Commit 94ae8c3f authored by Enzo Matsumiya's avatar Enzo Matsumiya Committed by Steve French

smb: client: compress: LZ77 code improvements cleanup

- Check data compressibility with some heuristics (copied from
  btrfs):
  - should_compress() final decision is is_compressible(data)

- Cleanup compress/lz77.h leaving only lz77_compress() exposed:
  - Move parts to compress/lz77.c, while removing the rest of it
    because they were either unused, used only once, were
    implemented wrong (thanks to David Howells for the help)

- Updated the compression parameters (still compatible with
  Windows implementation) trading off ~20% compression ratio
  for ~40% performance:
  - min match len: 3 -> 4
  - max distance: 8KiB -> 1KiB
  - hash table type: u32 * -> u64 *

Known bugs:
This implementation currently works fine in general, but breaks with
some payloads used during testing.  Investigation ongoing, to be
fixed in a next commit.
Signed-off-by: default avatarEnzo Matsumiya <ematsumiya@suse.de>
Co-developed-by: default avatarDavid Howells <dhowells@redhat.com>
Signed-off-by: default avatarDavid Howells <dhowells@redhat.com>
Signed-off-by: default avatarSteve French <stfrench@microsoft.com>
parent f046d71e
......@@ -15,6 +15,7 @@
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/uio.h>
#include <linux/sort.h>
#include "cifsglob.h"
#include "../common/smb2pdu.h"
......@@ -24,27 +25,361 @@
#include "compress/lz77.h"
#include "compress.h"
int smb_compress(void *buf, const void *data, size_t *len)
/*
* The heuristic_*() functions below try to determine data compressibility.
*
* Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
* unused parts.
*
* Read that file for better and more detailed explanation of the calculations.
*
* The algorithms are ran in a collected sample of the input (uncompressed) data.
* The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
*
* Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
* to "need more analysis" (likely uncompressible).
*/
struct bucket {
unsigned int count;
};
/**
* calc_shannon_entropy() - Compute Shannon entropy of the sampled data.
* @bkt: Bytes counts of the sample.
* @slen: Size of the sample.
*
* Return: true if the level (percentage of number of bits that would be required to
* compress the data) is below the minimum threshold.
*
* Note:
* There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
* possibility of compression, but compressing, or even further analysing, it would waste so much
* resources that it's simply not worth it.
*
* Also Shannon entropy is the last computed heuristic; if we got this far and ended up
* with uncertainty, just stay on the safe side and call it uncompressible.
*/
static bool calc_shannon_entropy(struct bucket *bkt, size_t slen)
{
const size_t threshold = 65, max_entropy = 8 * ilog2(16);
size_t i, p, p2, len, sum = 0;
#define pow4(n) (n * n * n * n)
len = ilog2(pow4(slen));
for (i = 0; i < 256 && bkt[i].count > 0; i++) {
p = bkt[i].count;
p2 = ilog2(pow4(p));
sum += p * (len - p2);
}
sum /= slen;
return ((sum * 100 / max_entropy) <= threshold);
}
/**
* calc_byte_distribution() - Compute byte distribution on the sampled data.
* @bkt: Byte counts of the sample.
* @slen: Size of the sample.
*
* Return:
* 1: High probability (normal (Gaussian) distribution) of the data being compressible.
* 0: A "hard no" for compression -- either a computed uniform distribution of the bytes (e.g.
* random or encrypted data), or calc_shannon_entropy() returned false (see above).
* 2: When computed byte distribution resulted in "low > n < high" grounds.
* calc_shannon_entropy() should be used for a final decision.
*/
static int calc_byte_distribution(struct bucket *bkt, size_t slen)
{
struct smb2_compression_hdr *hdr;
size_t buf_len, data_len;
const size_t low = 64, high = 200, threshold = slen * 90 / 100;
size_t sum = 0;
int i;
for (i = 0; i < low; i++)
sum += bkt[i].count;
if (sum > threshold)
return i;
for (; i < high && bkt[i].count > 0; i++) {
sum += bkt[i].count;
if (sum > threshold)
break;
}
if (i <= low)
return 1;
if (i >= high)
return 0;
return 2;
}
static bool check_ascii_bytes(const struct bucket *bkt)
{
const size_t threshold = 64;
size_t count = 0;
int i;
for (i = 0; i < threshold; i++)
if (bkt[i].count > 0)
count++;
for (; i < 256; i++) {
if (bkt[i].count > 0) {
count++;
if (count > threshold)
break;
}
}
return (count < threshold);
}
static bool check_repeated_data(const u8 *sample, size_t len)
{
size_t s = len / 2;
return (!memcmp(&sample[0], &sample[s], s));
}
static int cmp_bkt(const void *_a, const void *_b)
{
const struct bucket *a = _a, *b = _b;
/* Reverse sort. */
if (a->count > b->count)
return -1;
return 1;
}
/*
* TODO:
* Support other iter types, if required.
* Only ITER_XARRAY is supported for now.
*/
static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
{
struct folio *folios[16], *folio;
unsigned int nr, i, j, npages;
loff_t start = iter->xarray_start + iter->iov_offset;
pgoff_t last, index = start / PAGE_SIZE;
size_t len, off, foff;
ssize_t ret = 0;
void *p;
int s = 0;
last = (start + max - 1) / PAGE_SIZE;
do {
nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
XA_PRESENT);
if (nr == 0)
return -EIO;
for (i = 0; i < nr; i++) {
folio = folios[i];
npages = folio_nr_pages(folio);
foff = start - folio_pos(folio);
off = foff % PAGE_SIZE;
for (j = foff / PAGE_SIZE; j < npages; j++) {
size_t len2;
len = min_t(size_t, max, PAGE_SIZE - off);
len2 = min_t(size_t, len, SZ_2K);
p = kmap_local_page(folio_page(folio, j));
memcpy(&sample[s], p, len2);
kunmap_local(p);
if (ret < 0)
return ret;
s += len2;
if (len2 < SZ_2K || s >= max - SZ_2K)
return s;
max -= len;
if (max <= 0)
return s;
start += len;
off = 0;
index++;
}
}
} while (nr == ARRAY_SIZE(folios));
return s;
}
/**
* is_compressible() - Determines if a chunk of data is compressible.
* @data: Iterator containing uncompressed data.
*
* Return:
* 0: @data is not compressible
* 1: @data is compressible
* -ENOMEM: failed to allocate memory for sample buffer
*
* Tests shows that this function is quite reliable in predicting data compressibility,
* matching close to 1:1 with the behaviour of LZ77 compression success and failures.
*/
static int is_compressible(const struct iov_iter *data)
{
const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
struct bucket *bkt;
int i = 0, ret = 0;
size_t len;
u8 *sample;
len = iov_iter_count(data);
if (len < read_size)
return 0;
if (len - read_size > max)
len = max;
sample = kvzalloc(len, GFP_KERNEL);
if (!sample)
return -ENOMEM;
/* Sample 2K bytes per page of the uncompressed data. */
ret = collect_sample(data, len, sample);
if (ret < 0)
goto out;
len = ret;
ret = 1;
if (check_repeated_data(sample, len))
goto out;
bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
if (!bkt) {
kvfree(sample);
return -ENOMEM;
}
for (i = 0; i < len; i++)
bkt[sample[i]].count++;
if (check_ascii_bytes(bkt))
goto out;
/* Sort in descending order */
sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);
ret = calc_byte_distribution(bkt, len);
if (ret != 2)
goto out;
ret = calc_shannon_entropy(bkt, len);
out:
kvfree(sample);
kfree(bkt);
WARN(ret < 0, "%s: ret=%d\n", __func__, ret);
return !!ret;
}
bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
{
const struct smb2_hdr *shdr = rq->rq_iov->iov_base;
if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
return false;
if (!tcon->ses->server->compression.enabled)
return false;
if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
return false;
if (shdr->Command == SMB2_WRITE) {
const struct smb2_write_req *wreq = rq->rq_iov->iov_base;
if (wreq->Length < SMB_COMPRESS_MIN_LEN)
return false;
return is_compressible(&rq->rq_iter);
}
return (shdr->Command == SMB2_READ);
}
int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
{
struct iov_iter iter;
u32 slen, dlen;
void *src, *dst;
int ret;
buf_len = sizeof(struct smb2_write_req);
data_len = *len;
*len = 0;
hdr = buf;
hdr->ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
hdr->OriginalCompressedSegmentSize = cpu_to_le32(data_len);
hdr->Offset = cpu_to_le32(buf_len);
hdr->Flags = SMB2_COMPRESSION_FLAG_NONE;
hdr->CompressionAlgorithm = SMB3_COMPRESS_LZ77;
/* XXX: add other algs here as they're implemented */
ret = lz77_compress(data, data_len, buf + SMB_COMPRESS_HDR_LEN + buf_len, &data_len);
if (!ret)
*len = SMB_COMPRESS_HDR_LEN + buf_len + data_len;
if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
return -EINVAL;
if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
return -EINVAL;
slen = iov_iter_count(&rq->rq_iter);
src = kvzalloc(slen, GFP_KERNEL);
if (!src) {
ret = -ENOMEM;
goto err_free;
}
/* Keep the original iter intact. */
iter = rq->rq_iter;
if (!copy_from_iter_full(src, slen, &iter)) {
ret = -EIO;
goto err_free;
}
/*
* This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
* of @slen.
*/
dlen = slen;
dst = kvzalloc(dlen, GFP_KERNEL);
if (!dst) {
ret = -ENOMEM;
goto err_free;
}
ret = lz77_compress(src, slen, dst, &dlen);
if (!ret) {
struct smb2_compression_hdr hdr = { 0 };
struct smb_rqst comp_rq = { .rq_nvec = 3, };
struct kvec iov[3];
hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);
iov[0].iov_base = &hdr;
iov[0].iov_len = sizeof(hdr);
iov[1] = rq->rq_iov[0];
iov[2].iov_base = dst;
iov[2].iov_len = dlen;
comp_rq.rq_iov = iov;
ret = send_fn(server, 1, &comp_rq);
} else if (ret == -EMSGSIZE || dlen >= slen) {
ret = send_fn(server, 1, rq);
}
err_free:
kvfree(dst);
kvfree(src);
return ret;
}
......@@ -26,18 +26,27 @@
#define SMB_COMPRESS_PAYLOAD_HDR_LEN 8
#define SMB_COMPRESS_MIN_LEN PAGE_SIZE
struct smb_compress_ctx {
struct TCP_Server_Info *server;
struct work_struct work;
struct mid_q_entry *mid;
#ifdef CONFIG_CIFS_COMPRESSION
typedef int (*compress_send_fn)(struct TCP_Server_Info *, int, struct smb_rqst *);
void *buf; /* compressed data */
void *data; /* uncompressed data */
size_t len;
};
int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn);
#ifdef CONFIG_CIFS_COMPRESSION
int smb_compress(void *buf, const void *data, size_t *len);
/**
* should_compress() - Determines if a request (write) or the response to a
* request (read) should be compressed.
* @tcon: tcon of the request is being sent to
* @rqst: request to evaluate
*
* Return: true iff:
* - compression was successfully negotiated with server
* - server has enabled compression for the share
* - it's a read or write request
* - (write only) request length is >= SMB_COMPRESS_MIN_LEN
* - (write only) is_compressible() returns 1
*
* Return false otherwise.
*/
bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq);
/**
* smb_compress_alg_valid() - Validate a compression algorithm.
......@@ -62,48 +71,20 @@ static __always_inline int smb_compress_alg_valid(__le16 alg, bool valid_none)
return false;
}
/**
* should_compress() - Determines if a request (write) or the response to a
* request (read) should be compressed.
* @tcon: tcon of the request is being sent to
* @buf: buffer with an SMB2 READ/WRITE request
*
* Return: true iff:
* - compression was successfully negotiated with server
* - server has enabled compression for the share
* - it's a read or write request
* - if write, request length is >= SMB_COMPRESS_MIN_LEN
*
* Return false otherwise.
*/
static __always_inline bool should_compress(const struct cifs_tcon *tcon, const void *buf)
#else /* !CONFIG_CIFS_COMPRESSION */
static inline int smb_compress(void *unused1, void *unused2, void *unused3)
{
const struct smb2_hdr *shdr = buf;
if (!tcon || !tcon->ses || !tcon->ses->server)
return false;
if (!tcon->ses->server->compression.enabled)
return false;
if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
return false;
if (shdr->Command == SMB2_WRITE) {
const struct smb2_write_req *req = buf;
return -EOPNOTSUPP;
}
return (req->Length >= SMB_COMPRESS_MIN_LEN);
}
static inline bool should_compress(void *unused1, void *unused2)
{
return false;
}
return (shdr->Command == SMB2_READ);
static inline int smb_compress_alg_valid(__le16 unused1, bool unused2)
{
return -EOPNOTSUPP;
}
/*
* #else !CONFIG_CIFS_COMPRESSION ...
* These routines should not be called when CONFIG_CIFS_COMPRESSION disabled
* #define smb_compress(arg1, arg2, arg3) (-EOPNOTSUPP)
* #define smb_compress_alg_valid(arg1, arg2) (-EOPNOTSUPP)
* #define should_compress(arg1, arg2) (false)
*/
#endif /* !CONFIG_CIFS_COMPRESSION */
#endif /* _SMB_COMPRESS_H */
......@@ -7,14 +7,75 @@
* Implementation of the LZ77 "plain" compression algorithm, as per MS-XCA spec.
*/
#include <linux/slab.h>
#include <linux/sizes.h>
#include <linux/count_zeros.h>
#include <asm/unaligned.h>
#include "lz77.h"
static __always_inline u32 hash3(const u8 *ptr)
/*
* Compression parameters.
*/
#define LZ77_MATCH_MIN_LEN 4
#define LZ77_MATCH_MIN_DIST 1
#define LZ77_MATCH_MAX_DIST SZ_1K
#define LZ77_HASH_LOG 15
#define LZ77_HASH_SIZE (1 << LZ77_HASH_LOG)
#define LZ77_STEP_SIZE sizeof(u64)
static __always_inline u8 lz77_read8(const u8 *ptr)
{
return get_unaligned(ptr);
}
static __always_inline u64 lz77_read64(const u64 *ptr)
{
return get_unaligned(ptr);
}
static __always_inline void lz77_write8(u8 *ptr, u8 v)
{
put_unaligned(v, ptr);
}
static __always_inline void lz77_write16(u16 *ptr, u16 v)
{
put_unaligned_le16(v, ptr);
}
static __always_inline void lz77_write32(u32 *ptr, u32 v)
{
put_unaligned_le32(v, ptr);
}
static __always_inline u32 lz77_match_len(const void *wnd, const void *cur, const void *end)
{
return lz77_hash32(lz77_read32(ptr) & 0xffffff, LZ77_HASH_LOG);
const void *start = cur;
u64 diff;
/* Safe for a do/while because otherwise we wouldn't reach here from the main loop. */
do {
diff = lz77_read64(cur) ^ lz77_read64(wnd);
if (!diff) {
cur += LZ77_STEP_SIZE;
wnd += LZ77_STEP_SIZE;
continue;
}
/* This computes the number of common bytes in @diff. */
cur += count_trailing_zeros(diff) >> 3;
return (cur - start);
} while (likely(cur + LZ77_STEP_SIZE < end));
while (cur < end && lz77_read8(cur++) == lz77_read8(wnd++))
;
return (cur - start);
}
static u8 *write_match(u8 *dst, u8 **nib, u32 dist, u32 len)
static __always_inline void *lz77_write_match(void *dst, void **nib, u32 dist, u32 len)
{
len -= 3;
dist--;
......@@ -22,6 +83,7 @@ static u8 *write_match(u8 *dst, u8 **nib, u32 dist, u32 len)
if (len < 7) {
lz77_write16(dst, dist + len);
return dst + 2;
}
......@@ -31,11 +93,13 @@ static u8 *write_match(u8 *dst, u8 **nib, u32 dist, u32 len)
len -= 7;
if (!*nib) {
lz77_write8(dst, umin(len, 15));
*nib = dst;
lz77_write8(dst, min_t(unsigned int, len, 15));
dst++;
} else {
**nib |= min_t(unsigned int, len, 15) << 4;
u8 *b = *nib;
lz77_write8(b, *b | umin(len, 15) << 4);
*nib = NULL;
}
......@@ -45,15 +109,16 @@ static u8 *write_match(u8 *dst, u8 **nib, u32 dist, u32 len)
len -= 15;
if (len < 255) {
lz77_write8(dst, len);
return dst + 1;
}
lz77_write8(dst, 0xff);
dst++;
len += 7 + 15;
if (len <= 0xffff) {
lz77_write16(dst, len);
return dst + 2;
}
......@@ -64,148 +129,107 @@ static u8 *write_match(u8 *dst, u8 **nib, u32 dist, u32 len)
return dst + 4;
}
static u8 *write_literals(u8 *dst, const u8 *dst_end, const u8 *src, size_t count,
struct lz77_flags *flags)
noinline int lz77_compress(const void *src, u32 slen, void *dst, u32 *dlen)
{
const u8 *end = src + count;
while (src < end) {
size_t c = lz77_min(count, 32 - flags->count);
if (dst + c >= dst_end)
return ERR_PTR(-EFAULT);
if (lz77_copy(dst, src, c))
return ERR_PTR(-EFAULT);
dst += c;
src += c;
count -= c;
flags->val <<= c;
flags->count += c;
if (flags->count == 32) {
lz77_write32(flags->pos, flags->val);
flags->count = 0;
flags->pos = dst;
dst += 4;
}
}
return dst;
}
static __always_inline bool is_valid_match(const u32 dist, const u32 len)
{
return (dist >= LZ77_MATCH_MIN_DIST && dist < LZ77_MATCH_MAX_DIST) &&
(len >= LZ77_MATCH_MIN_LEN && len < LZ77_MATCH_MAX_LEN);
}
static __always_inline const u8 *find_match(u32 *htable, const u8 *base, const u8 *cur,
const u8 *end, u32 *best_len)
{
const u8 *match;
u32 hash;
size_t offset;
hash = hash3(cur);
offset = cur - base;
if (htable[hash] >= offset)
return cur;
match = base + htable[hash];
*best_len = lz77_match(match, cur, end);
if (is_valid_match(cur - match, *best_len))
return match;
return cur;
}
int lz77_compress(const u8 *src, size_t src_len, u8 *dst, size_t *dst_len)
{
const u8 *srcp, *src_end, *anchor;
struct lz77_flags flags = { 0 };
u8 *dstp, *dst_end, *nib;
u32 *htable;
int ret;
const void *srcp, *end;
void *dstp, *nib, *flag_pos;
u32 flag_count = 0;
long flag = 0;
u64 *htable;
srcp = src;
anchor = srcp;
src_end = src + src_len;
end = src + slen;
dstp = dst;
dst_end = dst + *dst_len;
flags.pos = dstp;
nib = NULL;
memset(dstp, 0, *dst_len);
flag_pos = dstp;
dstp += 4;
htable = kvcalloc(LZ77_HASH_SIZE, sizeof(u32), GFP_KERNEL);
htable = kvcalloc(LZ77_HASH_SIZE, sizeof(*htable), GFP_KERNEL);
if (!htable)
return -ENOMEM;
/* fill hashtable with invalid offsets */
memset(htable, 0xff, LZ77_HASH_SIZE * sizeof(u32));
/* Main loop. */
do {
u32 dist, len = 0;
const void *wnd;
u64 hash;
/* from here on, any error is because @dst_len reached >= @src_len */
ret = -EMSGSIZE;
hash = ((lz77_read64(srcp) << 24) * 889523592379ULL) >> (64 - LZ77_HASH_LOG);
wnd = src + htable[hash];
htable[hash] = srcp - src;
dist = srcp - wnd;
/* main loop */
while (srcp < src_end) {
u32 hash, dist, len;
const u8 *match;
if (dist && dist < LZ77_MATCH_MAX_DIST)
len = lz77_match_len(wnd, srcp, end);
while (srcp + 3 < src_end) {
len = LZ77_MATCH_MIN_LEN - 1;
match = find_match(htable, src, srcp, src_end, &len);
hash = hash3(srcp);
htable[hash] = srcp - src;
if (len < LZ77_MATCH_MIN_LEN) {
lz77_write8(dstp, lz77_read8(srcp));
dstp++;
srcp++;
if (likely(match < srcp)) {
dist = srcp - match;
break;
flag <<= 1;
flag_count++;
if (flag_count == 32) {
lz77_write32(flag_pos, flag);
flag_count = 0;
flag_pos = dstp;
dstp += 4;
}
srcp++;
continue;
}
dstp = write_literals(dstp, dst_end, anchor, srcp - anchor, &flags);
if (IS_ERR(dstp))
goto err_free;
if (srcp + 3 >= src_end)
goto leftovers;
/*
* Bail out if @dstp reached >= 7/8 of @slen -- already compressed badly, not worth
* going further.
*/
if (unlikely(dstp - dst >= slen - (slen >> 3))) {
*dlen = slen;
goto out;
}
dstp = write_match(dstp, &nib, dist, len);
dstp = lz77_write_match(dstp, &nib, dist, len);
srcp += len;
anchor = srcp;
flags.val = (flags.val << 1) | 1;
flags.count++;
if (flags.count == 32) {
lz77_write32(flags.pos, flags.val);
flags.count = 0;
flags.pos = dstp;
flag = (flag << 1) | 1;
flag_count++;
if (flag_count == 32) {
lz77_write32(flag_pos, flag);
flag_count = 0;
flag_pos = dstp;
dstp += 4;
}
} while (likely(srcp + LZ77_STEP_SIZE < end));
while (srcp < end) {
u32 c = umin(end - srcp, 32 - flag_count);
memcpy(dstp, srcp, c);
dstp += c;
srcp += c;
flag <<= c;
flag_count += c;
if (flag_count == 32) {
lz77_write32(flag_pos, flag);
flag_count = 0;
flag_pos = dstp;
dstp += 4;
}
}
leftovers:
if (srcp < src_end) {
dstp = write_literals(dstp, dst_end, srcp, src_end - srcp, &flags);
if (IS_ERR(dstp))
goto err_free;
}
flags.val <<= (32 - flags.count);
flags.val |= (1 << (32 - flags.count)) - 1;
lz77_write32(flags.pos, flags.val);
flag <<= (32 - flag_count);
flag |= (1 << (32 - flag_count)) - 1;
lz77_write32(flag_pos, flag);
*dst_len = dstp - dst;
ret = 0;
err_free:
*dlen = dstp - dst;
out:
kvfree(htable);
return ret;
if (*dlen < slen)
return 0;
return -EMSGSIZE;
}
......@@ -4,283 +4,12 @@
*
* Authors: Enzo Matsumiya <ematsumiya@suse.de>
*
* Definitions and optmized helpers for LZ77 compression.
* Implementation of the LZ77 "plain" compression algorithm, as per MS-XCA spec.
*/
#ifndef _SMB_COMPRESS_LZ77_H
#define _SMB_COMPRESS_LZ77_H
#include <linux/uaccess.h>
#ifdef CONFIG_CIFS_COMPRESSION
#include <asm/ptrace.h>
#include <linux/kernel.h>
#include <linux/string.h>
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#include <asm-generic/unaligned.h>
#endif
#define LZ77_HASH_LOG 13
#define LZ77_HASH_SIZE (1 << LZ77_HASH_LOG)
#define LZ77_HASH_MASK lz77_hash_mask(LZ77_HASH_LOG)
/* We can increase this for better compression (but worse performance). */
#define LZ77_MATCH_MIN_LEN 3
/* From MS-XCA, but it's arbitrarily chosen. */
#define LZ77_MATCH_MAX_LEN S32_MAX
/*
* Check this to ensure we don't match the current position, which would
* end up doing a verbatim copy of the input, and actually overflowing
* the output buffer because of the encoded metadata.
*/
#define LZ77_MATCH_MIN_DIST 1
/* How far back in the buffer can we try to find a match (i.e. window size) */
#define LZ77_MATCH_MAX_DIST 8192
#define LZ77_STEPSIZE_16 sizeof(u16)
#define LZ77_STEPSIZE_32 sizeof(u32)
#define LZ77_STEPSIZE_64 sizeof(u64)
struct lz77_flags {
u8 *pos;
size_t count;
long val;
};
static __always_inline u32 lz77_hash_mask(const unsigned int log2)
{
return ((1 << log2) - 1);
}
static __always_inline u32 lz77_hash64(const u64 v, const unsigned int log2)
{
const u64 prime5bytes = 889523592379ULL;
return (u32)(((v << 24) * prime5bytes) >> (64 - log2));
}
static __always_inline u32 lz77_hash32(const u32 v, const unsigned int log2)
{
return ((v * 2654435769LL) >> (32 - log2)) & lz77_hash_mask(log2);
}
static __always_inline u32 lz77_log2(unsigned int x)
{
return x ? ((u32)(31 - __builtin_clz(x))) : 0;
}
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
static __always_inline u8 lz77_read8(const void *ptr)
{
return *(u8 *)ptr;
}
static __always_inline u16 lz77_read16(const void *ptr)
{
return *(u16 *)ptr;
}
static __always_inline u32 lz77_read32(const void *ptr)
{
return *(u32 *)ptr;
}
static __always_inline u64 lz77_read64(const void *ptr)
{
return *(u64 *)ptr;
}
static __always_inline void lz77_write8(void *ptr, const u8 v)
{
*(u8 *)ptr = v;
}
static __always_inline void lz77_write16(void *ptr, const u16 v)
{
*(u16 *)ptr = v;
}
static __always_inline void lz77_write32(void *ptr, const u32 v)
{
*(u32 *)ptr = v;
}
static __always_inline void lz77_write64(void *ptr, const u64 v)
{
*(u64 *)ptr = v;
}
static __always_inline void lz77_write_ptr16(void *ptr, const void *vp)
{
*(u16 *)ptr = *(const u16 *)vp;
}
static __always_inline void lz77_write_ptr32(void *ptr, const void *vp)
{
*(u32 *)ptr = *(const u32 *)vp;
}
static __always_inline void lz77_write_ptr64(void *ptr, const void *vp)
{
*(u64 *)ptr = *(const u64 *)vp;
}
static __always_inline long lz77_copy(u8 *dst, const u8 *src, size_t count)
{
return copy_from_kernel_nofault(dst, src, count);
}
#else /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
static __always_inline u8 lz77_read8(const void *ptr)
{
return get_unaligned((u8 *)ptr);
}
static __always_inline u16 lz77_read16(const void *ptr)
{
return lz77_read8(ptr) | (lz77_read8(ptr + 1) << 8);
}
static __always_inline u32 lz77_read32(const void *ptr)
{
return lz77_read16(ptr) | (lz77_read16(ptr + 2) << 16);
}
static __always_inline u64 lz77_read64(const void *ptr)
{
return lz77_read32(ptr) | ((u64)lz77_read32(ptr + 4) << 32);
}
static __always_inline void lz77_write8(void *ptr, const u8 v)
{
put_unaligned(v, (u8 *)ptr);
}
static __always_inline void lz77_write16(void *ptr, const u16 v)
{
lz77_write8(ptr, v & 0xff);
lz77_write8(ptr + 1, (v >> 8) & 0xff);
}
static __always_inline void lz77_write32(void *ptr, const u32 v)
{
lz77_write16(ptr, v & 0xffff);
lz77_write16(ptr + 2, (v >> 16) & 0xffff);
}
static __always_inline void lz77_write64(void *ptr, const u64 v)
{
lz77_write32(ptr, v & 0xffffffff);
lz77_write32(ptr + 4, (v >> 32) & 0xffffffff);
}
static __always_inline void lz77_write_ptr16(void *ptr, const void *vp)
{
const u16 v = lz77_read16(vp);
lz77_write16(ptr, v);
}
static __always_inline void lz77_write_ptr32(void *ptr, const void *vp)
{
const u32 v = lz77_read32(vp);
lz77_write32(ptr, v);
}
static __always_inline void lz77_write_ptr64(void *ptr, const void *vp)
{
const u64 v = lz77_read64(vp);
lz77_write64(ptr, v);
}
static __always_inline long lz77_copy(u8 *dst, const u8 *src, size_t count)
{
memcpy(dst, src, count);
return 0;
}
#endif /* !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
static __always_inline unsigned int __count_common_bytes(const unsigned long diff)
{
#ifdef __has_builtin
# if __has_builtin(__builtin_ctzll)
return (unsigned int)__builtin_ctzll(diff) >> 3;
# endif
#else
/* count trailing zeroes */
unsigned long bits = 0, i, z = 0;
bits |= diff;
for (i = 0; i < 64; i++) {
if (bits[i])
break;
z++;
}
return (unsigned int)z >> 3;
#endif
}
static __always_inline size_t lz77_match(const u8 *match, const u8 *cur, const u8 *end)
{
const u8 *start = cur;
if (cur == match)
return 0;
if (likely(cur < end - (LZ77_STEPSIZE_64 - 1))) {
u64 const diff = lz77_read64(cur) ^ lz77_read64(match);
if (!diff) {
cur += LZ77_STEPSIZE_64;
match += LZ77_STEPSIZE_64;
} else {
return __count_common_bytes(diff);
}
}
while (likely(cur < end - (LZ77_STEPSIZE_64 - 1))) {
u64 const diff = lz77_read64(cur) ^ lz77_read64(match);
if (!diff) {
cur += LZ77_STEPSIZE_64;
match += LZ77_STEPSIZE_64;
continue;
}
cur += __count_common_bytes(diff);
return (size_t)(cur - start);
}
if (cur < end - 3 && !(lz77_read32(cur) ^ lz77_read32(match))) {
cur += LZ77_STEPSIZE_32;
match += LZ77_STEPSIZE_32;
}
if (cur < end - 1 && lz77_read16(cur) == lz77_read16(match)) {
cur += LZ77_STEPSIZE_16;
match += LZ77_STEPSIZE_16;
}
if (cur < end && *cur == *match)
cur++;
return (size_t)(cur - start);
}
static __always_inline unsigned long lz77_max(unsigned long a, unsigned long b)
{
int m = (a < b) - 1;
return (a & m) | (b & ~m);
}
static __always_inline unsigned long lz77_min(unsigned long a, unsigned long b)
{
int m = (a > b) - 1;
return (a & m) | (b & ~m);
}
int lz77_compress(const u8 *src, size_t src_len, u8 *dst, size_t *dst_len);
/* when CONFIG_CIFS_COMPRESSION not set lz77_compress() is not called */
#endif /* !CONFIG_CIFS_COMPRESSION */
int lz77_compress(const void *src, u32 slen, void *dst, u32 *dlen);
#endif /* _SMB_COMPRESS_LZ77_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment