Commit 43a35e67 authored by Jason A. Donenfeld's avatar Jason A. Donenfeld Committed by Greg Kroah-Hartman

macsec: avoid heap overflow in skb_to_sgvec

commit 4d6fa57b upstream.

While this may appear as a humdrum one line change, it's actually quite
important. An sk_buff stores data in three places:

1. A linear chunk of allocated memory in skb->data. This is the easiest
   one to work with, but it precludes using scatterdata since the memory
   must be linear.
2. The array skb_shinfo(skb)->frags, which is of maximum length
   MAX_SKB_FRAGS. This is nice for scattergather, since these fragments
   can point to different pages.
3. skb_shinfo(skb)->frag_list, which is a pointer to another sk_buff,
   which in turn can have data in either (1) or (2).

The first two are rather easy to deal with, since they're of a fixed
maximum length, while the third one is not, since there can be
potentially limitless chains of fragments. Fortunately dealing with
frag_list is opt-in for drivers, so drivers don't actually have to deal
with this mess. For whatever reason, macsec decided it wanted pain, and
so it explicitly specified NETIF_F_FRAGLIST.

Because dealing with (1), (2), and (3) is insane, most users of sk_buff
doing any sort of crypto or paging operation calls a convenient function
called skb_to_sgvec (which happens to be recursive if (3) is in use!).
This takes a sk_buff as input, and writes into its output pointer an
array of scattergather list items. Sometimes people like to declare a
fixed size scattergather list on the stack; othertimes people like to
allocate a fixed size scattergather list on the heap. However, if you're
doing it in a fixed-size fashion, you really shouldn't be using
NETIF_F_FRAGLIST too (unless you're also ensuring the sk_buff and its
frag_list children arent't shared and then you check the number of
fragments in total required.)

Macsec specifically does this:

        size += sizeof(struct scatterlist) * (MAX_SKB_FRAGS + 1);
        tmp = kmalloc(size, GFP_ATOMIC);
        *sg = (struct scatterlist *)(tmp + sg_offset);
	...
        sg_init_table(sg, MAX_SKB_FRAGS + 1);
        skb_to_sgvec(skb, sg, 0, skb->len);

Specifying MAX_SKB_FRAGS + 1 is the right answer usually, but not if you're
using NETIF_F_FRAGLIST, in which case the call to skb_to_sgvec will
overflow the heap, and disaster ensues.
Signed-off-by: default avatarJason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent e4720b00
...@@ -2713,7 +2713,7 @@ static netdev_tx_t macsec_start_xmit(struct sk_buff *skb, ...@@ -2713,7 +2713,7 @@ static netdev_tx_t macsec_start_xmit(struct sk_buff *skb,
} }
#define MACSEC_FEATURES \ #define MACSEC_FEATURES \
(NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST) (NETIF_F_SG | NETIF_F_HIGHDMA)
static struct lock_class_key macsec_netdev_addr_lock_key; static struct lock_class_key macsec_netdev_addr_lock_key;
static int macsec_dev_init(struct net_device *dev) static int macsec_dev_init(struct net_device *dev)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment