selftests/bpf: Add benchmark for local_storage get
Add a benchmarks to demonstrate the performance cliff for local_storage get as the number of local_storage maps increases beyond current local_storage implementation's cache size. "sequential get" and "interleaved get" benchmarks are added, both of which do many bpf_task_storage_get calls on sets of task local_storage maps of various counts, while considering a single specific map to be 'important' and counting task_storage_gets to the important map separately in addition to normal 'hits' count of all gets. Goal here is to mimic scenario where a particular program using one map - the important one - is running on a system where many other local_storage maps exist and are accessed often. While "sequential get" benchmark does bpf_task_storage_get for map 0, 1, ..., {9, 99, 999} in order, "interleaved" benchmark interleaves 4 bpf_task_storage_gets for the important map for every 10 map gets. This is meant to highlight performance differences when important map is accessed far more frequently than non-important maps. A "hashmap control" benchmark is also included for easy comparison of standard bpf hashmap lookup vs local_storage get. The benchmark is similar to "sequential get", but creates and uses BPF_MAP_TYPE_HASH instead of local storage. Only one inner map is created - a hashmap meant to hold tid -> data mapping for all tasks. Size of the hashmap is hardcoded to my system's PID_MAX_LIMIT (4,194,304). The number of these keys which are actually fetched as part of the benchmark is configurable. Addition of this benchmark is inspired by conversation with Alexei in a previous patchset's thread [0], which highlighted the need for such a benchmark to motivate and validate improvements to local_storage implementation. My approach in that series focused on improving performance for explicitly-marked 'important' maps and was rejected with feedback to make more generally-applicable improvements while avoiding explicitly marking maps as important. Thus the benchmark reports both general and important-map-focused metrics, so effect of future work on both is clear. Regarding the benchmark results. On a powerful system (Skylake, 20 cores, 256gb ram): Hashmap Control =============== num keys: 10 hashmap (control) sequential get: hits throughput: 20.900 ± 0.334 M ops/s, hits latency: 47.847 ns/op, important_hits throughput: 20.900 ± 0.334 M ops/s num keys: 1000 hashmap (control) sequential get: hits throughput: 13.758 ± 0.219 M ops/s, hits latency: 72.683 ns/op, important_hits throughput: 13.758 ± 0.219 M ops/s num keys: 10000 hashmap (control) sequential get: hits throughput: 6.995 ± 0.034 M ops/s, hits latency: 142.959 ns/op, important_hits throughput: 6.995 ± 0.034 M ops/s num keys: 100000 hashmap (control) sequential get: hits throughput: 4.452 ± 0.371 M ops/s, hits latency: 224.635 ns/op, important_hits throughput: 4.452 ± 0.371 M ops/s num keys: 4194304 hashmap (control) sequential get: hits throughput: 3.043 ± 0.033 M ops/s, hits latency: 328.587 ns/op, important_hits throughput: 3.043 ± 0.033 M ops/s Local Storage ============= num_maps: 1 local_storage cache sequential get: hits throughput: 47.298 ± 0.180 M ops/s, hits latency: 21.142 ns/op, important_hits throughput: 47.298 ± 0.180 M ops/s local_storage cache interleaved get: hits throughput: 55.277 ± 0.888 M ops/s, hits latency: 18.091 ns/op, important_hits throughput: 55.277 ± 0.888 M ops/s num_maps: 10 local_storage cache sequential get: hits throughput: 40.240 ± 0.802 M ops/s, hits latency: 24.851 ns/op, important_hits throughput: 4.024 ± 0.080 M ops/s local_storage cache interleaved get: hits throughput: 48.701 ± 0.722 M ops/s, hits latency: 20.533 ns/op, important_hits throughput: 17.393 ± 0.258 M ops/s num_maps: 16 local_storage cache sequential get: hits throughput: 44.515 ± 0.708 M ops/s, hits latency: 22.464 ns/op, important_hits throughput: 2.782 ± 0.044 M ops/s local_storage cache interleaved get: hits throughput: 49.553 ± 2.260 M ops/s, hits latency: 20.181 ns/op, important_hits throughput: 15.767 ± 0.719 M ops/s num_maps: 17 local_storage cache sequential get: hits throughput: 38.778 ± 0.302 M ops/s, hits latency: 25.788 ns/op, important_hits throughput: 2.284 ± 0.018 M ops/s local_storage cache interleaved get: hits throughput: 43.848 ± 1.023 M ops/s, hits latency: 22.806 ns/op, important_hits throughput: 13.349 ± 0.311 M ops/s num_maps: 24 local_storage cache sequential get: hits throughput: 19.317 ± 0.568 M ops/s, hits latency: 51.769 ns/op, important_hits throughput: 0.806 ± 0.024 M ops/s local_storage cache interleaved get: hits throughput: 24.397 ± 0.272 M ops/s, hits latency: 40.989 ns/op, important_hits throughput: 6.863 ± 0.077 M ops/s num_maps: 32 local_storage cache sequential get: hits throughput: 13.333 ± 0.135 M ops/s, hits latency: 75.000 ns/op, important_hits throughput: 0.417 ± 0.004 M ops/s local_storage cache interleaved get: hits throughput: 16.898 ± 0.383 M ops/s, hits latency: 59.178 ns/op, important_hits throughput: 4.717 ± 0.107 M ops/s num_maps: 100 local_storage cache sequential get: hits throughput: 6.360 ± 0.107 M ops/s, hits latency: 157.233 ns/op, important_hits throughput: 0.064 ± 0.001 M ops/s local_storage cache interleaved get: hits throughput: 7.303 ± 0.362 M ops/s, hits latency: 136.930 ns/op, important_hits throughput: 1.907 ± 0.094 M ops/s num_maps: 1000 local_storage cache sequential get: hits throughput: 0.452 ± 0.010 M ops/s, hits latency: 2214.022 ns/op, important_hits throughput: 0.000 ± 0.000 M ops/s local_storage cache interleaved get: hits throughput: 0.542 ± 0.007 M ops/s, hits latency: 1843.341 ns/op, important_hits throughput: 0.136 ± 0.002 M ops/s Looking at the "sequential get" results, it's clear that as the number of task local_storage maps grows beyond the current cache size (16), there's a significant reduction in hits throughput. Note that current local_storage implementation assigns a cache_idx to maps as they are created. Since "sequential get" is creating maps 0..n in order and then doing bpf_task_storage_get calls in the same order, the benchmark is effectively ensuring that a map will not be in cache when the program tries to access it. For "interleaved get" results, important-map hits throughput is greatly increased as the important map is more likely to be in cache by virtue of being accessed far more frequently. Throughput still reduces as # maps increases, though. To get a sense of the overhead of the benchmark program, I commented out bpf_task_storage_get/bpf_map_lookup_elem in local_storage_bench.c and ran the benchmark on the same host as the 'real' run. Results: Hashmap Control =============== num keys: 10 hashmap (control) sequential get: hits throughput: 54.288 ± 0.655 M ops/s, hits latency: 18.420 ns/op, important_hits throughput: 54.288 ± 0.655 M ops/s num keys: 1000 hashmap (control) sequential get: hits throughput: 52.913 ± 0.519 M ops/s, hits latency: 18.899 ns/op, important_hits throughput: 52.913 ± 0.519 M ops/s num keys: 10000 hashmap (control) sequential get: hits throughput: 53.480 ± 1.235 M ops/s, hits latency: 18.699 ns/op, important_hits throughput: 53.480 ± 1.235 M ops/s num keys: 100000 hashmap (control) sequential get: hits throughput: 54.982 ± 1.902 M ops/s, hits latency: 18.188 ns/op, important_hits throughput: 54.982 ± 1.902 M ops/s num keys: 4194304 hashmap (control) sequential get: hits throughput: 50.858 ± 0.707 M ops/s, hits latency: 19.662 ns/op, important_hits throughput: 50.858 ± 0.707 M ops/s Local Storage ============= num_maps: 1 local_storage cache sequential get: hits throughput: 110.990 ± 4.828 M ops/s, hits latency: 9.010 ns/op, important_hits throughput: 110.990 ± 4.828 M ops/s local_storage cache interleaved get: hits throughput: 161.057 ± 4.090 M ops/s, hits latency: 6.209 ns/op, important_hits throughput: 161.057 ± 4.090 M ops/s num_maps: 10 local_storage cache sequential get: hits throughput: 112.930 ± 1.079 M ops/s, hits latency: 8.855 ns/op, important_hits throughput: 11.293 ± 0.108 M ops/s local_storage cache interleaved get: hits throughput: 115.841 ± 2.088 M ops/s, hits latency: 8.633 ns/op, important_hits throughput: 41.372 ± 0.746 M ops/s num_maps: 16 local_storage cache sequential get: hits throughput: 115.653 ± 0.416 M ops/s, hits latency: 8.647 ns/op, important_hits throughput: 7.228 ± 0.026 M ops/s local_storage cache interleaved get: hits throughput: 138.717 ± 1.649 M ops/s, hits latency: 7.209 ns/op, important_hits throughput: 44.137 ± 0.525 M ops/s num_maps: 17 local_storage cache sequential get: hits throughput: 112.020 ± 1.649 M ops/s, hits latency: 8.927 ns/op, important_hits throughput: 6.598 ± 0.097 M ops/s local_storage cache interleaved get: hits throughput: 128.089 ± 1.960 M ops/s, hits latency: 7.807 ns/op, important_hits throughput: 38.995 ± 0.597 M ops/s num_maps: 24 local_storage cache sequential get: hits throughput: 92.447 ± 5.170 M ops/s, hits latency: 10.817 ns/op, important_hits throughput: 3.855 ± 0.216 M ops/s local_storage cache interleaved get: hits throughput: 128.844 ± 2.808 M ops/s, hits latency: 7.761 ns/op, important_hits throughput: 36.245 ± 0.790 M ops/s num_maps: 32 local_storage cache sequential get: hits throughput: 102.042 ± 1.462 M ops/s, hits latency: 9.800 ns/op, important_hits throughput: 3.194 ± 0.046 M ops/s local_storage cache interleaved get: hits throughput: 126.577 ± 1.818 M ops/s, hits latency: 7.900 ns/op, important_hits throughput: 35.332 ± 0.507 M ops/s num_maps: 100 local_storage cache sequential get: hits throughput: 111.327 ± 1.401 M ops/s, hits latency: 8.983 ns/op, important_hits throughput: 1.113 ± 0.014 M ops/s local_storage cache interleaved get: hits throughput: 131.327 ± 1.339 M ops/s, hits latency: 7.615 ns/op, important_hits throughput: 34.302 ± 0.350 M ops/s num_maps: 1000 local_storage cache sequential get: hits throughput: 101.978 ± 0.563 M ops/s, hits latency: 9.806 ns/op, important_hits throughput: 0.102 ± 0.001 M ops/s local_storage cache interleaved get: hits throughput: 141.084 ± 1.098 M ops/s, hits latency: 7.088 ns/op, important_hits throughput: 35.430 ± 0.276 M ops/s Adjusting for overhead, latency numbers for "hashmap control" and "sequential get" are: hashmap_control_1k: ~53.8ns hashmap_control_10k: ~124.2ns hashmap_control_100k: ~206.5ns sequential_get_1: ~12.1ns sequential_get_10: ~16.0ns sequential_get_16: ~13.8ns sequential_get_17: ~16.8ns sequential_get_24: ~40.9ns sequential_get_32: ~65.2ns sequential_get_100: ~148.2ns sequential_get_1000: ~2204ns Clearly demonstrating a cliff. In the discussion for v1 of this patch, Alexei noted that local_storage was 2.5x faster than a large hashmap when initially implemented [1]. The benchmark results show that local_storage is 5-10x faster: a long-running BPF application putting some pid-specific info into a hashmap for each pid it sees will probably see on the order of 10-100k pids. Bench numbers for hashmaps of this size are ~10x slower than sequential_get_16, but as the number of local_storage maps grows far past local_storage cache size the performance advantage shrinks and eventually reverses. When running the benchmarks it may be necessary to bump 'open files' ulimit for a successful run. [0]: https://lore.kernel.org/all/20220420002143.1096548-1-davemarchevsky@fb.com [1]: https://lore.kernel.org/bpf/20220511173305.ftldpn23m4ski3d3@MBP-98dd607d3435.dhcp.thefacebook.com/Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20220620222554.270578-1-davemarchevsky@fb.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
Showing
Please register or sign in to comment