cpufreq: Preserve policy structure across suspend/resume
To perform light-weight cpu-init and teardown in the cpufreq subsystem during suspend/resume, we need to separate out the 2 main functionalities of the cpufreq CPU hotplug callbacks, as outlined below: 1. Init/tear-down of core cpufreq and CPU-specific components, which are critical to the correct functioning of the cpufreq subsystem. 2. Init/tear-down of cpufreq sysfs files during suspend/resume. The first part requires accurate updates to the policy structure such as its ->cpus and ->related_cpus masks, whereas the second part requires that the policy->kobj structure is not released or re-initialized during suspend/resume. To handle both these requirements, we need to allow updates to the policy structure throughout suspend/resume, but prevent the structure from getting freed up. Also, we must have a mechanism by which the cpu-up callbacks can restore the policy structure, without allocating things afresh. (That also helps avoid memory leaks). To achieve this, we use 2 schemes: a. Use a fallback per-cpu storage area for preserving the policy structures during suspend, so that they can be restored during resume appropriately. b. Use the 'frozen' flag to determine when to free or allocate the policy structure vs when to restore the policy from the saved fallback storage. Thus we can successfully preserve the structure across suspend/resume. Effectively, this helps us complete the separation of the 'light-weight' and the 'full' init/tear-down sequences in the cpufreq subsystem, so that this can be made use of in the suspend/resume scenario. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Showing