Commit 08fdb2cd authored by Coly Li's avatar Coly Li Committed by Jens Axboe

bcache: remove for_each_cache()

Since now each cache_set explicitly has single cache, for_each_cache()
is unnecessary. This patch removes this macro, and update all locations
where it is used, and makes sure all code logic still being consistent.
Signed-off-by: default avatarColy Li <colyli@suse.de>
Reviewed-by: default avatarHannes Reinecke <hare@suse.de>
Signed-off-by: default avatarJens Axboe <axboe@kernel.dk>
parent 697e2349
......@@ -88,7 +88,6 @@ void bch_rescale_priorities(struct cache_set *c, int sectors)
struct cache *ca;
struct bucket *b;
unsigned long next = c->nbuckets * c->sb.bucket_size / 1024;
unsigned int i;
int r;
atomic_sub(sectors, &c->rescale);
......@@ -104,14 +103,14 @@ void bch_rescale_priorities(struct cache_set *c, int sectors)
c->min_prio = USHRT_MAX;
for_each_cache(ca, c, i)
for_each_bucket(b, ca)
if (b->prio &&
b->prio != BTREE_PRIO &&
!atomic_read(&b->pin)) {
b->prio--;
c->min_prio = min(c->min_prio, b->prio);
}
ca = c->cache;
for_each_bucket(b, ca)
if (b->prio &&
b->prio != BTREE_PRIO &&
!atomic_read(&b->pin)) {
b->prio--;
c->min_prio = min(c->min_prio, b->prio);
}
mutex_unlock(&c->bucket_lock);
}
......
......@@ -887,9 +887,6 @@ do { \
/* Looping macros */
#define for_each_cache(ca, cs, iter) \
for (iter = 0; ca = cs->cache, iter < 1; iter++)
#define for_each_bucket(b, ca) \
for (b = (ca)->buckets + (ca)->sb.first_bucket; \
b < (ca)->buckets + (ca)->sb.nbuckets; b++)
......@@ -931,11 +928,9 @@ static inline uint8_t bucket_gc_gen(struct bucket *b)
static inline void wake_up_allocators(struct cache_set *c)
{
struct cache *ca;
unsigned int i;
struct cache *ca = c->cache;
for_each_cache(ca, c, i)
wake_up_process(ca->alloc_thread);
wake_up_process(ca->alloc_thread);
}
static inline void closure_bio_submit(struct cache_set *c,
......
......@@ -1167,19 +1167,18 @@ static void make_btree_freeing_key(struct btree *b, struct bkey *k)
static int btree_check_reserve(struct btree *b, struct btree_op *op)
{
struct cache_set *c = b->c;
struct cache *ca;
unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
struct cache *ca = c->cache;
unsigned int reserve = (c->root->level - b->level) * 2 + 1;
mutex_lock(&c->bucket_lock);
for_each_cache(ca, c, i)
if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
if (op)
prepare_to_wait(&c->btree_cache_wait, &op->wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&c->bucket_lock);
return -EINTR;
}
if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
if (op)
prepare_to_wait(&c->btree_cache_wait, &op->wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&c->bucket_lock);
return -EINTR;
}
mutex_unlock(&c->bucket_lock);
......@@ -1695,7 +1694,6 @@ static void btree_gc_start(struct cache_set *c)
{
struct cache *ca;
struct bucket *b;
unsigned int i;
if (!c->gc_mark_valid)
return;
......@@ -1705,14 +1703,14 @@ static void btree_gc_start(struct cache_set *c)
c->gc_mark_valid = 0;
c->gc_done = ZERO_KEY;
for_each_cache(ca, c, i)
for_each_bucket(b, ca) {
b->last_gc = b->gen;
if (!atomic_read(&b->pin)) {
SET_GC_MARK(b, 0);
SET_GC_SECTORS_USED(b, 0);
}
ca = c->cache;
for_each_bucket(b, ca) {
b->last_gc = b->gen;
if (!atomic_read(&b->pin)) {
SET_GC_MARK(b, 0);
SET_GC_SECTORS_USED(b, 0);
}
}
mutex_unlock(&c->bucket_lock);
}
......@@ -1721,7 +1719,8 @@ static void bch_btree_gc_finish(struct cache_set *c)
{
struct bucket *b;
struct cache *ca;
unsigned int i;
unsigned int i, j;
uint64_t *k;
mutex_lock(&c->bucket_lock);
......@@ -1739,7 +1738,6 @@ static void bch_btree_gc_finish(struct cache_set *c)
struct bcache_device *d = c->devices[i];
struct cached_dev *dc;
struct keybuf_key *w, *n;
unsigned int j;
if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
continue;
......@@ -1756,29 +1754,27 @@ static void bch_btree_gc_finish(struct cache_set *c)
rcu_read_unlock();
c->avail_nbuckets = 0;
for_each_cache(ca, c, i) {
uint64_t *i;
ca->invalidate_needs_gc = 0;
ca = c->cache;
ca->invalidate_needs_gc = 0;
for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
for (i = ca->prio_buckets;
i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
for (k = ca->prio_buckets;
k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
for_each_bucket(b, ca) {
c->need_gc = max(c->need_gc, bucket_gc_gen(b));
for_each_bucket(b, ca) {
c->need_gc = max(c->need_gc, bucket_gc_gen(b));
if (atomic_read(&b->pin))
continue;
if (atomic_read(&b->pin))
continue;
BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
c->avail_nbuckets++;
}
if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
c->avail_nbuckets++;
}
mutex_unlock(&c->bucket_lock);
......@@ -1830,12 +1826,10 @@ static void bch_btree_gc(struct cache_set *c)
static bool gc_should_run(struct cache_set *c)
{
struct cache *ca;
unsigned int i;
struct cache *ca = c->cache;
for_each_cache(ca, c, i)
if (ca->invalidate_needs_gc)
return true;
if (ca->invalidate_needs_gc)
return true;
if (atomic_read(&c->sectors_to_gc) < 0)
return true;
......@@ -2081,9 +2075,8 @@ int bch_btree_check(struct cache_set *c)
void bch_initial_gc_finish(struct cache_set *c)
{
struct cache *ca;
struct cache *ca = c->cache;
struct bucket *b;
unsigned int i;
bch_btree_gc_finish(c);
......@@ -2098,20 +2091,18 @@ void bch_initial_gc_finish(struct cache_set *c)
* This is only safe for buckets that have no live data in them, which
* there should always be some of.
*/
for_each_cache(ca, c, i) {
for_each_bucket(b, ca) {
if (fifo_full(&ca->free[RESERVE_PRIO]) &&
fifo_full(&ca->free[RESERVE_BTREE]))
break;
for_each_bucket(b, ca) {
if (fifo_full(&ca->free[RESERVE_PRIO]) &&
fifo_full(&ca->free[RESERVE_BTREE]))
break;
if (bch_can_invalidate_bucket(ca, b) &&
!GC_MARK(b)) {
__bch_invalidate_one_bucket(ca, b);
if (!fifo_push(&ca->free[RESERVE_PRIO],
b - ca->buckets))
fifo_push(&ca->free[RESERVE_BTREE],
b - ca->buckets);
}
if (bch_can_invalidate_bucket(ca, b) &&
!GC_MARK(b)) {
__bch_invalidate_one_bucket(ca, b);
if (!fifo_push(&ca->free[RESERVE_PRIO],
b - ca->buckets))
fifo_push(&ca->free[RESERVE_BTREE],
b - ca->buckets);
}
}
......
......@@ -179,112 +179,109 @@ int bch_journal_read(struct cache_set *c, struct list_head *list)
ret; \
})
struct cache *ca;
unsigned int iter;
struct cache *ca = c->cache;
int ret = 0;
struct journal_device *ja = &ca->journal;
DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
unsigned int i, l, r, m;
uint64_t seq;
for_each_cache(ca, c, iter) {
struct journal_device *ja = &ca->journal;
DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
unsigned int i, l, r, m;
uint64_t seq;
bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
/*
* Read journal buckets ordered by golden ratio hash to quickly
* find a sequence of buckets with valid journal entries
*/
for (i = 0; i < ca->sb.njournal_buckets; i++) {
/*
* Read journal buckets ordered by golden ratio hash to quickly
* find a sequence of buckets with valid journal entries
* We must try the index l with ZERO first for
* correctness due to the scenario that the journal
* bucket is circular buffer which might have wrapped
*/
for (i = 0; i < ca->sb.njournal_buckets; i++) {
/*
* We must try the index l with ZERO first for
* correctness due to the scenario that the journal
* bucket is circular buffer which might have wrapped
*/
l = (i * 2654435769U) % ca->sb.njournal_buckets;
l = (i * 2654435769U) % ca->sb.njournal_buckets;
if (test_bit(l, bitmap))
break;
if (test_bit(l, bitmap))
break;
if (read_bucket(l))
goto bsearch;
}
if (read_bucket(l))
goto bsearch;
}
/*
* If that fails, check all the buckets we haven't checked
* already
*/
pr_debug("falling back to linear search\n");
/*
* If that fails, check all the buckets we haven't checked
* already
*/
pr_debug("falling back to linear search\n");
for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
if (read_bucket(l))
goto bsearch;
for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
if (read_bucket(l))
goto bsearch;
/* no journal entries on this device? */
if (l == ca->sb.njournal_buckets)
continue;
/* no journal entries on this device? */
if (l == ca->sb.njournal_buckets)
goto out;
bsearch:
BUG_ON(list_empty(list));
BUG_ON(list_empty(list));
/* Binary search */
m = l;
r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
pr_debug("starting binary search, l %u r %u\n", l, r);
/* Binary search */
m = l;
r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
pr_debug("starting binary search, l %u r %u\n", l, r);
while (l + 1 < r) {
seq = list_entry(list->prev, struct journal_replay,
list)->j.seq;
while (l + 1 < r) {
seq = list_entry(list->prev, struct journal_replay,
list)->j.seq;
m = (l + r) >> 1;
read_bucket(m);
m = (l + r) >> 1;
read_bucket(m);
if (seq != list_entry(list->prev, struct journal_replay,
list)->j.seq)
l = m;
else
r = m;
}
if (seq != list_entry(list->prev, struct journal_replay,
list)->j.seq)
l = m;
else
r = m;
}
/*
* Read buckets in reverse order until we stop finding more
* journal entries
*/
pr_debug("finishing up: m %u njournal_buckets %u\n",
m, ca->sb.njournal_buckets);
l = m;
/*
* Read buckets in reverse order until we stop finding more
* journal entries
*/
pr_debug("finishing up: m %u njournal_buckets %u\n",
m, ca->sb.njournal_buckets);
l = m;
while (1) {
if (!l--)
l = ca->sb.njournal_buckets - 1;
while (1) {
if (!l--)
l = ca->sb.njournal_buckets - 1;
if (l == m)
break;
if (l == m)
break;
if (test_bit(l, bitmap))
continue;
if (test_bit(l, bitmap))
continue;
if (!read_bucket(l))
break;
}
if (!read_bucket(l))
break;
}
seq = 0;
seq = 0;
for (i = 0; i < ca->sb.njournal_buckets; i++)
if (ja->seq[i] > seq) {
seq = ja->seq[i];
/*
* When journal_reclaim() goes to allocate for
* the first time, it'll use the bucket after
* ja->cur_idx
*/
ja->cur_idx = i;
ja->last_idx = ja->discard_idx = (i + 1) %
ca->sb.njournal_buckets;
for (i = 0; i < ca->sb.njournal_buckets; i++)
if (ja->seq[i] > seq) {
seq = ja->seq[i];
/*
* When journal_reclaim() goes to allocate for
* the first time, it'll use the bucket after
* ja->cur_idx
*/
ja->cur_idx = i;
ja->last_idx = ja->discard_idx = (i + 1) %
ca->sb.njournal_buckets;
}
}
}
out:
if (!list_empty(list))
c->journal.seq = list_entry(list->prev,
struct journal_replay,
......@@ -342,12 +339,10 @@ void bch_journal_mark(struct cache_set *c, struct list_head *list)
static bool is_discard_enabled(struct cache_set *s)
{
struct cache *ca;
unsigned int i;
struct cache *ca = s->cache;
for_each_cache(ca, s, i)
if (ca->discard)
return true;
if (ca->discard)
return true;
return false;
}
......@@ -633,9 +628,10 @@ static void do_journal_discard(struct cache *ca)
static void journal_reclaim(struct cache_set *c)
{
struct bkey *k = &c->journal.key;
struct cache *ca;
struct cache *ca = c->cache;
uint64_t last_seq;
unsigned int iter, n = 0;
unsigned int next;
struct journal_device *ja = &ca->journal;
atomic_t p __maybe_unused;
atomic_long_inc(&c->reclaim);
......@@ -647,46 +643,31 @@ static void journal_reclaim(struct cache_set *c)
/* Update last_idx */
for_each_cache(ca, c, iter) {
struct journal_device *ja = &ca->journal;
while (ja->last_idx != ja->cur_idx &&
ja->seq[ja->last_idx] < last_seq)
ja->last_idx = (ja->last_idx + 1) %
ca->sb.njournal_buckets;
}
while (ja->last_idx != ja->cur_idx &&
ja->seq[ja->last_idx] < last_seq)
ja->last_idx = (ja->last_idx + 1) %
ca->sb.njournal_buckets;
for_each_cache(ca, c, iter)
do_journal_discard(ca);
do_journal_discard(ca);
if (c->journal.blocks_free)
goto out;
/*
* Allocate:
* XXX: Sort by free journal space
*/
for_each_cache(ca, c, iter) {
struct journal_device *ja = &ca->journal;
unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
/* No space available on this device */
if (next == ja->discard_idx)
goto out;
/* No space available on this device */
if (next == ja->discard_idx)
continue;
ja->cur_idx = next;
k->ptr[0] = MAKE_PTR(0,
bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
ca->sb.nr_this_dev);
atomic_long_inc(&c->reclaimed_journal_buckets);
ja->cur_idx = next;
k->ptr[n++] = MAKE_PTR(0,
bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
ca->sb.nr_this_dev);
atomic_long_inc(&c->reclaimed_journal_buckets);
}
bkey_init(k);
SET_KEY_PTRS(k, 1);
c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
if (n) {
bkey_init(k);
SET_KEY_PTRS(k, n);
c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
}
out:
if (!journal_full(&c->journal))
__closure_wake_up(&c->journal.wait);
......@@ -750,7 +731,7 @@ static void journal_write_unlocked(struct closure *cl)
__releases(c->journal.lock)
{
struct cache_set *c = container_of(cl, struct cache_set, journal.io);
struct cache *ca;
struct cache *ca = c->cache;
struct journal_write *w = c->journal.cur;
struct bkey *k = &c->journal.key;
unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
......@@ -780,9 +761,7 @@ static void journal_write_unlocked(struct closure *cl)
bkey_copy(&w->data->btree_root, &c->root->key);
bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
for_each_cache(ca, c, i)
w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
w->data->magic = jset_magic(&c->sb);
w->data->version = BCACHE_JSET_VERSION;
w->data->last_seq = last_seq(&c->journal);
......
......@@ -196,50 +196,48 @@ static unsigned int bucket_heap_top(struct cache *ca)
void bch_moving_gc(struct cache_set *c)
{
struct cache *ca;
struct cache *ca = c->cache;
struct bucket *b;
unsigned int i;
unsigned long sectors_to_move, reserve_sectors;
if (!c->copy_gc_enabled)
return;
mutex_lock(&c->bucket_lock);
for_each_cache(ca, c, i) {
unsigned long sectors_to_move = 0;
unsigned long reserve_sectors = ca->sb.bucket_size *
sectors_to_move = 0;
reserve_sectors = ca->sb.bucket_size *
fifo_used(&ca->free[RESERVE_MOVINGGC]);
ca->heap.used = 0;
for_each_bucket(b, ca) {
if (GC_MARK(b) == GC_MARK_METADATA ||
!GC_SECTORS_USED(b) ||
GC_SECTORS_USED(b) == ca->sb.bucket_size ||
atomic_read(&b->pin))
continue;
if (!heap_full(&ca->heap)) {
sectors_to_move += GC_SECTORS_USED(b);
heap_add(&ca->heap, b, bucket_cmp);
} else if (bucket_cmp(b, heap_peek(&ca->heap))) {
sectors_to_move -= bucket_heap_top(ca);
sectors_to_move += GC_SECTORS_USED(b);
ca->heap.data[0] = b;
heap_sift(&ca->heap, 0, bucket_cmp);
}
}
ca->heap.used = 0;
for_each_bucket(b, ca) {
if (GC_MARK(b) == GC_MARK_METADATA ||
!GC_SECTORS_USED(b) ||
GC_SECTORS_USED(b) == ca->sb.bucket_size ||
atomic_read(&b->pin))
continue;
while (sectors_to_move > reserve_sectors) {
heap_pop(&ca->heap, b, bucket_cmp);
sectors_to_move -= GC_SECTORS_USED(b);
if (!heap_full(&ca->heap)) {
sectors_to_move += GC_SECTORS_USED(b);
heap_add(&ca->heap, b, bucket_cmp);
} else if (bucket_cmp(b, heap_peek(&ca->heap))) {
sectors_to_move -= bucket_heap_top(ca);
sectors_to_move += GC_SECTORS_USED(b);
ca->heap.data[0] = b;
heap_sift(&ca->heap, 0, bucket_cmp);
}
}
while (heap_pop(&ca->heap, b, bucket_cmp))
SET_GC_MOVE(b, 1);
while (sectors_to_move > reserve_sectors) {
heap_pop(&ca->heap, b, bucket_cmp);
sectors_to_move -= GC_SECTORS_USED(b);
}
while (heap_pop(&ca->heap, b, bucket_cmp))
SET_GC_MOVE(b, 1);
mutex_unlock(&c->bucket_lock);
c->moving_gc_keys.last_scanned = ZERO_KEY;
......
......@@ -343,8 +343,9 @@ static void bcache_write_super_unlock(struct closure *cl)
void bcache_write_super(struct cache_set *c)
{
struct closure *cl = &c->sb_write;
struct cache *ca;
unsigned int i, version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
struct cache *ca = c->cache;
struct bio *bio = &ca->sb_bio;
unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
down(&c->sb_write_mutex);
closure_init(cl, &c->cl);
......@@ -354,23 +355,19 @@ void bcache_write_super(struct cache_set *c)
if (c->sb.version > version)
version = c->sb.version;
for_each_cache(ca, c, i) {
struct bio *bio = &ca->sb_bio;
ca->sb.version = version;
ca->sb.seq = c->sb.seq;
ca->sb.last_mount = c->sb.last_mount;
ca->sb.version = version;
ca->sb.seq = c->sb.seq;
ca->sb.last_mount = c->sb.last_mount;
SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
bio_init(bio, ca->sb_bv, 1);
bio_set_dev(bio, ca->bdev);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bio_init(bio, ca->sb_bv, 1);
bio_set_dev(bio, ca->bdev);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
closure_get(cl);
__write_super(&ca->sb, ca->sb_disk, bio);
}
closure_get(cl);
__write_super(&ca->sb, ca->sb_disk, bio);
closure_return_with_destructor(cl, bcache_write_super_unlock);
}
......@@ -772,26 +769,22 @@ static void bcache_device_unlink(struct bcache_device *d)
lockdep_assert_held(&bch_register_lock);
if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
unsigned int i;
struct cache *ca;
struct cache *ca = d->c->cache;
sysfs_remove_link(&d->c->kobj, d->name);
sysfs_remove_link(&d->kobj, "cache");
for_each_cache(ca, d->c, i)
bd_unlink_disk_holder(ca->bdev, d->disk);
bd_unlink_disk_holder(ca->bdev, d->disk);
}
}
static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
const char *name)
{
unsigned int i;
struct cache *ca;
struct cache *ca = c->cache;
int ret;
for_each_cache(ca, d->c, i)
bd_link_disk_holder(ca->bdev, d->disk);
bd_link_disk_holder(ca->bdev, d->disk);
snprintf(d->name, BCACHEDEVNAME_SIZE,
"%s%u", name, d->id);
......@@ -1662,7 +1655,6 @@ static void cache_set_free(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, cl);
struct cache *ca;
unsigned int i;
debugfs_remove(c->debug);
......@@ -1671,12 +1663,12 @@ static void cache_set_free(struct closure *cl)
bch_journal_free(c);
mutex_lock(&bch_register_lock);
for_each_cache(ca, c, i)
if (ca) {
ca->set = NULL;
c->cache = NULL;
kobject_put(&ca->kobj);
}
ca = c->cache;
if (ca) {
ca->set = NULL;
c->cache = NULL;
kobject_put(&ca->kobj);
}
bch_bset_sort_state_free(&c->sort);
free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb)));
......@@ -1702,9 +1694,8 @@ static void cache_set_free(struct closure *cl)
static void cache_set_flush(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, caching);
struct cache *ca;
struct cache *ca = c->cache;
struct btree *b;
unsigned int i;
bch_cache_accounting_destroy(&c->accounting);
......@@ -1729,9 +1720,8 @@ static void cache_set_flush(struct closure *cl)
mutex_unlock(&b->write_lock);
}
for_each_cache(ca, c, i)
if (ca->alloc_thread)
kthread_stop(ca->alloc_thread);
if (ca->alloc_thread)
kthread_stop(ca->alloc_thread);
if (c->journal.cur) {
cancel_delayed_work_sync(&c->journal.work);
......@@ -1972,16 +1962,14 @@ static int run_cache_set(struct cache_set *c)
{
const char *err = "cannot allocate memory";
struct cached_dev *dc, *t;
struct cache *ca;
struct cache *ca = c->cache;
struct closure cl;
unsigned int i;
LIST_HEAD(journal);
struct journal_replay *l;
closure_init_stack(&cl);
for_each_cache(ca, c, i)
c->nbuckets += ca->sb.nbuckets;
c->nbuckets = ca->sb.nbuckets;
set_gc_sectors(c);
if (CACHE_SYNC(&c->sb)) {
......@@ -2001,10 +1989,8 @@ static int run_cache_set(struct cache_set *c)
j = &list_entry(journal.prev, struct journal_replay, list)->j;
err = "IO error reading priorities";
for_each_cache(ca, c, i) {
if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
goto err;
}
if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
goto err;
/*
* If prio_read() fails it'll call cache_set_error and we'll
......@@ -2048,9 +2034,8 @@ static int run_cache_set(struct cache_set *c)
bch_journal_next(&c->journal);
err = "error starting allocator thread";
for_each_cache(ca, c, i)
if (bch_cache_allocator_start(ca))
goto err;
if (bch_cache_allocator_start(ca))
goto err;
/*
* First place it's safe to allocate: btree_check() and
......@@ -2069,28 +2054,23 @@ static int run_cache_set(struct cache_set *c)
if (bch_journal_replay(c, &journal))
goto err;
} else {
pr_notice("invalidating existing data\n");
for_each_cache(ca, c, i) {
unsigned int j;
unsigned int j;
ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2, SB_JOURNAL_BUCKETS);
pr_notice("invalidating existing data\n");
ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2, SB_JOURNAL_BUCKETS);
for (j = 0; j < ca->sb.keys; j++)
ca->sb.d[j] = ca->sb.first_bucket + j;
}
for (j = 0; j < ca->sb.keys; j++)
ca->sb.d[j] = ca->sb.first_bucket + j;
bch_initial_gc_finish(c);
err = "error starting allocator thread";
for_each_cache(ca, c, i)
if (bch_cache_allocator_start(ca))
goto err;
if (bch_cache_allocator_start(ca))
goto err;
mutex_lock(&c->bucket_lock);
for_each_cache(ca, c, i)
bch_prio_write(ca, true);
bch_prio_write(ca, true);
mutex_unlock(&c->bucket_lock);
err = "cannot allocate new UUID bucket";
......@@ -2465,13 +2445,14 @@ static bool bch_is_open_backing(struct block_device *bdev)
static bool bch_is_open_cache(struct block_device *bdev)
{
struct cache_set *c, *tc;
struct cache *ca;
unsigned int i;
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
for_each_cache(ca, c, i)
if (ca->bdev == bdev)
return true;
list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
struct cache *ca = c->cache;
if (ca->bdev == bdev)
return true;
}
return false;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment