,swp1,swp2}, because the function that assigns hardware
    domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
    lower interfaces until it finds something that implements devlink (calls
    dev_get_port_parent_id with bool recurse = true). This is a problem
    because the fact that bond0 can be offloaded by swp3 and swp4 in our
    example is merely an assumption.
    
    A solution is to give the bridge explicit hints as to what hardware
    domain it should use for each port.
    
    Currently, the bridging offload is very 'silent': a driver registers a
    netdevice notifier, which is put on the netns's notifier chain, and
    which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
    bridge, and the lower is an interface it knows about (one registered by
    this driver, normally). Then, from within that notifier, it does a bunch
    of stuff behind the bridge's back, without the bridge necessarily
    knowing that there's somebody offloading that port. It looks like this:
    
         ip link set swp0 master br0
                      |
                      v
     br_add_if() calls netdev_master_upper_dev_link()
                      |
                      v
            call_netdevice_notifiers
                      |
                      v
           dsa_slave_netdevice_event
                      |
                      v
            oh, hey! it's for me!
                      |
                      v
               .port_bridge_join
    
    What we do to solve the conundrum is to be less silent, and change the
    switchdev drivers to present themselves to the bridge. Something like this:
    
         ip link set swp0 master br0
                      |
                      v
     br_add_if() calls netdev_master_upper_dev_link()
                      |
                      v                    bridge: Aye! I'll use this
            call_netdevice_notifiers           ^  ppid as the
                      |                        |  hardware domain for
                      v                        |  this port, and zero
           dsa_slave_netdevice_event           |  if I got nothing.
                      |                        |
                      v                        |
            oh, hey! it's for me!              |
                      |                        |
                      v                        |
               .port_bridge_join               |
                      |                        |
                      +------------------------+
                 switchdev_bridge_port_offload(swp0, swp0)
    
    Then stacked interfaces (like bond0 on top of swp3/swp4) would be
    treated differently in DSA, depending on whether we can or cannot
    offload them.
    
    The offload case:
    
        ip link set bond0 master br0
                      |
                      v
     br_add_if() calls netdev_master_upper_dev_link()
                      |
                      v                    bridge: Aye! I'll use this
            call_netdevice_notifiers           ^  ppid as the
                      |                        |  switchdev mark for
                      v                        |        bond0.
           dsa_slave_netdevice_event           | Coincidentally (or not),
                      |                        | bond0 and swp0, swp1, swp2
                      v                        | all have the same switchdev
            hmm, it's not quite for me,        | mark now, since the ASIC
             but my driver has already         | is able to forward towards
               called .port_lag_join           | all these ports in hw.
              for it, because I have           |
          a port with dp->lag_dev == bond0.    |
                      |                        |
                      v                        |
               .port_bridge_join               |
               for swp3 and swp4               |
                      |                        |
                      +------------------------+
                switchdev_bridge_port_offload(bond0, swp3)
                switchdev_bridge_port_offload(bond0, swp4)
    
    And the non-offload case:
    
        ip link set bond0 master br0
                      |
                      v
     br_add_if() calls netdev_master_upper_dev_link()
                      |
                      v                    bridge waiting:
            call_netdevice_notifiers           ^  huh, switchdev_bridge_port_offload
                      |                        |  wasn't called, okay, I'll use a
                      v                        |  hwdom of zero for this one.
           dsa_slave_netdevice_event           :  Then packets received on swp0 will
                      |                        :  not be software-forwarded towards
                      v                        :  swp1, but they will towards bond0.
             it's not for me, but
           bond0 is an upper of swp3
          and swp4, but their dp->lag_dev
           is NULL because they couldn't
                offload it.
    
    Basically we can draw the conclusion that the lowers of a bridge port
    can come and go, so depending on the configuration of lowers for a
    bridge port, it can dynamically toggle between offloaded and unoffloaded.
    Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
    
    This patch changes the way any switchdev driver interacts with the
    bridge. From now on, everybody needs to call switchdev_bridge_port_offload
    and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
    port as non-offloaded and allow software flooding to other ports from
    the same ASIC.
    
    Note that these functions lay the ground for a more complex handshake
    between switchdev drivers and the bridge in the future.
    
    For drivers that will request a replay of the switchdev objects when
    they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
    place the call to switchdev_bridge_port_unoffload() strategically inside
    the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
    NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
    need the netdev adjacency lists to be valid, and that is only true in
    NETDEV_PRECHANGEUPPER.
    
    Cc: Vadym Kochan <vkochan@marvell.com>
    Cc: Taras Chornyi <tchornyi@marvell.com>
    Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
    Cc: Lars Povlsen <lars.povlsen@microchip.com>
    Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
    Cc: UNGLinuxDriver@microchip.com
    Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
    Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
    Cc: Grygorii Strashko <grygorii.strashko@ti.com>
    Signed-off-by: default avatarVladimir Oltean <vladimir.oltean@nxp.com>
    Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
    Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
    Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
    Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
    2f5dc00f
prestera_main.c 21.3 KB