Commit 9fd4a4e3 authored by Lai Jiangshan's avatar Lai Jiangshan Committed by Sean Christopherson

KVM: x86/mmu: Remove FNAME(invlpg) and use FNAME(sync_spte) to update vTLB instead.

In hardware TLB, invalidating TLB entries means the translations are
removed from the TLB.

In KVM shadowed vTLB, the translations (combinations of shadow paging
and hardware TLB) are generally maintained as long as they remain "clean"
when the TLB of an address space (i.e. a PCID or all) is flushed with
the help of write-protections, sp->unsync, and kvm_sync_page(), where
"clean" in this context means that no updates to KVM's SPTEs are needed.

However, FNAME(invlpg) always zaps/removes the vTLB if the shadow page is
unsync, and thus triggers a remote flush even if the original vTLB entry
is clean, i.e. is usable as-is.

Besides this, FNAME(invlpg) is largely is a duplicate implementation of
FNAME(sync_spte) to invalidate a vTLB entry.

To address both issues, reuse FNAME(sync_spte) to share the code and
slightly modify the semantics, i.e. keep the vTLB entry if it's "clean"
and avoid remote TLB flush.
Signed-off-by: default avatarLai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-3-jiangshanlai@gmail.comSigned-off-by: default avatarSean Christopherson <seanjc@google.com>
parent ed335278
......@@ -445,7 +445,6 @@ struct kvm_mmu {
struct x86_exception *exception);
int (*sync_spte)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, int i);
void (*invlpg)(struct kvm_vcpu *vcpu, u64 addr, hpa_t root_hpa);
struct kvm_mmu_root_info root;
union kvm_cpu_role cpu_role;
union kvm_mmu_page_role root_role;
......
......@@ -1073,14 +1073,6 @@ static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
}
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_memory_cache *mc;
mc = &vcpu->arch.mmu_pte_list_desc_cache;
return kvm_mmu_memory_cache_nr_free_objects(mc);
}
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
struct kvm_memslots *slots;
......@@ -4527,7 +4519,6 @@ static void nonpaging_init_context(struct kvm_mmu *context)
context->page_fault = nonpaging_page_fault;
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->sync_spte = NULL;
context->invlpg = NULL;
}
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
......@@ -5118,7 +5109,6 @@ static void paging64_init_context(struct kvm_mmu *context)
context->page_fault = paging64_page_fault;
context->gva_to_gpa = paging64_gva_to_gpa;
context->sync_spte = paging64_sync_spte;
context->invlpg = paging64_invlpg;
}
static void paging32_init_context(struct kvm_mmu *context)
......@@ -5126,7 +5116,6 @@ static void paging32_init_context(struct kvm_mmu *context)
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
context->sync_spte = paging32_sync_spte;
context->invlpg = paging32_invlpg;
}
static union kvm_cpu_role
......@@ -5215,7 +5204,6 @@ static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
context->root_role.word = root_role.word;
context->page_fault = kvm_tdp_page_fault;
context->sync_spte = NULL;
context->invlpg = NULL;
context->get_guest_pgd = get_cr3;
context->get_pdptr = kvm_pdptr_read;
context->inject_page_fault = kvm_inject_page_fault;
......@@ -5347,7 +5335,6 @@ void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
context->page_fault = ept_page_fault;
context->gva_to_gpa = ept_gva_to_gpa;
context->sync_spte = ept_sync_spte;
context->invlpg = ept_invlpg;
update_permission_bitmask(context, true);
context->pkru_mask = 0;
......@@ -5388,7 +5375,7 @@ static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
* L2 page tables are never shadowed, so there is no need to sync
* SPTEs.
*/
g_context->invlpg = NULL;
g_context->sync_spte = NULL;
/*
* Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
......@@ -5764,6 +5751,35 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
u64 addr, hpa_t root_hpa)
{
struct kvm_shadow_walk_iterator iterator;
vcpu_clear_mmio_info(vcpu, addr);
if (!VALID_PAGE(root_hpa))
return;
write_lock(&vcpu->kvm->mmu_lock);
for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
if (sp->unsync) {
int ret = mmu->sync_spte(vcpu, sp, iterator.index);
if (ret < 0)
mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
if (ret)
kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
}
if (!sp->unsync_children)
break;
}
write_unlock(&vcpu->kvm->mmu_lock);
}
void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
u64 addr, unsigned long roots)
{
......@@ -5780,15 +5796,15 @@ void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
}
if (!mmu->invlpg)
if (!mmu->sync_spte)
return;
if (roots & KVM_MMU_ROOT_CURRENT)
mmu->invlpg(vcpu, addr, mmu->root.hpa);
__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
if (roots & KVM_MMU_ROOT_PREVIOUS(i))
mmu->invlpg(vcpu, addr, mmu->prev_roots[i].hpa);
__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
......
......@@ -846,63 +846,6 @@ static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
}
/* Note, @addr is a GPA when invlpg() invalidates an L2 GPA translation in shadowed TDP */
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, u64 addr, hpa_t root_hpa)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
u64 old_spte;
int level;
u64 *sptep;
vcpu_clear_mmio_info(vcpu, addr);
/*
* No need to check return value here, rmap_can_add() can
* help us to skip pte prefetch later.
*/
mmu_topup_memory_caches(vcpu, true);
if (!VALID_PAGE(root_hpa))
return;
write_lock(&vcpu->kvm->mmu_lock);
for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
level = iterator.level;
sptep = iterator.sptep;
sp = sptep_to_sp(sptep);
old_spte = *sptep;
if (is_last_spte(old_spte, level)) {
pt_element_t gpte;
gpa_t pte_gpa;
if (!sp->unsync)
break;
pte_gpa = FNAME(get_level1_sp_gpa)(sp);
pte_gpa += spte_index(sptep) * sizeof(pt_element_t);
mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
if (is_shadow_present_pte(old_spte))
kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
if (!rmap_can_add(vcpu))
break;
if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
sizeof(pt_element_t)))
break;
FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
}
if (!sp->unsync_children)
break;
}
write_unlock(&vcpu->kvm->mmu_lock);
}
/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gpa_t addr, u64 access,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment