Commit 50dbd96e authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'docs-5.11-3' of git://git.lwn.net/linux

Pull documentation fixes from Jonathan Corbet:
 "A handful of relatively small documentation fixes"

* tag 'docs-5.11-3' of git://git.lwn.net/linux:
  docs: admin-guide: bootconfig: Fix feils to fails
  Documentation/admin-guide: kernel-parameters: hyphenate comma-separated
  docs: binfmt-misc: Fix .rst formatting
  docs: remove mention of ENABLE_MUST_CHECK
  atomic: remove further references to atomic_ops
  Documentation: doc-guide: fixes to sphinx.rst
  docs/mm: concepts.rst: Correct the threshold to low watermark
  Documentation: admin: early_param()s are also listed in kernel-parameters
  docs: Fix reST markup when linking to sections
parents 78d42025 9d54ee78
......@@ -473,7 +473,7 @@ read-side critical sections that follow the idle period (the oval near
the bottom of the diagram above).
Plumbing this into the full grace-period execution is described
`below <#Forcing%20Quiescent%20States>`__.
`below <Forcing Quiescent States_>`__.
CPU-Hotplug Interface
^^^^^^^^^^^^^^^^^^^^^
......@@ -494,7 +494,7 @@ mask to detect CPUs having gone offline since the beginning of this
grace period.
Plumbing this into the full grace-period execution is described
`below <#Forcing%20Quiescent%20States>`__.
`below <Forcing Quiescent States_>`__.
Forcing Quiescent States
^^^^^^^^^^^^^^^^^^^^^^^^
......@@ -532,7 +532,7 @@ from other CPUs.
| RCU. But this diagram is complex enough as it is, so simplicity |
| overrode accuracy. You can think of it as poetic license, or you can |
| think of it as misdirection that is resolved in the |
| `stitched-together diagram <#Putting%20It%20All%20Together>`__. |
| `stitched-together diagram <Putting It All Together_>`__. |
+-----------------------------------------------------------------------+
Grace-Period Cleanup
......@@ -596,7 +596,7 @@ maintain ordering. For example, if the callback function wakes up a task
that runs on some other CPU, proper ordering must in place in both the
callback function and the task being awakened. To see why this is
important, consider the top half of the `grace-period
cleanup <#Grace-Period%20Cleanup>`__ diagram. The callback might be
cleanup`_ diagram. The callback might be
running on a CPU corresponding to the leftmost leaf ``rcu_node``
structure, and awaken a task that is to run on a CPU corresponding to
the rightmost leaf ``rcu_node`` structure, and the grace-period kernel
......
......@@ -45,7 +45,7 @@ requirements:
#. `Other RCU Flavors`_
#. `Possible Future Changes`_
This is followed by a `summary <#Summary>`__, however, the answers to
This is followed by a summary_, however, the answers to
each quick quiz immediately follows the quiz. Select the big white space
with your mouse to see the answer.
......@@ -1096,7 +1096,7 @@ memory barriers.
| case, voluntary context switch) within an RCU read-side critical |
| section. However, sleeping locks may be used within userspace RCU |
| read-side critical sections, and also within Linux-kernel sleepable |
| RCU `(SRCU) <#Sleepable%20RCU>`__ read-side critical sections. In |
| RCU `(SRCU) <Sleepable RCU_>`__ read-side critical sections. In |
| addition, the -rt patchset turns spinlocks into a sleeping locks so |
| that the corresponding critical sections can be preempted, which also |
| means that these sleeplockified spinlocks (but not other sleeping |
......@@ -1186,7 +1186,7 @@ non-preemptible (``CONFIG_PREEMPT=n``) kernels, and thus `tiny
RCU <https://lkml.kernel.org/g/20090113221724.GA15307@linux.vnet.ibm.com>`__
was born. Josh Triplett has since taken over the small-memory banner
with his `Linux kernel tinification <https://tiny.wiki.kernel.org/>`__
project, which resulted in `SRCU <#Sleepable%20RCU>`__ becoming optional
project, which resulted in `SRCU <Sleepable RCU_>`__ becoming optional
for those kernels not needing it.
The remaining performance requirements are, for the most part,
......@@ -1457,8 +1457,8 @@ will vary as the value of ``HZ`` varies, and can also be changed using
the relevant Kconfig options and kernel boot parameters. RCU currently
does not do much sanity checking of these parameters, so please use
caution when changing them. Note that these forward-progress measures
are provided only for RCU, not for `SRCU <#Sleepable%20RCU>`__ or `Tasks
RCU <#Tasks%20RCU>`__.
are provided only for RCU, not for `SRCU <Sleepable RCU_>`__ or `Tasks
RCU`_.
RCU takes the following steps in ``call_rcu()`` to encourage timely
invocation of callbacks when any given non-\ ``rcu_nocbs`` CPU has
......@@ -1477,8 +1477,8 @@ encouragement was provided:
Again, these are default values when running at ``HZ=1000``, and can be
overridden. Again, these forward-progress measures are provided only for
RCU, not for `SRCU <#Sleepable%20RCU>`__ or `Tasks
RCU <#Tasks%20RCU>`__. Even for RCU, callback-invocation forward
RCU, not for `SRCU <Sleepable RCU_>`__ or `Tasks
RCU`_. Even for RCU, callback-invocation forward
progress for ``rcu_nocbs`` CPUs is much less well-developed, in part
because workloads benefiting from ``rcu_nocbs`` CPUs tend to invoke
``call_rcu()`` relatively infrequently. If workloads emerge that need
......@@ -1920,7 +1920,7 @@ Hotplug CPU
The Linux kernel supports CPU hotplug, which means that CPUs can come
and go. It is of course illegal to use any RCU API member from an
offline CPU, with the exception of `SRCU <#Sleepable%20RCU>`__ read-side
offline CPU, with the exception of `SRCU <Sleepable RCU_>`__ read-side
critical sections. This requirement was present from day one in
DYNIX/ptx, but on the other hand, the Linux kernel's CPU-hotplug
implementation is “interesting.”
......@@ -2177,7 +2177,7 @@ handles these states differently:
However, RCU must be reliably informed as to whether any given CPU is
currently in the idle loop, and, for ``NO_HZ_FULL``, also whether that
CPU is executing in usermode, as discussed
`earlier <#Energy%20Efficiency>`__. It also requires that the
`earlier <Energy Efficiency_>`__. It also requires that the
scheduling-clock interrupt be enabled when RCU needs it to be:
#. If a CPU is either idle or executing in usermode, and RCU believes it
......@@ -2294,7 +2294,7 @@ Performance, Scalability, Response Time, and Reliability
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expanding on the `earlier
discussion <#Performance%20and%20Scalability>`__, RCU is used heavily by
discussion <Performance and Scalability_>`__, RCU is used heavily by
hot code paths in performance-critical portions of the Linux kernel's
networking, security, virtualization, and scheduling code paths. RCU
must therefore use efficient implementations, especially in its
......
......@@ -23,7 +23,7 @@ Here is what the fields mean:
- ``name``
is an identifier string. A new /proc file will be created with this
``name below /proc/sys/fs/binfmt_misc``; cannot contain slashes ``/`` for
name below ``/proc/sys/fs/binfmt_misc``; cannot contain slashes ``/`` for
obvious reasons.
- ``type``
is the type of recognition. Give ``M`` for magic and ``E`` for extension.
......@@ -83,7 +83,7 @@ Here is what the fields mean:
``F`` - fix binary
The usual behaviour of binfmt_misc is to spawn the
binary lazily when the misc format file is invoked. However,
this doesn``t work very well in the face of mount namespaces and
this doesn't work very well in the face of mount namespaces and
changeroots, so the ``F`` mode opens the binary as soon as the
emulation is installed and uses the opened image to spawn the
emulator, meaning it is always available once installed,
......
......@@ -154,7 +154,7 @@ get the boot configuration data.
Because of this "piggyback" method, there is no need to change or
update the boot loader and the kernel image itself as long as the boot
loader passes the correct initrd file size. If by any chance, the boot
loader passes a longer size, the kernel feils to find the bootconfig data.
loader passes a longer size, the kernel fails to find the bootconfig data.
To do this operation, Linux kernel provides "bootconfig" command under
tools/bootconfig, which allows admin to apply or delete the config file
......
......@@ -3,8 +3,8 @@
The kernel's command-line parameters
====================================
The following is a consolidated list of the kernel parameters as
implemented by the __setup(), core_param() and module_param() macros
The following is a consolidated list of the kernel parameters as implemented
by the __setup(), early_param(), core_param() and module_param() macros
and sorted into English Dictionary order (defined as ignoring all
punctuation and sorting digits before letters in a case insensitive
manner), and with descriptions where known.
......
......@@ -1385,7 +1385,7 @@
ftrace_filter=[function-list]
[FTRACE] Limit the functions traced by the function
tracer at boot up. function-list is a comma separated
tracer at boot up. function-list is a comma-separated
list of functions. This list can be changed at run
time by the set_ftrace_filter file in the debugfs
tracing directory.
......@@ -1399,13 +1399,13 @@
ftrace_graph_filter=[function-list]
[FTRACE] Limit the top level callers functions traced
by the function graph tracer at boot up.
function-list is a comma separated list of functions
function-list is a comma-separated list of functions
that can be changed at run time by the
set_graph_function file in the debugfs tracing directory.
ftrace_graph_notrace=[function-list]
[FTRACE] Do not trace from the functions specified in
function-list. This list is a comma separated list of
function-list. This list is a comma-separated list of
functions that can be changed at run time by the
set_graph_notrace file in the debugfs tracing directory.
......@@ -2421,7 +2421,7 @@
when set.
Format: <int>
libata.force= [LIBATA] Force configurations. The format is comma
libata.force= [LIBATA] Force configurations. The format is comma-
separated list of "[ID:]VAL" where ID is
PORT[.DEVICE]. PORT and DEVICE are decimal numbers
matching port, link or device. Basically, it matches
......@@ -5145,7 +5145,7 @@
stacktrace_filter=[function-list]
[FTRACE] Limit the functions that the stack tracer
will trace at boot up. function-list is a comma separated
will trace at boot up. function-list is a comma-separated
list of functions. This list can be changed at run
time by the stack_trace_filter file in the debugfs
tracing directory. Note, this enables stack tracing
......@@ -5348,7 +5348,7 @@
trace_event=[event-list]
[FTRACE] Set and start specified trace events in order
to facilitate early boot debugging. The event-list is a
comma separated list of trace events to enable. See
comma-separated list of trace events to enable. See
also Documentation/trace/events.rst
trace_options=[option-list]
......
......@@ -184,7 +184,7 @@ pages either asynchronously or synchronously, depending on the state
of the system. When the system is not loaded, most of the memory is free
and allocation requests will be satisfied immediately from the free
pages supply. As the load increases, the amount of the free pages goes
down and when it reaches a certain threshold (high watermark), an
down and when it reaches a certain threshold (low watermark), an
allocation request will awaken the ``kswapd`` daemon. It will
asynchronously scan memory pages and either just free them if the data
they contain is available elsewhere, or evict to the backing storage
......
......@@ -53,7 +53,6 @@ How Linux keeps everything from happening at the same time. See
.. toctree::
:maxdepth: 1
atomic_ops
refcount-vs-atomic
irq/index
local_ops
......
......@@ -48,12 +48,12 @@ or ``virtualenv``, depending on how your distribution packaged Python 3.
those versions, you should run ``pip install 'docutils==0.12'``.
#) It is recommended to use the RTD theme for html output. Depending
on the Sphinx version, it should be installed in separate,
on the Sphinx version, it should be installed separately,
with ``pip install sphinx_rtd_theme``.
#) Some ReST pages contain math expressions. Due to the way Sphinx work,
#) Some ReST pages contain math expressions. Due to the way Sphinx works,
those expressions are written using LaTeX notation. It needs texlive
installed with amdfonts and amsmath in order to evaluate them.
installed with amsfonts and amsmath in order to evaluate them.
In summary, if you want to install Sphinx version 1.7.9, you should do::
......@@ -128,7 +128,7 @@ Sphinx Build
============
The usual way to generate the documentation is to run ``make htmldocs`` or
``make pdfdocs``. There are also other formats available, see the documentation
``make pdfdocs``. There are also other formats available: see the documentation
section of ``make help``. The generated documentation is placed in
format-specific subdirectories under ``Documentation/output``.
......@@ -303,17 +303,17 @@ and *targets* (e.g. a ref to ``:ref:`last row <last row>``` / :ref:`last row
- head col 3
- head col 4
* - column 1
* - row 1
- field 1.1
- field 1.2 with autospan
* - column 2
* - row 2
- field 2.1
- :rspan:`1` :cspan:`1` field 2.2 - 3.3
* .. _`last row`:
- column 3
- row 3
Rendered as:
......@@ -325,17 +325,17 @@ Rendered as:
- head col 3
- head col 4
* - column 1
* - row 1
- field 1.1
- field 1.2 with autospan
* - column 2
* - row 2
- field 2.1
- :rspan:`1` :cspan:`1` field 2.2 - 3.3
* .. _`last row`:
- column 3
- row 3
Cross-referencing
-----------------
......@@ -361,7 +361,7 @@ Figures & Images
If you want to add an image, you should use the ``kernel-figure`` and
``kernel-image`` directives. E.g. to insert a figure with a scalable
image format use SVG (:ref:`svg_image_example`)::
image format, use SVG (:ref:`svg_image_example`)::
.. kernel-figure:: svg_image.svg
:alt: simple SVG image
......@@ -375,7 +375,7 @@ image format use SVG (:ref:`svg_image_example`)::
SVG image example
The kernel figure (and image) directive support **DOT** formatted files, see
The kernel figure (and image) directive supports **DOT** formatted files, see
* DOT: http://graphviz.org/pdf/dotguide.pdf
* Graphviz: http://www.graphviz.org/content/dot-language
......@@ -394,7 +394,7 @@ A simple example (:ref:`hello_dot_file`)::
DOT's hello world example
Embed *render* markups (or languages) like Graphviz's **DOT** is provided by the
Embedded *render* markups (or languages) like Graphviz's **DOT** are provided by the
``kernel-render`` directives.::
.. kernel-render:: DOT
......@@ -406,7 +406,7 @@ Embed *render* markups (or languages) like Graphviz's **DOT** is provided by the
}
How this will be rendered depends on the installed tools. If Graphviz is
installed, you will see an vector image. If not the raw markup is inserted as
installed, you will see a vector image. If not, the raw markup is inserted as
*literal-block* (:ref:`hello_dot_render`).
.. _hello_dot_render:
......@@ -421,8 +421,8 @@ installed, you will see an vector image. If not the raw markup is inserted as
The *render* directive has all the options known from the *figure* directive,
plus option ``caption``. If ``caption`` has a value, a *figure* node is
inserted. If not, a *image* node is inserted. A ``caption`` is also needed, if
you want to refer it (:ref:`hello_svg_render`).
inserted. If not, an *image* node is inserted. A ``caption`` is also needed, if
you want to refer to it (:ref:`hello_svg_render`).
Embedded **SVG**::
......
......@@ -118,11 +118,11 @@ spinlock, but you may block holding a mutex. If you can't lock a mutex,
your task will suspend itself, and be woken up when the mutex is
released. This means the CPU can do something else while you are
waiting. There are many cases when you simply can't sleep (see
`What Functions Are Safe To Call From Interrupts? <#sleeping-things>`__),
`What Functions Are Safe To Call From Interrupts?`_),
and so have to use a spinlock instead.
Neither type of lock is recursive: see
`Deadlock: Simple and Advanced <#deadlock>`__.
`Deadlock: Simple and Advanced`_.
Locks and Uniprocessor Kernels
------------------------------
......@@ -179,7 +179,7 @@ perfect world).
Note that you can also use spin_lock_irq() or
spin_lock_irqsave() here, which stop hardware interrupts
as well: see `Hard IRQ Context <#hard-irq-context>`__.
as well: see `Hard IRQ Context`_.
This works perfectly for UP as well: the spin lock vanishes, and this
macro simply becomes local_bh_disable()
......@@ -230,7 +230,7 @@ The Same Softirq
~~~~~~~~~~~~~~~~
The same softirq can run on the other CPUs: you can use a per-CPU array
(see `Per-CPU Data <#per-cpu-data>`__) for better performance. If you're
(see `Per-CPU Data`_) for better performance. If you're
going so far as to use a softirq, you probably care about scalable
performance enough to justify the extra complexity.
......
......@@ -249,10 +249,8 @@ features; most of these are found in the "kernel hacking" submenu. Several
of these options should be turned on for any kernel used for development or
testing purposes. In particular, you should turn on:
- ENABLE_MUST_CHECK and FRAME_WARN to get an
extra set of warnings for problems like the use of deprecated interfaces
or ignoring an important return value from a function. The output
generated by these warnings can be verbose, but one need not worry about
- FRAME_WARN to get warnings for stack frames larger than a given amount.
The output generated can be verbose, but one need not worry about
warnings from other parts of the kernel.
- DEBUG_OBJECTS will add code to track the lifetime of various objects
......
......@@ -71,7 +71,7 @@ core/oss
The codes for PCM and mixer OSS emulation modules are stored in this
directory. The rawmidi OSS emulation is included in the ALSA rawmidi
code since it's quite small. The sequencer code is stored in
``core/seq/oss`` directory (see `below <#core-seq-oss>`__).
``core/seq/oss`` directory (see `below <core/seq/oss_>`__).
core/seq
~~~~~~~~
......@@ -382,7 +382,7 @@ where ``enable[dev]`` is the module option.
Each time the ``probe`` callback is called, check the availability of
the device. If not available, simply increment the device index and
returns. dev will be incremented also later (`step 7
<#set-the-pci-driver-data-and-return-zero>`__).
<7) Set the PCI driver data and return zero._>`__).
2) Create a card instance
~~~~~~~~~~~~~~~~~~~~~~~~~
......@@ -450,10 +450,10 @@ field contains the information shown in ``/proc/asound/cards``.
5) Create other components, such as mixer, MIDI, etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here you define the basic components such as `PCM <#PCM-Interface>`__,
mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g.
`MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces.
Also, if you want a `proc file <#Proc-Interface>`__, define it here,
Here you define the basic components such as `PCM <PCM Interface_>`__,
mixer (e.g. `AC97 <API for AC97 Codec_>`__), MIDI (e.g.
`MPU-401 <MIDI (MPU401-UART) Interface_>`__), and other interfaces.
Also, if you want a `proc file <Proc Interface_>`__, define it here,
too.
6) Register the card instance.
......@@ -941,7 +941,7 @@ The allocation of an interrupt source is done like this:
chip->irq = pci->irq;
where :c:func:`snd_mychip_interrupt()` is the interrupt handler
defined `later <#pcm-interface-interrupt-handler>`__. Note that
defined `later <PCM Interrupt Handler_>`__. Note that
``chip->irq`` should be defined only when :c:func:`request_irq()`
succeeded.
......@@ -3104,7 +3104,7 @@ processing the output stream in the irq handler.
If the MPU-401 interface shares its interrupt with the other logical
devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see
`below <#MIDI-Interrupt-Handler>`__).
`below <MIDI Interrupt Handler_>`__).
Usually, the port address corresponds to the command port and port + 1
corresponds to the data port. If not, you may change the ``cport``
......
......@@ -10260,7 +10260,6 @@ S: Supported
T: git git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git dev
F: Documentation/atomic_bitops.txt
F: Documentation/atomic_t.txt
F: Documentation/core-api/atomic_ops.rst
F: Documentation/core-api/refcount-vs-atomic.rst
F: Documentation/litmus-tests/
F: Documentation/memory-barriers.txt
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment