Fix e100 on systems that have cache incoherent DMA
On the systems that have cache incoherent DMA, including ARM, there is a race condition between software allocating a new receive buffer and hardware writing into a buffer. The two race on touching the last Receive Frame Descriptor (RFD). It has its el-bit set and its next link equal to 0. When hardware encounters this buffer it attempts to write data to it and then update Status Word bits and Actual Count in the RFD. At the same time software may try to clear the el-bit and set the link address to a new buffer. Since the entire RFD is once cache-line, the two write operations can collide. This can lead to the receive unit stalling or interpreting random memory as its receive area. The fix is to set the el-bit on and the size to 0 on the next to last buffer in the chain. When the hardware encounters this buffer it stops and does not write to it at all. The hardware issues an RNR interrupt with the receive unit in the No Resources state. Software can write to the tail of the list because it knows hardware will stop on the previous descriptor that was marked as the end of list. Once it has a new next to last buffer prepared, it can clear the el-bit and set the size on the previous one. The race on this buffer is safe since the link already points to a valid next buffer and the software can handle the race setting the size (assuming aligned 16 bit writes are atomic with respect to the DMA read). If the hardware sees the el-bit cleared without the size set, it will move on to the next buffer and skip this one. If it sees the size set but the el-bit still set, it will complete that buffer and then RNR interrupt and wait. Signed-off-by: David Acker <dacker@roinet.com> Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
Showing
Please register or sign in to comment