Commit 145f573b authored by Rik van Riel's avatar Rik van Riel Committed by Peter Zijlstra

x86/mm/tlb: Make lazy TLB mode lazier

Lazy TLB mode can result in an idle CPU being woken up by a TLB flush,
when all it really needs to do is reload %CR3 at the next context switch,
assuming no page table pages got freed.

Memory ordering is used to prevent race conditions between switch_mm_irqs_off,
which checks whether .tlb_gen changed, and the TLB invalidation code, which
increments .tlb_gen whenever page table entries get invalidated.

The atomic increment in inc_mm_tlb_gen is its own barrier; the context
switch code adds an explicit barrier between reading tlbstate.is_lazy and
next->context.tlb_gen.

CPUs in lazy TLB mode remain part of the mm_cpumask(mm), both because
that allows TLB flush IPIs to be sent at page table freeing time, and
because the cache line bouncing on the mm_cpumask(mm) was responsible
for about half the CPU use in switch_mm_irqs_off().

We can change native_flush_tlb_others() without touching other
(paravirt) implementations of flush_tlb_others() because we'll be
flushing less. The existing implementations flush more and are
therefore still correct.

Cc: npiggin@gmail.com
Cc: mingo@kernel.org
Cc: will.deacon@arm.com
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Cc: hpa@zytor.com
Tested-by: default avatarSong Liu <songliubraving@fb.com>
Signed-off-by: default avatarRik van Riel <riel@surriel.com>
Signed-off-by: default avatarPeter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180926035844.1420-8-riel@surriel.com
parent 97807813
......@@ -185,6 +185,7 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
{
struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
unsigned cpu = smp_processor_id();
u64 next_tlb_gen;
bool need_flush;
......@@ -242,17 +243,40 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
next->context.ctx_id);
/*
* We don't currently support having a real mm loaded without
* our cpu set in mm_cpumask(). We have all the bookkeeping
* in place to figure out whether we would need to flush
* if our cpu were cleared in mm_cpumask(), but we don't
* currently use it.
* Even in lazy TLB mode, the CPU should stay set in the
* mm_cpumask. The TLB shootdown code can figure out from
* from cpu_tlbstate.is_lazy whether or not to send an IPI.
*/
if (WARN_ON_ONCE(real_prev != &init_mm &&
!cpumask_test_cpu(cpu, mm_cpumask(next))))
cpumask_set_cpu(cpu, mm_cpumask(next));
return;
/*
* If the CPU is not in lazy TLB mode, we are just switching
* from one thread in a process to another thread in the same
* process. No TLB flush required.
*/
if (!was_lazy)
return;
/*
* Read the tlb_gen to check whether a flush is needed.
* If the TLB is up to date, just use it.
* The barrier synchronizes with the tlb_gen increment in
* the TLB shootdown code.
*/
smp_mb();
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
next_tlb_gen)
return;
/*
* TLB contents went out of date while we were in lazy
* mode. Fall through to the TLB switching code below.
*/
new_asid = prev_asid;
need_flush = true;
} else {
u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
......@@ -346,8 +370,10 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
this_cpu_write(cpu_tlbstate.loaded_mm, next);
this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
load_mm_cr4(next);
switch_ldt(real_prev, next);
if (next != real_prev) {
load_mm_cr4(next);
switch_ldt(real_prev, next);
}
}
/*
......@@ -455,6 +481,9 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f,
* paging-structure cache to avoid speculatively reading
* garbage into our TLB. Since switching to init_mm is barely
* slower than a minimal flush, just switch to init_mm.
*
* This should be rare, with native_flush_tlb_others skipping
* IPIs to lazy TLB mode CPUs.
*/
switch_mm_irqs_off(NULL, &init_mm, NULL);
return;
......@@ -557,6 +586,11 @@ static void flush_tlb_func_remote(void *info)
flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
}
static bool tlb_is_not_lazy(int cpu, void *data)
{
return !per_cpu(cpu_tlbstate.is_lazy, cpu);
}
void native_flush_tlb_others(const struct cpumask *cpumask,
const struct flush_tlb_info *info)
{
......@@ -592,8 +626,23 @@ void native_flush_tlb_others(const struct cpumask *cpumask,
(void *)info, 1);
return;
}
smp_call_function_many(cpumask, flush_tlb_func_remote,
/*
* If no page tables were freed, we can skip sending IPIs to
* CPUs in lazy TLB mode. They will flush the CPU themselves
* at the next context switch.
*
* However, if page tables are getting freed, we need to send the
* IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
* up on the new contents of what used to be page tables, while
* doing a speculative memory access.
*/
if (info->freed_tables)
smp_call_function_many(cpumask, flush_tlb_func_remote,
(void *)info, 1);
else
on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
(void *)info, 1, GFP_ATOMIC, cpumask);
}
/*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment