-
Johannes Nixdorf authored
A malicious actor behind one bridge port may spam the kernel with packets with a random source MAC address, each of which will create an FDB entry, each of which is a dynamic allocation in the kernel. There are roughly 2^48 different MAC addresses, further limited by the rhashtable they are stored in to 2^31. Each entry is of the type struct net_bridge_fdb_entry, which is currently 128 bytes big. This means the maximum amount of memory allocated for FDB entries is 2^31 * 128B = 256GiB, which is too much for most computers. Mitigate this by maintaining a per bridge count of those automatically generated entries in fdb_n_learned, and a limit in fdb_max_learned. If the limit is hit new entries are not learned anymore. For backwards compatibility the default setting of 0 disables the limit. User-added entries by netlink or from bridge or bridge port addresses are never blocked and do not count towards that limit. Introduce a new fdb entry flag BR_FDB_DYNAMIC_LEARNED to keep track of whether an FDB entry is included in the count. The flag is enabled for dynamically learned entries, and disabled for all other entries. This should be equivalent to BR_FDB_ADDED_BY_USER and BR_FDB_LOCAL being unset, but contrary to the two flags it can be toggled atomically. Atomicity is required here, as there are multiple callers that modify the flags, but are not under a common lock (br_fdb_update is the exception for br->hash_lock, br_fdb_external_learn_add for RTNL). Reviewed-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Johannes Nixdorf <jnixdorf-oss@avm.de> Link: https://lore.kernel.org/r/20231016-fdb_limit-v5-2-32cddff87758@avm.deSigned-off-by: Jakub Kicinski <kuba@kernel.org>
bdb4dfda