-
Brian Foster authored
The background blockgc scanner runs on a 5m interval by default and trims preallocation (post-eof and cow fork) from inodes that are otherwise idle. Idle effectively means that iolock can be acquired without blocking and that the inode has no dirty pagecache or I/O in flight. This simple mechanism and heuristic has worked fairly well for post-eof speculative preallocations. Support for reflink and COW fork preallocations came sometime later and plugged into the same mechanism, with similar heuristics. Some recent testing has shown that COW fork preallocation may be notably more sensitive to blockgc processing than post-eof preallocation, however. For example, consider an 8GB reflinked file with a COW extent size hint of 1MB. A worst case fully randomized overwrite of this file results in ~8k extents of an average size of ~1MB. If the same workload is interrupted a couple times for blockgc processing (assuming the file goes idle), the resulting extent count explodes to over 100k extents with an average size <100kB. This is significantly worse than ideal and essentially defeats the COW extent size hint mechanism. While this particular test is instrumented, it reflects a fairly reasonable pattern in practice where random I/Os might spread out over a large period of time with varying periods of (in)activity. For example, consider a cloned disk image file for a VM or container with long uptime and variable and bursty usage. A background blockgc scan that races and processes the image file when it happens to be clean and idle can have a significant effect on the future fragmentation level of the file, even when still in use. To help combat this, update the heuristic to skip cowblocks inodes that are currently opened for write access during non-sync blockgc scans. This allows COW fork preallocations to persist for as long as possible unless otherwise needed for functional purposes (i.e. a sync scan), the file is idle and closed, or the inode is being evicted from cache. While here, update the comments to help distinguish performance oriented heuristics from the logic that exists to maintain functional correctness. Suggested-by: Darrick Wong <djwong@kernel.org> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
90a71daa