-
David Rientjes authored
To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
8ee2debc