Commit 1ae09954 authored by Alexander Graf's avatar Alexander Graf Committed by Paolo Bonzini

KVM: x86: Allow deflecting unknown MSR accesses to user space

MSRs are weird. Some of them are normal control registers, such as EFER.
Some however are registers that really are model specific, not very
interesting to virtualization workloads, and not performance critical.
Others again are really just windows into package configuration.

Out of these MSRs, only the first category is necessary to implement in
kernel space. Rarely accessed MSRs, MSRs that should be fine tunes against
certain CPU models and MSRs that contain information on the package level
are much better suited for user space to process. However, over time we have
accumulated a lot of MSRs that are not the first category, but still handled
by in-kernel KVM code.

This patch adds a generic interface to handle WRMSR and RDMSR from user
space. With this, any future MSR that is part of the latter categories can
be handled in user space.

Furthermore, it allows us to replace the existing "ignore_msrs" logic with
something that applies per-VM rather than on the full system. That way you
can run productive VMs in parallel to experimental ones where you don't care
about proper MSR handling.
Signed-off-by: default avatarAlexander Graf <graf@amazon.com>
Reviewed-by: default avatarJim Mattson <jmattson@google.com>

Message-Id: <20200925143422.21718-3-graf@amazon.com>
Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
parent 90218e43
...@@ -4872,14 +4872,13 @@ to the byte array. ...@@ -4872,14 +4872,13 @@ to the byte array.
.. note:: .. note::
For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR,
KVM_EXIT_EPR the corresponding KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding
operations are complete (and guest state is consistent) only after userspace
operations are complete (and guest state is consistent) only after userspace has re-entered the kernel with KVM_RUN. The kernel side will first finish
has re-entered the kernel with KVM_RUN. The kernel side will first finish incomplete operations and then check for pending signals. Userspace
incomplete operations and then check for pending signals. Userspace can re-enter the guest with an unmasked signal pending to complete
can re-enter the guest with an unmasked signal pending to complete pending operations.
pending operations.
:: ::
...@@ -5166,6 +5165,43 @@ Note that KVM does not skip the faulting instruction as it does for ...@@ -5166,6 +5165,43 @@ Note that KVM does not skip the faulting instruction as it does for
KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state
if it decides to decode and emulate the instruction. if it decides to decode and emulate the instruction.
::
/* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */
struct {
__u8 error; /* user -> kernel */
__u8 pad[7];
__u32 reason; /* kernel -> user */
__u32 index; /* kernel -> user */
__u64 data; /* kernel <-> user */
} msr;
Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is
enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code
will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR
exit for writes.
The "reason" field specifies why the MSR trap occurred. User space will only
receive MSR exit traps when a particular reason was requested during through
ENABLE_CAP. Currently valid exit reasons are:
KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM
KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits
For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest
wants to read. To respond to this request with a successful read, user space
writes the respective data into the "data" field and must continue guest
execution to ensure the read data is transferred into guest register state.
If the RDMSR request was unsuccessful, user space indicates that with a "1" in
the "error" field. This will inject a #GP into the guest when the VCPU is
executed again.
For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest
wants to write. Once finished processing the event, user space must continue
vCPU execution. If the MSR write was unsuccessful, user space also sets the
"error" field to "1".
:: ::
/* Fix the size of the union. */ /* Fix the size of the union. */
...@@ -5855,6 +5891,28 @@ controlled by the kvm module parameter halt_poll_ns. This capability allows ...@@ -5855,6 +5891,28 @@ controlled by the kvm module parameter halt_poll_ns. This capability allows
the maximum halt time to specified on a per-VM basis, effectively overriding the maximum halt time to specified on a per-VM basis, effectively overriding
the module parameter for the target VM. the module parameter for the target VM.
7.21 KVM_CAP_X86_USER_SPACE_MSR
-------------------------------
:Architectures: x86
:Target: VM
:Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report
:Returns: 0 on success; -1 on error
This capability enables trapping of #GP invoking RDMSR and WRMSR instructions
into user space.
When a guest requests to read or write an MSR, KVM may not implement all MSRs
that are relevant to a respective system. It also does not differentiate by
CPU type.
To allow more fine grained control over MSR handling, user space may enable
this capability. With it enabled, MSR accesses that match the mask specified in
args[0] and trigger a #GP event inside the guest by KVM will instead trigger
KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space
can then handle to implement model specific MSR handling and/or user notifications
to inform a user that an MSR was not handled.
8. Other capabilities. 8. Other capabilities.
====================== ======================
...@@ -6196,3 +6254,14 @@ distribution...) ...@@ -6196,3 +6254,14 @@ distribution...)
If this capability is available, then the CPNC and CPVC can be synchronized If this capability is available, then the CPNC and CPVC can be synchronized
between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318).
8.26 KVM_CAP_X86_USER_SPACE_MSR
-------------------------------
:Architectures: x86
This capability indicates that KVM supports deflection of MSR reads and
writes to user space. It can be enabled on a VM level. If enabled, MSR
accesses that would usually trigger a #GP by KVM into the guest will
instead get bounced to user space through the KVM_EXIT_X86_RDMSR and
KVM_EXIT_X86_WRMSR exit notifications.
...@@ -961,6 +961,9 @@ struct kvm_arch { ...@@ -961,6 +961,9 @@ struct kvm_arch {
bool guest_can_read_msr_platform_info; bool guest_can_read_msr_platform_info;
bool exception_payload_enabled; bool exception_payload_enabled;
/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
u32 user_space_msr_mask;
struct kvm_pmu_event_filter *pmu_event_filter; struct kvm_pmu_event_filter *pmu_event_filter;
struct task_struct *nx_lpage_recovery_thread; struct task_struct *nx_lpage_recovery_thread;
}; };
......
...@@ -3701,11 +3701,18 @@ static int em_dr_write(struct x86_emulate_ctxt *ctxt) ...@@ -3701,11 +3701,18 @@ static int em_dr_write(struct x86_emulate_ctxt *ctxt)
static int em_wrmsr(struct x86_emulate_ctxt *ctxt) static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
{ {
u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
u64 msr_data; u64 msr_data;
int r;
msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data)) r = ctxt->ops->set_msr(ctxt, msr_index, msr_data);
if (r == X86EMUL_IO_NEEDED)
return r;
if (r)
return emulate_gp(ctxt, 0); return emulate_gp(ctxt, 0);
return X86EMUL_CONTINUE; return X86EMUL_CONTINUE;
...@@ -3713,9 +3720,16 @@ static int em_wrmsr(struct x86_emulate_ctxt *ctxt) ...@@ -3713,9 +3720,16 @@ static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
static int em_rdmsr(struct x86_emulate_ctxt *ctxt) static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
{ {
u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
u64 msr_data; u64 msr_data;
int r;
r = ctxt->ops->get_msr(ctxt, msr_index, &msr_data);
if (r == X86EMUL_IO_NEEDED)
return r;
if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data)) if (r)
return emulate_gp(ctxt, 0); return emulate_gp(ctxt, 0);
*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
......
...@@ -1590,12 +1590,89 @@ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) ...@@ -1590,12 +1590,89 @@ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
} }
EXPORT_SYMBOL_GPL(kvm_set_msr); EXPORT_SYMBOL_GPL(kvm_set_msr);
static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
{
if (vcpu->run->msr.error) {
kvm_inject_gp(vcpu, 0);
return 1;
} else if (is_read) {
kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
}
return kvm_skip_emulated_instruction(vcpu);
}
static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
{
return complete_emulated_msr(vcpu, true);
}
static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
{
return complete_emulated_msr(vcpu, false);
}
static u64 kvm_msr_reason(int r)
{
switch (r) {
case -ENOENT:
return KVM_MSR_EXIT_REASON_UNKNOWN;
default:
return KVM_MSR_EXIT_REASON_INVAL;
}
}
static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
u32 exit_reason, u64 data,
int (*completion)(struct kvm_vcpu *vcpu),
int r)
{
u64 msr_reason = kvm_msr_reason(r);
/* Check if the user wanted to know about this MSR fault */
if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
return 0;
vcpu->run->exit_reason = exit_reason;
vcpu->run->msr.error = 0;
memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
vcpu->run->msr.reason = msr_reason;
vcpu->run->msr.index = index;
vcpu->run->msr.data = data;
vcpu->arch.complete_userspace_io = completion;
return 1;
}
static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
{
return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
complete_emulated_rdmsr, r);
}
static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
{
return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
complete_emulated_wrmsr, r);
}
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
{ {
u32 ecx = kvm_rcx_read(vcpu); u32 ecx = kvm_rcx_read(vcpu);
u64 data; u64 data;
int r;
r = kvm_get_msr(vcpu, ecx, &data);
if (kvm_get_msr(vcpu, ecx, &data)) { /* MSR read failed? See if we should ask user space */
if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
/* Bounce to user space */
return 0;
}
/* MSR read failed? Inject a #GP */
if (r) {
trace_kvm_msr_read_ex(ecx); trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(vcpu, 0); kvm_inject_gp(vcpu, 0);
return 1; return 1;
...@@ -1613,8 +1690,18 @@ int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) ...@@ -1613,8 +1690,18 @@ int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
{ {
u32 ecx = kvm_rcx_read(vcpu); u32 ecx = kvm_rcx_read(vcpu);
u64 data = kvm_read_edx_eax(vcpu); u64 data = kvm_read_edx_eax(vcpu);
int r;
if (kvm_set_msr(vcpu, ecx, data)) { r = kvm_set_msr(vcpu, ecx, data);
/* MSR write failed? See if we should ask user space */
if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) {
/* Bounce to user space */
return 0;
}
/* MSR write failed? Inject a #GP */
if (r) {
trace_kvm_msr_write_ex(ecx, data); trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(vcpu, 0); kvm_inject_gp(vcpu, 0);
return 1; return 1;
...@@ -3526,6 +3613,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) ...@@ -3526,6 +3613,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_EXCEPTION_PAYLOAD: case KVM_CAP_EXCEPTION_PAYLOAD:
case KVM_CAP_SET_GUEST_DEBUG: case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_LAST_CPU: case KVM_CAP_LAST_CPU:
case KVM_CAP_X86_USER_SPACE_MSR:
r = 1; r = 1;
break; break;
case KVM_CAP_SYNC_REGS: case KVM_CAP_SYNC_REGS:
...@@ -5046,6 +5134,10 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm, ...@@ -5046,6 +5134,10 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
kvm->arch.exception_payload_enabled = cap->args[0]; kvm->arch.exception_payload_enabled = cap->args[0];
r = 0; r = 0;
break; break;
case KVM_CAP_X86_USER_SPACE_MSR:
kvm->arch.user_space_msr_mask = cap->args[0];
r = 0;
break;
default: default:
r = -EINVAL; r = -EINVAL;
break; break;
...@@ -6378,13 +6470,33 @@ static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, ...@@ -6378,13 +6470,33 @@ static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 *pdata) u32 msr_index, u64 *pdata)
{ {
return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int r;
r = kvm_get_msr(vcpu, msr_index, pdata);
if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
/* Bounce to user space */
return X86EMUL_IO_NEEDED;
}
return r;
} }
static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 data) u32 msr_index, u64 data)
{ {
return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int r;
r = kvm_set_msr(vcpu, msr_index, data);
if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
/* Bounce to user space */
return X86EMUL_IO_NEEDED;
}
return r;
} }
static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
ERSN(NMI), ERSN(INTERNAL_ERROR), ERSN(OSI), ERSN(PAPR_HCALL), \ ERSN(NMI), ERSN(INTERNAL_ERROR), ERSN(OSI), ERSN(PAPR_HCALL), \
ERSN(S390_UCONTROL), ERSN(WATCHDOG), ERSN(S390_TSCH), ERSN(EPR),\ ERSN(S390_UCONTROL), ERSN(WATCHDOG), ERSN(S390_TSCH), ERSN(EPR),\
ERSN(SYSTEM_EVENT), ERSN(S390_STSI), ERSN(IOAPIC_EOI), \ ERSN(SYSTEM_EVENT), ERSN(S390_STSI), ERSN(IOAPIC_EOI), \
ERSN(HYPERV), ERSN(ARM_NISV) ERSN(HYPERV), ERSN(ARM_NISV), ERSN(X86_RDMSR), ERSN(X86_WRMSR)
TRACE_EVENT(kvm_userspace_exit, TRACE_EVENT(kvm_userspace_exit,
TP_PROTO(__u32 reason, int errno), TP_PROTO(__u32 reason, int errno),
......
...@@ -248,6 +248,8 @@ struct kvm_hyperv_exit { ...@@ -248,6 +248,8 @@ struct kvm_hyperv_exit {
#define KVM_EXIT_IOAPIC_EOI 26 #define KVM_EXIT_IOAPIC_EOI 26
#define KVM_EXIT_HYPERV 27 #define KVM_EXIT_HYPERV 27
#define KVM_EXIT_ARM_NISV 28 #define KVM_EXIT_ARM_NISV 28
#define KVM_EXIT_X86_RDMSR 29
#define KVM_EXIT_X86_WRMSR 30
/* For KVM_EXIT_INTERNAL_ERROR */ /* For KVM_EXIT_INTERNAL_ERROR */
/* Emulate instruction failed. */ /* Emulate instruction failed. */
...@@ -413,6 +415,16 @@ struct kvm_run { ...@@ -413,6 +415,16 @@ struct kvm_run {
__u64 esr_iss; __u64 esr_iss;
__u64 fault_ipa; __u64 fault_ipa;
} arm_nisv; } arm_nisv;
/* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */
struct {
__u8 error; /* user -> kernel */
__u8 pad[7];
#define KVM_MSR_EXIT_REASON_INVAL (1 << 0)
#define KVM_MSR_EXIT_REASON_UNKNOWN (1 << 1)
__u32 reason; /* kernel -> user */
__u32 index; /* kernel -> user */
__u64 data; /* kernel <-> user */
} msr;
/* Fix the size of the union. */ /* Fix the size of the union. */
char padding[256]; char padding[256];
}; };
...@@ -1037,6 +1049,7 @@ struct kvm_ppc_resize_hpt { ...@@ -1037,6 +1049,7 @@ struct kvm_ppc_resize_hpt {
#define KVM_CAP_SMALLER_MAXPHYADDR 185 #define KVM_CAP_SMALLER_MAXPHYADDR 185
#define KVM_CAP_S390_DIAG318 186 #define KVM_CAP_S390_DIAG318 186
#define KVM_CAP_STEAL_TIME 187 #define KVM_CAP_STEAL_TIME 187
#define KVM_CAP_X86_USER_SPACE_MSR 188
#ifdef KVM_CAP_IRQ_ROUTING #ifdef KVM_CAP_IRQ_ROUTING
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment