Commit a00736e9 authored by Sam Ravnborg's avatar Sam Ravnborg Committed by David S. Miller

sparc: copy sparc64 specific files to asm-sparc

Used the following script to copy the files:
cd include
set -e
SPARC64=`ls asm-sparc64`
for FILE in ${SPARC64}; do
	if [ -f asm-sparc/$FILE ]; then
		echo $FILE exist in asm-sparc
	else
		git mv asm-sparc64/$FILE asm-sparc/$FILE
		printf "#include <asm-sparc/$FILE>\n" > asm-sparc64/$FILE
		git add asm-sparc64/$FILE
	fi
done
Signed-off-by: default avatarSam Ravnborg <sam@ravnborg.org>
parent bdc3135a
#ifndef AGP_H
#define AGP_H 1
/* dummy for now */
#define map_page_into_agp(page)
#define unmap_page_from_agp(page)
#define flush_agp_cache() mb()
/* Convert a physical address to an address suitable for the GART. */
#define phys_to_gart(x) (x)
#define gart_to_phys(x) (x)
/* GATT allocation. Returns/accepts GATT kernel virtual address. */
#define alloc_gatt_pages(order) \
((char *)__get_free_pages(GFP_KERNEL, (order)))
#define free_gatt_pages(table, order) \
free_pages((unsigned long)(table), (order))
#endif
/*
* apb.h: Advanced PCI Bridge Configuration Registers and Bits
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
*/
#ifndef _SPARC64_APB_H
#define _SPARC64_APB_H
#define APB_TICK_REGISTER 0xb0
#define APB_INT_ACK 0xb8
#define APB_PRIMARY_MASTER_RETRY_LIMIT 0xc0
#define APB_DMA_ASFR 0xc8
#define APB_DMA_AFAR 0xd0
#define APB_PIO_TARGET_RETRY_LIMIT 0xd8
#define APB_PIO_TARGET_LATENCY_TIMER 0xd9
#define APB_DMA_TARGET_RETRY_LIMIT 0xda
#define APB_DMA_TARGET_LATENCY_TIMER 0xdb
#define APB_SECONDARY_MASTER_RETRY_LIMIT 0xdc
#define APB_SECONDARY_CONTROL 0xdd
#define APB_IO_ADDRESS_MAP 0xde
#define APB_MEM_ADDRESS_MAP 0xdf
#define APB_PCI_CONTROL_LOW 0xe0
# define APB_PCI_CTL_LOW_ARB_PARK (1 << 21)
# define APB_PCI_CTL_LOW_ERRINT_EN (1 << 8)
#define APB_PCI_CONTROL_HIGH 0xe4
# define APB_PCI_CTL_HIGH_SERR (1 << 2)
# define APB_PCI_CTL_HIGH_ARBITER_EN (1 << 0)
#define APB_PIO_ASFR 0xe8
#define APB_PIO_AFAR 0xf0
#define APB_DIAG_REGISTER 0xf8
#endif /* !(_SPARC64_APB_H) */
#ifndef _SPARC64_BACKOFF_H
#define _SPARC64_BACKOFF_H
#define BACKOFF_LIMIT (4 * 1024)
#ifdef CONFIG_SMP
#define BACKOFF_SETUP(reg) \
mov 1, reg
#define BACKOFF_SPIN(reg, tmp, label) \
mov reg, tmp; \
88: brnz,pt tmp, 88b; \
sub tmp, 1, tmp; \
set BACKOFF_LIMIT, tmp; \
cmp reg, tmp; \
bg,pn %xcc, label; \
nop; \
ba,pt %xcc, label; \
sllx reg, 1, reg;
#else
#define BACKOFF_SETUP(reg)
#define BACKOFF_SPIN(reg, tmp, label) \
ba,pt %xcc, label; \
nop;
#endif
#endif /* _SPARC64_BACKOFF_H */
/*
* bbc.h: Defines for BootBus Controller found on UltraSPARC-III
* systems.
*
* Copyright (C) 2000 David S. Miller (davem@redhat.com)
*/
#ifndef _SPARC64_BBC_H
#define _SPARC64_BBC_H
/* Register sizes are indicated by "B" (Byte, 1-byte),
* "H" (Half-word, 2 bytes), "W" (Word, 4 bytes) or
* "Q" (Quad, 8 bytes) inside brackets.
*/
#define BBC_AID 0x00 /* [B] Agent ID */
#define BBC_DEVP 0x01 /* [B] Device Present */
#define BBC_ARB 0x02 /* [B] Arbitration */
#define BBC_QUIESCE 0x03 /* [B] Quiesce */
#define BBC_WDACTION 0x04 /* [B] Watchdog Action */
#define BBC_SPG 0x06 /* [B] Soft POR Gen */
#define BBC_SXG 0x07 /* [B] Soft XIR Gen */
#define BBC_PSRC 0x08 /* [W] POR Source */
#define BBC_XSRC 0x0c /* [B] XIR Source */
#define BBC_CSC 0x0d /* [B] Clock Synthesizers Control*/
#define BBC_ES_CTRL 0x0e /* [H] Energy Star Control */
#define BBC_ES_ACT 0x10 /* [W] E* Assert Change Time */
#define BBC_ES_DACT 0x14 /* [B] E* De-Assert Change Time */
#define BBC_ES_DABT 0x15 /* [B] E* De-Assert Bypass Time */
#define BBC_ES_ABT 0x16 /* [H] E* Assert Bypass Time */
#define BBC_ES_PST 0x18 /* [W] E* PLL Settle Time */
#define BBC_ES_FSL 0x1c /* [W] E* Frequency Switch Latency*/
#define BBC_EBUST 0x20 /* [Q] EBUS Timing */
#define BBC_JTAG_CMD 0x28 /* [W] JTAG+ Command */
#define BBC_JTAG_CTRL 0x2c /* [B] JTAG+ Control */
#define BBC_I2C_SEL 0x2d /* [B] I2C Selection */
#define BBC_I2C_0_S1 0x2e /* [B] I2C ctrlr-0 reg S1 */
#define BBC_I2C_0_S0 0x2f /* [B] I2C ctrlr-0 regs S0,S0',S2,S3*/
#define BBC_I2C_1_S1 0x30 /* [B] I2C ctrlr-1 reg S1 */
#define BBC_I2C_1_S0 0x31 /* [B] I2C ctrlr-1 regs S0,S0',S2,S3*/
#define BBC_KBD_BEEP 0x32 /* [B] Keyboard Beep */
#define BBC_KBD_BCNT 0x34 /* [W] Keyboard Beep Counter */
#define BBC_REGS_SIZE 0x40
/* There is a 2K scratch ram area at offset 0x80000 but I doubt
* we will use it for anything.
*/
/* Agent ID register. This register shows the Safari Agent ID
* for the processors. The value returned depends upon which
* cpu is reading the register.
*/
#define BBC_AID_ID 0x07 /* Safari ID */
#define BBC_AID_RESV 0xf8 /* Reserved */
/* Device Present register. One can determine which cpus are actually
* present in the machine by interrogating this register.
*/
#define BBC_DEVP_CPU0 0x01 /* Processor 0 present */
#define BBC_DEVP_CPU1 0x02 /* Processor 1 present */
#define BBC_DEVP_CPU2 0x04 /* Processor 2 present */
#define BBC_DEVP_CPU3 0x08 /* Processor 3 present */
#define BBC_DEVP_RESV 0xf0 /* Reserved */
/* Arbitration register. This register is used to block access to
* the BBC from a particular cpu.
*/
#define BBC_ARB_CPU0 0x01 /* Enable cpu 0 BBC arbitratrion */
#define BBC_ARB_CPU1 0x02 /* Enable cpu 1 BBC arbitratrion */
#define BBC_ARB_CPU2 0x04 /* Enable cpu 2 BBC arbitratrion */
#define BBC_ARB_CPU3 0x08 /* Enable cpu 3 BBC arbitratrion */
#define BBC_ARB_RESV 0xf0 /* Reserved */
/* Quiesce register. Bus and BBC segments for cpus can be disabled
* with this register, ie. for hot plugging.
*/
#define BBC_QUIESCE_S02 0x01 /* Quiesce Safari segment for cpu 0 and 2 */
#define BBC_QUIESCE_S13 0x02 /* Quiesce Safari segment for cpu 1 and 3 */
#define BBC_QUIESCE_B02 0x04 /* Quiesce BBC segment for cpu 0 and 2 */
#define BBC_QUIESCE_B13 0x08 /* Quiesce BBC segment for cpu 1 and 3 */
#define BBC_QUIESCE_FD0 0x10 /* Disable Fatal_Error[0] reporting */
#define BBC_QUIESCE_FD1 0x20 /* Disable Fatal_Error[1] reporting */
#define BBC_QUIESCE_FD2 0x40 /* Disable Fatal_Error[2] reporting */
#define BBC_QUIESCE_FD3 0x80 /* Disable Fatal_Error[3] reporting */
/* Watchdog Action register. When the watchdog device timer expires
* a line is enabled to the BBC. The action BBC takes when this line
* is asserted can be controlled by this regiser.
*/
#define BBC_WDACTION_RST 0x01 /* When set, watchdog causes system reset.
* When clear, BBC ignores watchdog signal.
*/
#define BBC_WDACTION_RESV 0xfe /* Reserved */
/* Soft_POR_GEN register. The POR (Power On Reset) signal may be asserted
* for specific processors or all processors via this register.
*/
#define BBC_SPG_CPU0 0x01 /* Assert POR for processor 0 */
#define BBC_SPG_CPU1 0x02 /* Assert POR for processor 1 */
#define BBC_SPG_CPU2 0x04 /* Assert POR for processor 2 */
#define BBC_SPG_CPU3 0x08 /* Assert POR for processor 3 */
#define BBC_SPG_CPUALL 0x10 /* Reset all processors and reset
* the entire system.
*/
#define BBC_SPG_RESV 0xe0 /* Reserved */
/* Soft_XIR_GEN register. The XIR (eXternally Initiated Reset) signal
* may be asserted to specific processors via this register.
*/
#define BBC_SXG_CPU0 0x01 /* Assert XIR for processor 0 */
#define BBC_SXG_CPU1 0x02 /* Assert XIR for processor 1 */
#define BBC_SXG_CPU2 0x04 /* Assert XIR for processor 2 */
#define BBC_SXG_CPU3 0x08 /* Assert XIR for processor 3 */
#define BBC_SXG_RESV 0xf0 /* Reserved */
/* POR Source register. One may identify the cause of the most recent
* reset by reading this register.
*/
#define BBC_PSRC_SPG0 0x0001 /* CPU 0 reset via BBC_SPG register */
#define BBC_PSRC_SPG1 0x0002 /* CPU 1 reset via BBC_SPG register */
#define BBC_PSRC_SPG2 0x0004 /* CPU 2 reset via BBC_SPG register */
#define BBC_PSRC_SPG3 0x0008 /* CPU 3 reset via BBC_SPG register */
#define BBC_PSRC_SPGSYS 0x0010 /* System reset via BBC_SPG register */
#define BBC_PSRC_JTAG 0x0020 /* System reset via JTAG+ */
#define BBC_PSRC_BUTTON 0x0040 /* System reset via push-button dongle */
#define BBC_PSRC_PWRUP 0x0080 /* System reset via power-up */
#define BBC_PSRC_FE0 0x0100 /* CPU 0 reported Fatal_Error */
#define BBC_PSRC_FE1 0x0200 /* CPU 1 reported Fatal_Error */
#define BBC_PSRC_FE2 0x0400 /* CPU 2 reported Fatal_Error */
#define BBC_PSRC_FE3 0x0800 /* CPU 3 reported Fatal_Error */
#define BBC_PSRC_FE4 0x1000 /* Schizo reported Fatal_Error */
#define BBC_PSRC_FE5 0x2000 /* Safari device 5 reported Fatal_Error */
#define BBC_PSRC_FE6 0x4000 /* CPMS reported Fatal_Error */
#define BBC_PSRC_SYNTH 0x8000 /* System reset when on-board clock synthesizers
* were updated.
*/
#define BBC_PSRC_WDT 0x10000 /* System reset via Super I/O watchdog */
#define BBC_PSRC_RSC 0x20000 /* System reset via RSC remote monitoring
* device
*/
/* XIR Source register. The source of an XIR event sent to a processor may
* be determined via this register.
*/
#define BBC_XSRC_SXG0 0x01 /* CPU 0 received XIR via Soft_XIR_GEN reg */
#define BBC_XSRC_SXG1 0x02 /* CPU 1 received XIR via Soft_XIR_GEN reg */
#define BBC_XSRC_SXG2 0x04 /* CPU 2 received XIR via Soft_XIR_GEN reg */
#define BBC_XSRC_SXG3 0x08 /* CPU 3 received XIR via Soft_XIR_GEN reg */
#define BBC_XSRC_JTAG 0x10 /* All CPUs received XIR via JTAG+ */
#define BBC_XSRC_W_OR_B 0x20 /* All CPUs received XIR either because:
* a) Super I/O watchdog fired, or
* b) XIR push button was activated
*/
#define BBC_XSRC_RESV 0xc0 /* Reserved */
/* Clock Synthesizers Control register. This register provides the big-bang
* programming interface to the two clock synthesizers of the machine.
*/
#define BBC_CSC_SLOAD 0x01 /* Directly connected to S_LOAD pins */
#define BBC_CSC_SDATA 0x02 /* Directly connected to S_DATA pins */
#define BBC_CSC_SCLOCK 0x04 /* Directly connected to S_CLOCK pins */
#define BBC_CSC_RESV 0x78 /* Reserved */
#define BBC_CSC_RST 0x80 /* Generate system reset when S_LOAD==1 */
/* Energy Star Control register. This register is used to generate the
* clock frequency change trigger to the main system devices (Schizo and
* the processors). The transition occurs when bits in this register
* go from 0 to 1, only one bit must be set at once else no action
* occurs. Basically the sequence of events is:
* a) Choose new frequency: full, 1/2 or 1/32
* b) Program this desired frequency into the cpus and Schizo.
* c) Set the same value in this register.
* d) 16 system clocks later, clear this register.
*/
#define BBC_ES_CTRL_1_1 0x01 /* Full frequency */
#define BBC_ES_CTRL_1_2 0x02 /* 1/2 frequency */
#define BBC_ES_CTRL_1_32 0x20 /* 1/32 frequency */
#define BBC_ES_RESV 0xdc /* Reserved */
/* Energy Star Assert Change Time register. This determines the number
* of BBC clock cycles (which is half the system frequency) between
* the detection of FREEZE_ACK being asserted and the assertion of
* the CLK_CHANGE_L[2:0] signals.
*/
#define BBC_ES_ACT_VAL 0xff
/* Energy Star Assert Bypass Time register. This determines the number
* of BBC clock cycles (which is half the system frequency) between
* the assertion of the CLK_CHANGE_L[2:0] signals and the assertion of
* the ESTAR_PLL_BYPASS signal.
*/
#define BBC_ES_ABT_VAL 0xffff
/* Energy Star PLL Settle Time register. This determines the number of
* BBC clock cycles (which is half the system frequency) between the
* de-assertion of CLK_CHANGE_L[2:0] and the de-assertion of the FREEZE_L
* signal.
*/
#define BBC_ES_PST_VAL 0xffffffff
/* Energy Star Frequency Switch Latency register. This is the number of
* BBC clocks between the de-assertion of CLK_CHANGE_L[2:0] and the first
* edge of the Safari clock at the new frequency.
*/
#define BBC_ES_FSL_VAL 0xffffffff
/* Keyboard Beep control register. This is a simple enabler for the audio
* beep sound.
*/
#define BBC_KBD_BEEP_ENABLE 0x01 /* Enable beep */
#define BBC_KBD_BEEP_RESV 0xfe /* Reserved */
/* Keyboard Beep Counter register. There is a free-running counter inside
* the BBC which runs at half the system clock. The bit set in this register
* determines when the audio sound is generated. So for example if bit
* 10 is set, the audio beep will oscillate at 1/(2**12). The keyboard beep
* generator automatically selects a different bit to use if the system clock
* is changed via Energy Star.
*/
#define BBC_KBD_BCNT_BITS 0x0007fc00
#define BBC_KBC_BCNT_RESV 0xfff803ff
#endif /* _SPARC64_BBC_H */
#ifndef _SPARC64_CHAFSR_H
#define _SPARC64_CHAFSR_H
/* Cheetah Asynchronous Fault Status register, ASI=0x4C VA<63:0>=0x0 */
/* Comments indicate which processor variants on which the bit definition
* is valid. Codes are:
* ch --> cheetah
* ch+ --> cheetah plus
* jp --> jalapeno
*/
/* All bits of this register except M_SYNDROME and E_SYNDROME are
* read, write 1 to clear. M_SYNDROME and E_SYNDROME are read-only.
*/
/* Software bit set by linux trap handlers to indicate that the trap was
* signalled at %tl >= 1.
*/
#define CHAFSR_TL1 (1UL << 63UL) /* n/a */
/* Unmapped error from system bus for prefetch queue or
* store queue read operation
*/
#define CHPAFSR_DTO (1UL << 59UL) /* ch+ */
/* Bus error from system bus for prefetch queue or store queue
* read operation
*/
#define CHPAFSR_DBERR (1UL << 58UL) /* ch+ */
/* Hardware corrected E-cache Tag ECC error */
#define CHPAFSR_THCE (1UL << 57UL) /* ch+ */
/* System interface protocol error, hw timeout caused */
#define JPAFSR_JETO (1UL << 57UL) /* jp */
/* SW handled correctable E-cache Tag ECC error */
#define CHPAFSR_TSCE (1UL << 56UL) /* ch+ */
/* Parity error on system snoop results */
#define JPAFSR_SCE (1UL << 56UL) /* jp */
/* Uncorrectable E-cache Tag ECC error */
#define CHPAFSR_TUE (1UL << 55UL) /* ch+ */
/* System interface protocol error, illegal command detected */
#define JPAFSR_JEIC (1UL << 55UL) /* jp */
/* Uncorrectable system bus data ECC error due to prefetch
* or store fill request
*/
#define CHPAFSR_DUE (1UL << 54UL) /* ch+ */
/* System interface protocol error, illegal ADTYPE detected */
#define JPAFSR_JEIT (1UL << 54UL) /* jp */
/* Multiple errors of the same type have occurred. This bit is set when
* an uncorrectable error or a SW correctable error occurs and the status
* bit to report that error is already set. When multiple errors of
* different types are indicated by setting multiple status bits.
*
* This bit is not set if multiple HW corrected errors with the same
* status bit occur, only uncorrectable and SW correctable ones have
* this behavior.
*
* This bit is not set when multiple ECC errors happen within a single
* 64-byte system bus transaction. Only the first ECC error in a 16-byte
* subunit will be logged. All errors in subsequent 16-byte subunits
* from the same 64-byte transaction are ignored.
*/
#define CHAFSR_ME (1UL << 53UL) /* ch,ch+,jp */
/* Privileged state error has occurred. This is a capture of PSTATE.PRIV
* at the time the error is detected.
*/
#define CHAFSR_PRIV (1UL << 52UL) /* ch,ch+,jp */
/* The following bits 51 (CHAFSR_PERR) to 33 (CHAFSR_CE) are sticky error
* bits and record the most recently detected errors. Bits accumulate
* errors that have been detected since the last write to clear the bit.
*/
/* System interface protocol error. The processor asserts its' ERROR
* pin when this event occurs and it also logs a specific cause code
* into a JTAG scannable flop.
*/
#define CHAFSR_PERR (1UL << 51UL) /* ch,ch+,jp */
/* Internal processor error. The processor asserts its' ERROR
* pin when this event occurs and it also logs a specific cause code
* into a JTAG scannable flop.
*/
#define CHAFSR_IERR (1UL << 50UL) /* ch,ch+,jp */
/* System request parity error on incoming address */
#define CHAFSR_ISAP (1UL << 49UL) /* ch,ch+,jp */
/* HW Corrected system bus MTAG ECC error */
#define CHAFSR_EMC (1UL << 48UL) /* ch,ch+ */
/* Parity error on L2 cache tag SRAM */
#define JPAFSR_ETP (1UL << 48UL) /* jp */
/* Uncorrectable system bus MTAG ECC error */
#define CHAFSR_EMU (1UL << 47UL) /* ch,ch+ */
/* Out of range memory error has occurred */
#define JPAFSR_OM (1UL << 47UL) /* jp */
/* HW Corrected system bus data ECC error for read of interrupt vector */
#define CHAFSR_IVC (1UL << 46UL) /* ch,ch+ */
/* Error due to unsupported store */
#define JPAFSR_UMS (1UL << 46UL) /* jp */
/* Uncorrectable system bus data ECC error for read of interrupt vector */
#define CHAFSR_IVU (1UL << 45UL) /* ch,ch+,jp */
/* Unmapped error from system bus */
#define CHAFSR_TO (1UL << 44UL) /* ch,ch+,jp */
/* Bus error response from system bus */
#define CHAFSR_BERR (1UL << 43UL) /* ch,ch+,jp */
/* SW Correctable E-cache ECC error for instruction fetch or data access
* other than block load.
*/
#define CHAFSR_UCC (1UL << 42UL) /* ch,ch+,jp */
/* Uncorrectable E-cache ECC error for instruction fetch or data access
* other than block load.
*/
#define CHAFSR_UCU (1UL << 41UL) /* ch,ch+,jp */
/* Copyout HW Corrected ECC error */
#define CHAFSR_CPC (1UL << 40UL) /* ch,ch+,jp */
/* Copyout Uncorrectable ECC error */
#define CHAFSR_CPU (1UL << 39UL) /* ch,ch+,jp */
/* HW Corrected ECC error from E-cache for writeback */
#define CHAFSR_WDC (1UL << 38UL) /* ch,ch+,jp */
/* Uncorrectable ECC error from E-cache for writeback */
#define CHAFSR_WDU (1UL << 37UL) /* ch,ch+,jp */
/* HW Corrected ECC error from E-cache for store merge or block load */
#define CHAFSR_EDC (1UL << 36UL) /* ch,ch+,jp */
/* Uncorrectable ECC error from E-cache for store merge or block load */
#define CHAFSR_EDU (1UL << 35UL) /* ch,ch+,jp */
/* Uncorrectable system bus data ECC error for read of memory or I/O */
#define CHAFSR_UE (1UL << 34UL) /* ch,ch+,jp */
/* HW Corrected system bus data ECC error for read of memory or I/O */
#define CHAFSR_CE (1UL << 33UL) /* ch,ch+,jp */
/* Uncorrectable ECC error from remote cache/memory */
#define JPAFSR_RUE (1UL << 32UL) /* jp */
/* Correctable ECC error from remote cache/memory */
#define JPAFSR_RCE (1UL << 31UL) /* jp */
/* JBUS parity error on returned read data */
#define JPAFSR_BP (1UL << 30UL) /* jp */
/* JBUS parity error on data for writeback or block store */
#define JPAFSR_WBP (1UL << 29UL) /* jp */
/* Foreign read to DRAM incurring correctable ECC error */
#define JPAFSR_FRC (1UL << 28UL) /* jp */
/* Foreign read to DRAM incurring uncorrectable ECC error */
#define JPAFSR_FRU (1UL << 27UL) /* jp */
#define CHAFSR_ERRORS (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP | CHAFSR_EMC | \
CHAFSR_EMU | CHAFSR_IVC | CHAFSR_IVU | CHAFSR_TO | \
CHAFSR_BERR | CHAFSR_UCC | CHAFSR_UCU | CHAFSR_CPC | \
CHAFSR_CPU | CHAFSR_WDC | CHAFSR_WDU | CHAFSR_EDC | \
CHAFSR_EDU | CHAFSR_UE | CHAFSR_CE)
#define CHPAFSR_ERRORS (CHPAFSR_DTO | CHPAFSR_DBERR | CHPAFSR_THCE | \
CHPAFSR_TSCE | CHPAFSR_TUE | CHPAFSR_DUE | \
CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP | CHAFSR_EMC | \
CHAFSR_EMU | CHAFSR_IVC | CHAFSR_IVU | CHAFSR_TO | \
CHAFSR_BERR | CHAFSR_UCC | CHAFSR_UCU | CHAFSR_CPC | \
CHAFSR_CPU | CHAFSR_WDC | CHAFSR_WDU | CHAFSR_EDC | \
CHAFSR_EDU | CHAFSR_UE | CHAFSR_CE)
#define JPAFSR_ERRORS (JPAFSR_JETO | JPAFSR_SCE | JPAFSR_JEIC | \
JPAFSR_JEIT | CHAFSR_PERR | CHAFSR_IERR | \
CHAFSR_ISAP | JPAFSR_ETP | JPAFSR_OM | \
JPAFSR_UMS | CHAFSR_IVU | CHAFSR_TO | \
CHAFSR_BERR | CHAFSR_UCC | CHAFSR_UCU | \
CHAFSR_CPC | CHAFSR_CPU | CHAFSR_WDC | \
CHAFSR_WDU | CHAFSR_EDC | CHAFSR_EDU | \
CHAFSR_UE | CHAFSR_CE | JPAFSR_RUE | \
JPAFSR_RCE | JPAFSR_BP | JPAFSR_WBP | \
JPAFSR_FRC | JPAFSR_FRU)
/* Active JBUS request signal when error occurred */
#define JPAFSR_JBREQ (0x7UL << 24UL) /* jp */
#define JPAFSR_JBREQ_SHIFT 24UL
/* L2 cache way information */
#define JPAFSR_ETW (0x3UL << 22UL) /* jp */
#define JPAFSR_ETW_SHIFT 22UL
/* System bus MTAG ECC syndrome. This field captures the status of the
* first occurrence of the highest-priority error according to the M_SYND
* overwrite policy. After the AFSR sticky bit, corresponding to the error
* for which the M_SYND is reported, is cleared, the contents of the M_SYND
* field will be unchanged by will be unfrozen for further error capture.
*/
#define CHAFSR_M_SYNDROME (0xfUL << 16UL) /* ch,ch+,jp */
#define CHAFSR_M_SYNDROME_SHIFT 16UL
/* Agenid Id of the foreign device causing the UE/CE errors */
#define JPAFSR_AID (0x1fUL << 9UL) /* jp */
#define JPAFSR_AID_SHIFT 9UL
/* System bus or E-cache data ECC syndrome. This field captures the status
* of the first occurrence of the highest-priority error according to the
* E_SYND overwrite policy. After the AFSR sticky bit, corresponding to the
* error for which the E_SYND is reported, is cleare, the contents of the E_SYND
* field will be unchanged but will be unfrozen for further error capture.
*/
#define CHAFSR_E_SYNDROME (0x1ffUL << 0UL) /* ch,ch+,jp */
#define CHAFSR_E_SYNDROME_SHIFT 0UL
/* The AFSR must be explicitly cleared by software, it is not cleared automatically
* by a read. Writes to bits <51:33> with bits set will clear the corresponding
* bits in the AFSR. Bits associated with disrupting traps must be cleared before
* interrupts are re-enabled to prevent multiple traps for the same error. I.e.
* PSTATE.IE and AFSR bits control delivery of disrupting traps.
*
* Since there is only one AFAR, when multiple events have been logged by the
* bits in the AFSR, at most one of these events will have its status captured
* in the AFAR. The highest priority of those event bits will get AFAR logging.
* The AFAR will be unlocked and available to capture the address of another event
* as soon as the one bit in AFSR that corresponds to the event logged in AFAR is
* cleared. For example, if AFSR.CE is detected, then AFSR.UE (which overwrites
* the AFAR), and AFSR.UE is cleared by not AFSR.CE, then the AFAR will be unlocked
* and ready for another event, even though AFSR.CE is still set. The same rules
* also apply to the M_SYNDROME and E_SYNDROME fields of the AFSR.
*/
#endif /* _SPARC64_CHAFSR_H */
#ifndef _SPARC64_CHMCTRL_H
#define _SPARC64_CHMCTRL_H
/* Cheetah memory controller programmable registers. */
#define CHMCTRL_TCTRL1 0x00 /* Memory Timing Control I */
#define CHMCTRL_TCTRL2 0x08 /* Memory Timing Control II */
#define CHMCTRL_TCTRL3 0x38 /* Memory Timing Control III */
#define CHMCTRL_TCTRL4 0x40 /* Memory Timing Control IV */
#define CHMCTRL_DECODE1 0x10 /* Memory Address Decode I */
#define CHMCTRL_DECODE2 0x18 /* Memory Address Decode II */
#define CHMCTRL_DECODE3 0x20 /* Memory Address Decode III */
#define CHMCTRL_DECODE4 0x28 /* Memory Address Decode IV */
#define CHMCTRL_MACTRL 0x30 /* Memory Address Control */
/* Memory Timing Control I */
#define TCTRL1_SDRAMCTL_DLY 0xf000000000000000UL
#define TCTRL1_SDRAMCTL_DLY_SHIFT 60
#define TCTRL1_SDRAMCLK_DLY 0x0e00000000000000UL
#define TCTRL1_SDRAMCLK_DLY_SHIFT 57
#define TCTRL1_R 0x0100000000000000UL
#define TCTRL1_R_SHIFT 56
#define TCTRL1_AUTORFR_CYCLE 0x00fe000000000000UL
#define TCTRL1_AUTORFR_CYCLE_SHIFT 49
#define TCTRL1_RD_WAIT 0x0001f00000000000UL
#define TCTRL1_RD_WAIT_SHIFT 44
#define TCTRL1_PC_CYCLE 0x00000fc000000000UL
#define TCTRL1_PC_CYCLE_SHIFT 38
#define TCTRL1_WR_MORE_RAS_PW 0x0000003f00000000UL
#define TCTRL1_WR_MORE_RAS_PW_SHIFT 32
#define TCTRL1_RD_MORE_RAW_PW 0x00000000fc000000UL
#define TCTRL1_RD_MORE_RAS_PW_SHIFT 26
#define TCTRL1_ACT_WR_DLY 0x0000000003f00000UL
#define TCTRL1_ACT_WR_DLY_SHIFT 20
#define TCTRL1_ACT_RD_DLY 0x00000000000fc000UL
#define TCTRL1_ACT_RD_DLY_SHIFT 14
#define TCTRL1_BANK_PRESENT 0x0000000000003000UL
#define TCTRL1_BANK_PRESENT_SHIFT 12
#define TCTRL1_RFR_INT 0x0000000000000ff8UL
#define TCTRL1_RFR_INT_SHIFT 3
#define TCTRL1_SET_MODE_REG 0x0000000000000004UL
#define TCTRL1_SET_MODE_REG_SHIFT 2
#define TCTRL1_RFR_ENABLE 0x0000000000000002UL
#define TCTRL1_RFR_ENABLE_SHIFT 1
#define TCTRL1_PRECHG_ALL 0x0000000000000001UL
#define TCTRL1_PRECHG_ALL_SHIFT 0
/* Memory Timing Control II */
#define TCTRL2_WR_MSEL_DLY 0xfc00000000000000UL
#define TCTRL2_WR_MSEL_DLY_SHIFT 58
#define TCTRL2_RD_MSEL_DLY 0x03f0000000000000UL
#define TCTRL2_RD_MSEL_DLY_SHIFT 52
#define TCTRL2_WRDATA_THLD 0x000c000000000000UL
#define TCTRL2_WRDATA_THLD_SHIFT 50
#define TCTRL2_RDWR_RD_TI_DLY 0x0003f00000000000UL
#define TCTRL2_RDWR_RD_TI_DLY_SHIFT 44
#define TCTRL2_AUTOPRECHG_ENBL 0x0000080000000000UL
#define TCTRL2_AUTOPRECHG_ENBL_SHIFT 43
#define TCTRL2_RDWR_PI_MORE_DLY 0x000007c000000000UL
#define TCTRL2_RDWR_PI_MORE_DLY_SHIFT 38
#define TCTRL2_RDWR_1_DLY 0x0000003f00000000UL
#define TCTRL2_RDWR_1_DLY_SHIFT 32
#define TCTRL2_WRWR_PI_MORE_DLY 0x00000000f8000000UL
#define TCTRL2_WRWR_PI_MORE_DLY_SHIFT 27
#define TCTRL2_WRWR_1_DLY 0x0000000007e00000UL
#define TCTRL2_WRWR_1_DLY_SHIFT 21
#define TCTRL2_RDWR_RD_PI_MORE_DLY 0x00000000001f0000UL
#define TCTRL2_RDWR_RD_PI_MORE_DLY_SHIFT 16
#define TCTRL2_R 0x0000000000008000UL
#define TCTRL2_R_SHIFT 15
#define TCTRL2_SDRAM_MODE_REG_DATA 0x0000000000007fffUL
#define TCTRL2_SDRAM_MODE_REG_DATA_SHIFT 0
/* Memory Timing Control III */
#define TCTRL3_SDRAM_CTL_DLY 0xf000000000000000UL
#define TCTRL3_SDRAM_CTL_DLY_SHIFT 60
#define TCTRL3_SDRAM_CLK_DLY 0x0e00000000000000UL
#define TCTRL3_SDRAM_CLK_DLY_SHIFT 57
#define TCTRL3_R 0x0100000000000000UL
#define TCTRL3_R_SHIFT 56
#define TCTRL3_AUTO_RFR_CYCLE 0x00fe000000000000UL
#define TCTRL3_AUTO_RFR_CYCLE_SHIFT 49
#define TCTRL3_RD_WAIT 0x0001f00000000000UL
#define TCTRL3_RD_WAIT_SHIFT 44
#define TCTRL3_PC_CYCLE 0x00000fc000000000UL
#define TCTRL3_PC_CYCLE_SHIFT 38
#define TCTRL3_WR_MORE_RAW_PW 0x0000003f00000000UL
#define TCTRL3_WR_MORE_RAW_PW_SHIFT 32
#define TCTRL3_RD_MORE_RAW_PW 0x00000000fc000000UL
#define TCTRL3_RD_MORE_RAW_PW_SHIFT 26
#define TCTRL3_ACT_WR_DLY 0x0000000003f00000UL
#define TCTRL3_ACT_WR_DLY_SHIFT 20
#define TCTRL3_ACT_RD_DLY 0x00000000000fc000UL
#define TCTRL3_ACT_RD_DLY_SHIFT 14
#define TCTRL3_BANK_PRESENT 0x0000000000003000UL
#define TCTRL3_BANK_PRESENT_SHIFT 12
#define TCTRL3_RFR_INT 0x0000000000000ff8UL
#define TCTRL3_RFR_INT_SHIFT 3
#define TCTRL3_SET_MODE_REG 0x0000000000000004UL
#define TCTRL3_SET_MODE_REG_SHIFT 2
#define TCTRL3_RFR_ENABLE 0x0000000000000002UL
#define TCTRL3_RFR_ENABLE_SHIFT 1
#define TCTRL3_PRECHG_ALL 0x0000000000000001UL
#define TCTRL3_PRECHG_ALL_SHIFT 0
/* Memory Timing Control IV */
#define TCTRL4_WR_MSEL_DLY 0xfc00000000000000UL
#define TCTRL4_WR_MSEL_DLY_SHIFT 58
#define TCTRL4_RD_MSEL_DLY 0x03f0000000000000UL
#define TCTRL4_RD_MSEL_DLY_SHIFT 52
#define TCTRL4_WRDATA_THLD 0x000c000000000000UL
#define TCTRL4_WRDATA_THLD_SHIFT 50
#define TCTRL4_RDWR_RD_RI_DLY 0x0003f00000000000UL
#define TCTRL4_RDWR_RD_RI_DLY_SHIFT 44
#define TCTRL4_AUTO_PRECHG_ENBL 0x0000080000000000UL
#define TCTRL4_AUTO_PRECHG_ENBL_SHIFT 43
#define TCTRL4_RD_WR_PI_MORE_DLY 0x000007c000000000UL
#define TCTRL4_RD_WR_PI_MORE_DLY_SHIFT 38
#define TCTRL4_RD_WR_TI_DLY 0x0000003f00000000UL
#define TCTRL4_RD_WR_TI_DLY_SHIFT 32
#define TCTRL4_WR_WR_PI_MORE_DLY 0x00000000f8000000UL
#define TCTRL4_WR_WR_PI_MORE_DLY_SHIFT 27
#define TCTRL4_WR_WR_TI_DLY 0x0000000007e00000UL
#define TCTRL4_WR_WR_TI_DLY_SHIFT 21
#define TCTRL4_RDWR_RD_PI_MORE_DLY 0x00000000001f000UL0
#define TCTRL4_RDWR_RD_PI_MORE_DLY_SHIFT 16
#define TCTRL4_R 0x0000000000008000UL
#define TCTRL4_R_SHIFT 15
#define TCTRL4_SDRAM_MODE_REG_DATA 0x0000000000007fffUL
#define TCTRL4_SDRAM_MODE_REG_DATA_SHIFT 0
/* All 4 memory address decoding registers have the
* same layout.
*/
#define MEM_DECODE_VALID 0x8000000000000000UL /* Valid */
#define MEM_DECODE_VALID_SHIFT 63
#define MEM_DECODE_UK 0x001ffe0000000000UL /* Upper mask */
#define MEM_DECODE_UK_SHIFT 41
#define MEM_DECODE_UM 0x0000001ffff00000UL /* Upper match */
#define MEM_DECODE_UM_SHIFT 20
#define MEM_DECODE_LK 0x000000000003c000UL /* Lower mask */
#define MEM_DECODE_LK_SHIFT 14
#define MEM_DECODE_LM 0x0000000000000f00UL /* Lower match */
#define MEM_DECODE_LM_SHIFT 8
#define PA_UPPER_BITS 0x000007fffc000000UL
#define PA_UPPER_BITS_SHIFT 26
#define PA_LOWER_BITS 0x00000000000003c0UL
#define PA_LOWER_BITS_SHIFT 6
#define MACTRL_R0 0x8000000000000000UL
#define MACTRL_R0_SHIFT 63
#define MACTRL_ADDR_LE_PW 0x7000000000000000UL
#define MACTRL_ADDR_LE_PW_SHIFT 60
#define MACTRL_CMD_PW 0x0f00000000000000UL
#define MACTRL_CMD_PW_SHIFT 56
#define MACTRL_HALF_MODE_WR_MSEL_DLY 0x00fc000000000000UL
#define MACTRL_HALF_MODE_WR_MSEL_DLY_SHIFT 50
#define MACTRL_HALF_MODE_RD_MSEL_DLY 0x0003f00000000000UL
#define MACTRL_HALF_MODE_RD_MSEL_DLY_SHIFT 44
#define MACTRL_HALF_MODE_SDRAM_CTL_DLY 0x00000f0000000000UL
#define MACTRL_HALF_MODE_SDRAM_CTL_DLY_SHIFT 40
#define MACTRL_HALF_MODE_SDRAM_CLK_DLY 0x000000e000000000UL
#define MACTRL_HALF_MODE_SDRAM_CLK_DLY_SHIFT 37
#define MACTRL_R1 0x0000001000000000UL
#define MACTRL_R1_SHIFT 36
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B3 0x0000000f00000000UL
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B3_SHIFT 32
#define MACTRL_ENC_INTLV_B3 0x00000000f8000000UL
#define MACTRL_ENC_INTLV_B3_SHIFT 27
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B2 0x0000000007800000UL
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B2_SHIFT 23
#define MACTRL_ENC_INTLV_B2 0x00000000007c0000UL
#define MACTRL_ENC_INTLV_B2_SHIFT 18
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B1 0x000000000003c000UL
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B1_SHIFT 14
#define MACTRL_ENC_INTLV_B1 0x0000000000003e00UL
#define MACTRL_ENC_INTLV_B1_SHIFT 9
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B0 0x00000000000001e0UL
#define MACTRL_BANKSEL_N_ROWADDR_SIZE_B0_SHIFT 5
#define MACTRL_ENC_INTLV_B0 0x000000000000001fUL
#define MACTRL_ENC_INTLV_B0_SHIFT 0
#endif /* _SPARC64_CHMCTRL_H */
#ifndef _SPARC64_CMT_H
#define _SPARC64_CMT_H
/* cmt.h: Chip Multi-Threading register definitions
*
* Copyright (C) 2004 David S. Miller (davem@redhat.com)
*/
/* ASI_CORE_ID - private */
#define LP_ID 0x0000000000000010UL
#define LP_ID_MAX 0x00000000003f0000UL
#define LP_ID_ID 0x000000000000003fUL
/* ASI_INTR_ID - private */
#define LP_INTR_ID 0x0000000000000000UL
#define LP_INTR_ID_ID 0x00000000000003ffUL
/* ASI_CESR_ID - private */
#define CESR_ID 0x0000000000000040UL
#define CESR_ID_ID 0x00000000000000ffUL
/* ASI_CORE_AVAILABLE - shared */
#define LP_AVAIL 0x0000000000000000UL
#define LP_AVAIL_1 0x0000000000000002UL
#define LP_AVAIL_0 0x0000000000000001UL
/* ASI_CORE_ENABLE_STATUS - shared */
#define LP_ENAB_STAT 0x0000000000000010UL
#define LP_ENAB_STAT_1 0x0000000000000002UL
#define LP_ENAB_STAT_0 0x0000000000000001UL
/* ASI_CORE_ENABLE - shared */
#define LP_ENAB 0x0000000000000020UL
#define LP_ENAB_1 0x0000000000000002UL
#define LP_ENAB_0 0x0000000000000001UL
/* ASI_CORE_RUNNING - shared */
#define LP_RUNNING_RW 0x0000000000000050UL
#define LP_RUNNING_W1S 0x0000000000000060UL
#define LP_RUNNING_W1C 0x0000000000000068UL
#define LP_RUNNING_1 0x0000000000000002UL
#define LP_RUNNING_0 0x0000000000000001UL
/* ASI_CORE_RUNNING_STAT - shared */
#define LP_RUN_STAT 0x0000000000000058UL
#define LP_RUN_STAT_1 0x0000000000000002UL
#define LP_RUN_STAT_0 0x0000000000000001UL
/* ASI_XIR_STEERING - shared */
#define LP_XIR_STEER 0x0000000000000030UL
#define LP_XIR_STEER_1 0x0000000000000002UL
#define LP_XIR_STEER_0 0x0000000000000001UL
/* ASI_CMT_ERROR_STEERING - shared */
#define CMT_ER_STEER 0x0000000000000040UL
#define CMT_ER_STEER_1 0x0000000000000002UL
#define CMT_ER_STEER_0 0x0000000000000001UL
#endif /* _SPARC64_CMT_H */
#ifndef _ASM_SPARC64_COMPAT_H
#define _ASM_SPARC64_COMPAT_H
/*
* Architecture specific compatibility types
*/
#include <linux/types.h>
#define COMPAT_USER_HZ 100
typedef u32 compat_size_t;
typedef s32 compat_ssize_t;
typedef s32 compat_time_t;
typedef s32 compat_clock_t;
typedef s32 compat_pid_t;
typedef u16 __compat_uid_t;
typedef u16 __compat_gid_t;
typedef u32 __compat_uid32_t;
typedef u32 __compat_gid32_t;
typedef u16 compat_mode_t;
typedef u32 compat_ino_t;
typedef u16 compat_dev_t;
typedef s32 compat_off_t;
typedef s64 compat_loff_t;
typedef s16 compat_nlink_t;
typedef u16 compat_ipc_pid_t;
typedef s32 compat_daddr_t;
typedef u32 compat_caddr_t;
typedef __kernel_fsid_t compat_fsid_t;
typedef s32 compat_key_t;
typedef s32 compat_timer_t;
typedef s32 compat_int_t;
typedef s32 compat_long_t;
typedef s64 compat_s64;
typedef u32 compat_uint_t;
typedef u32 compat_ulong_t;
typedef u64 compat_u64;
struct compat_timespec {
compat_time_t tv_sec;
s32 tv_nsec;
};
struct compat_timeval {
compat_time_t tv_sec;
s32 tv_usec;
};
struct compat_stat {
compat_dev_t st_dev;
compat_ino_t st_ino;
compat_mode_t st_mode;
compat_nlink_t st_nlink;
__compat_uid_t st_uid;
__compat_gid_t st_gid;
compat_dev_t st_rdev;
compat_off_t st_size;
compat_time_t st_atime;
compat_ulong_t st_atime_nsec;
compat_time_t st_mtime;
compat_ulong_t st_mtime_nsec;
compat_time_t st_ctime;
compat_ulong_t st_ctime_nsec;
compat_off_t st_blksize;
compat_off_t st_blocks;
u32 __unused4[2];
};
struct compat_stat64 {
unsigned long long st_dev;
unsigned long long st_ino;
unsigned int st_mode;
unsigned int st_nlink;
unsigned int st_uid;
unsigned int st_gid;
unsigned long long st_rdev;
unsigned char __pad3[8];
long long st_size;
unsigned int st_blksize;
unsigned char __pad4[8];
unsigned int st_blocks;
unsigned int st_atime;
unsigned int st_atime_nsec;
unsigned int st_mtime;
unsigned int st_mtime_nsec;
unsigned int st_ctime;
unsigned int st_ctime_nsec;
unsigned int __unused4;
unsigned int __unused5;
};
struct compat_flock {
short l_type;
short l_whence;
compat_off_t l_start;
compat_off_t l_len;
compat_pid_t l_pid;
short __unused;
};
#define F_GETLK64 12
#define F_SETLK64 13
#define F_SETLKW64 14
struct compat_flock64 {
short l_type;
short l_whence;
compat_loff_t l_start;
compat_loff_t l_len;
compat_pid_t l_pid;
short __unused;
};
struct compat_statfs {
int f_type;
int f_bsize;
int f_blocks;
int f_bfree;
int f_bavail;
int f_files;
int f_ffree;
compat_fsid_t f_fsid;
int f_namelen; /* SunOS ignores this field. */
int f_frsize;
int f_spare[5];
};
#define COMPAT_RLIM_INFINITY 0x7fffffff
typedef u32 compat_old_sigset_t;
#define _COMPAT_NSIG 64
#define _COMPAT_NSIG_BPW 32
typedef u32 compat_sigset_word;
#define COMPAT_OFF_T_MAX 0x7fffffff
#define COMPAT_LOFF_T_MAX 0x7fffffffffffffffL
/*
* A pointer passed in from user mode. This should not
* be used for syscall parameters, just declare them
* as pointers because the syscall entry code will have
* appropriately converted them already.
*/
typedef u32 compat_uptr_t;
static inline void __user *compat_ptr(compat_uptr_t uptr)
{
return (void __user *)(unsigned long)uptr;
}
static inline compat_uptr_t ptr_to_compat(void __user *uptr)
{
return (u32)(unsigned long)uptr;
}
static inline void __user *compat_alloc_user_space(long len)
{
struct pt_regs *regs = current_thread_info()->kregs;
unsigned long usp = regs->u_regs[UREG_I6];
if (!(test_thread_flag(TIF_32BIT)))
usp += STACK_BIAS;
else
usp &= 0xffffffffUL;
usp -= len;
usp &= ~0x7UL;
return (void __user *) usp;
}
struct compat_ipc64_perm {
compat_key_t key;
__compat_uid32_t uid;
__compat_gid32_t gid;
__compat_uid32_t cuid;
__compat_gid32_t cgid;
unsigned short __pad1;
compat_mode_t mode;
unsigned short __pad2;
unsigned short seq;
unsigned long __unused1; /* yes they really are 64bit pads */
unsigned long __unused2;
};
struct compat_semid64_ds {
struct compat_ipc64_perm sem_perm;
unsigned int __pad1;
compat_time_t sem_otime;
unsigned int __pad2;
compat_time_t sem_ctime;
u32 sem_nsems;
u32 __unused1;
u32 __unused2;
};
struct compat_msqid64_ds {
struct compat_ipc64_perm msg_perm;
unsigned int __pad1;
compat_time_t msg_stime;
unsigned int __pad2;
compat_time_t msg_rtime;
unsigned int __pad3;
compat_time_t msg_ctime;
unsigned int msg_cbytes;
unsigned int msg_qnum;
unsigned int msg_qbytes;
compat_pid_t msg_lspid;
compat_pid_t msg_lrpid;
unsigned int __unused1;
unsigned int __unused2;
};
struct compat_shmid64_ds {
struct compat_ipc64_perm shm_perm;
unsigned int __pad1;
compat_time_t shm_atime;
unsigned int __pad2;
compat_time_t shm_dtime;
unsigned int __pad3;
compat_time_t shm_ctime;
compat_size_t shm_segsz;
compat_pid_t shm_cpid;
compat_pid_t shm_lpid;
unsigned int shm_nattch;
unsigned int __unused1;
unsigned int __unused2;
};
#endif /* _ASM_SPARC64_COMPAT_H */
#ifndef _COMPAT_SIGNAL_H
#define _COMPAT_SIGNAL_H
#include <linux/compat.h>
#include <asm/signal.h>
#ifdef CONFIG_COMPAT
struct __new_sigaction32 {
unsigned sa_handler;
unsigned int sa_flags;
unsigned sa_restorer; /* not used by Linux/SPARC yet */
compat_sigset_t sa_mask;
};
struct __old_sigaction32 {
unsigned sa_handler;
compat_old_sigset_t sa_mask;
unsigned int sa_flags;
unsigned sa_restorer; /* not used by Linux/SPARC yet */
};
typedef struct sigaltstack32 {
u32 ss_sp;
int ss_flags;
compat_size_t ss_size;
} stack_t32;
#endif
#endif /* !(_COMPAT_SIGNAL_H) */
#ifndef _SPARC64_DCR_H
#define _SPARC64_DCR_H
/* UltraSparc-III/III+ Dispatch Control Register, ASR 0x12 */
#define DCR_DPE 0x0000000000001000 /* III+: D$ Parity Error Enable */
#define DCR_OBS 0x0000000000000fc0 /* Observability Bus Controls */
#define DCR_BPE 0x0000000000000020 /* Branch Predict Enable */
#define DCR_RPE 0x0000000000000010 /* Return Address Prediction Enable */
#define DCR_SI 0x0000000000000008 /* Single Instruction Disable */
#define DCR_IPE 0x0000000000000004 /* III+: I$ Parity Error Enable */
#define DCR_IFPOE 0x0000000000000002 /* IRQ FP Operation Enable */
#define DCR_MS 0x0000000000000001 /* Multi-Scalar dispatch */
#endif /* _SPARC64_DCR_H */
#ifndef _SPARC64_DCU_H
#define _SPARC64_DCU_H
#include <linux/const.h>
/* UltraSparc-III Data Cache Unit Control Register */
#define DCU_CP _AC(0x0002000000000000,UL) /* Phys Cache Enable w/o mmu */
#define DCU_CV _AC(0x0001000000000000,UL) /* Virt Cache Enable w/o mmu */
#define DCU_ME _AC(0x0000800000000000,UL) /* NC-store Merging Enable */
#define DCU_RE _AC(0x0000400000000000,UL) /* RAW bypass Enable */
#define DCU_PE _AC(0x0000200000000000,UL) /* PCache Enable */
#define DCU_HPE _AC(0x0000100000000000,UL) /* HW prefetch Enable */
#define DCU_SPE _AC(0x0000080000000000,UL) /* SW prefetch Enable */
#define DCU_SL _AC(0x0000040000000000,UL) /* Secondary ld-steering Enab*/
#define DCU_WE _AC(0x0000020000000000,UL) /* WCache enable */
#define DCU_PM _AC(0x000001fe00000000,UL) /* PA Watchpoint Byte Mask */
#define DCU_VM _AC(0x00000001fe000000,UL) /* VA Watchpoint Byte Mask */
#define DCU_PR _AC(0x0000000001000000,UL) /* PA Watchpoint Read Enable */
#define DCU_PW _AC(0x0000000000800000,UL) /* PA Watchpoint Write Enable*/
#define DCU_VR _AC(0x0000000000400000,UL) /* VA Watchpoint Read Enable */
#define DCU_VW _AC(0x0000000000200000,UL) /* VA Watchpoint Write Enable*/
#define DCU_DM _AC(0x0000000000000008,UL) /* DMMU Enable */
#define DCU_IM _AC(0x0000000000000004,UL) /* IMMU Enable */
#define DCU_DC _AC(0x0000000000000002,UL) /* Data Cache Enable */
#define DCU_IC _AC(0x0000000000000001,UL) /* Instruction Cache Enable */
#endif /* _SPARC64_DCU_H */
#ifndef _SPARC64_ESTATE_H
#define _SPARC64_ESTATE_H
/* UltraSPARC-III E-cache Error Enable */
#define ESTATE_ERROR_FMT 0x0000000000040000 /* Force MTAG ECC */
#define ESTATE_ERROR_FMESS 0x000000000003c000 /* Forced MTAG ECC val */
#define ESTATE_ERROR_FMD 0x0000000000002000 /* Force DATA ECC */
#define ESTATE_ERROR_FDECC 0x0000000000001ff0 /* Forced DATA ECC val */
#define ESTATE_ERROR_UCEEN 0x0000000000000008 /* See below */
#define ESTATE_ERROR_NCEEN 0x0000000000000002 /* See below */
#define ESTATE_ERROR_CEEN 0x0000000000000001 /* See below */
/* UCEEN enables the fast_ECC_error trap for: 1) software correctable E-cache
* errors 2) uncorrectable E-cache errors. Such events only occur on reads
* of the E-cache by the local processor for: 1) data loads 2) instruction
* fetches 3) atomic operations. Such events _cannot_ occur for: 1) merge
* 2) writeback 2) copyout. The AFSR bits associated with these traps are
* UCC and UCU.
*/
/* NCEEN enables instruction_access_error, data_access_error, and ECC_error traps
* for uncorrectable ECC errors and system errors.
*
* Uncorrectable system bus data error or MTAG ECC error, system bus TimeOUT,
* or system bus BusERR:
* 1) As the result of an instruction fetch, will generate instruction_access_error
* 2) As the result of a load etc. will generate data_access_error.
* 3) As the result of store merge completion, writeback, or copyout will
* generate a disrupting ECC_error trap.
* 4) As the result of such errors on instruction vector fetch can generate any
* of the 3 trap types.
*
* The AFSR bits associated with these traps are EMU, EDU, WDU, CPU, IVU, UE,
* BERR, and TO.
*/
/* CEEN enables the ECC_error trap for hardware corrected ECC errors. System bus
* reads resulting in a hardware corrected data or MTAG ECC error will generate an
* ECC_error disrupting trap with this bit enabled.
*
* This same trap will also be generated when a hardware corrected ECC error results
* during store merge, writeback, and copyout operations.
*/
/* In general, if the trap enable bits above are disabled the AFSR bits will still
* log the events even though the trap will not be generated by the processor.
*/
#endif /* _SPARC64_ESTATE_H */
/*
* fhc.h: Structures for central/fhc pseudo driver on Sunfire/Starfire/Wildfire.
*
* Copyright (C) 1997, 1999 David S. Miller (davem@redhat.com)
*/
#ifndef _SPARC64_FHC_H
#define _SPARC64_FHC_H
#include <linux/timer.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/upa.h>
struct linux_fhc;
/* Clock board register offsets. */
#define CLOCK_CTRL 0x00UL /* Main control */
#define CLOCK_STAT1 0x10UL /* Status one */
#define CLOCK_STAT2 0x20UL /* Status two */
#define CLOCK_PWRSTAT 0x30UL /* Power status */
#define CLOCK_PWRPRES 0x40UL /* Power presence */
#define CLOCK_TEMP 0x50UL /* Temperature */
#define CLOCK_IRQDIAG 0x60UL /* IRQ diagnostics */
#define CLOCK_PWRSTAT2 0x70UL /* Power status two */
#define CLOCK_CTRL_LLED 0x04 /* Left LED, 0 == on */
#define CLOCK_CTRL_MLED 0x02 /* Mid LED, 1 == on */
#define CLOCK_CTRL_RLED 0x01 /* RIght LED, 1 == on */
struct linux_central {
struct linux_fhc *child;
unsigned long cfreg;
unsigned long clkregs;
unsigned long clkver;
int slots;
struct device_node *prom_node;
struct linux_prom_ranges central_ranges[PROMREG_MAX];
int num_central_ranges;
};
/* Firehose controller register offsets */
struct fhc_regs {
unsigned long pregs; /* FHC internal regs */
#define FHC_PREGS_ID 0x00UL /* FHC ID */
#define FHC_ID_VERS 0xf0000000 /* Version of this FHC */
#define FHC_ID_PARTID 0x0ffff000 /* Part ID code (0x0f9f == FHC) */
#define FHC_ID_MANUF 0x0000007e /* Manufacturer (0x3e == SUN's JEDEC)*/
#define FHC_ID_RESV 0x00000001 /* Read as one */
#define FHC_PREGS_RCS 0x10UL /* FHC Reset Control/Status Register */
#define FHC_RCS_POR 0x80000000 /* Last reset was a power cycle */
#define FHC_RCS_SPOR 0x40000000 /* Last reset was sw power on reset */
#define FHC_RCS_SXIR 0x20000000 /* Last reset was sw XIR reset */
#define FHC_RCS_BPOR 0x10000000 /* Last reset was due to POR button */
#define FHC_RCS_BXIR 0x08000000 /* Last reset was due to XIR button */
#define FHC_RCS_WEVENT 0x04000000 /* CPU reset was due to wakeup event */
#define FHC_RCS_CFATAL 0x02000000 /* Centerplane Fatal Error signalled */
#define FHC_RCS_FENAB 0x01000000 /* Fatal errors elicit system reset */
#define FHC_PREGS_CTRL 0x20UL /* FHC Control Register */
#define FHC_CONTROL_ICS 0x00100000 /* Ignore Centerplane Signals */
#define FHC_CONTROL_FRST 0x00080000 /* Fatal Error Reset Enable */
#define FHC_CONTROL_LFAT 0x00040000 /* AC/DC signalled a local error */
#define FHC_CONTROL_SLINE 0x00010000 /* Firmware Synchronization Line */
#define FHC_CONTROL_DCD 0x00008000 /* DC-->DC Converter Disable */
#define FHC_CONTROL_POFF 0x00004000 /* AC/DC Controller PLL Disable */
#define FHC_CONTROL_FOFF 0x00002000 /* FHC Controller PLL Disable */
#define FHC_CONTROL_AOFF 0x00001000 /* CPU A SRAM/SBD Low Power Mode */
#define FHC_CONTROL_BOFF 0x00000800 /* CPU B SRAM/SBD Low Power Mode */
#define FHC_CONTROL_PSOFF 0x00000400 /* Turns off this FHC's power supply */
#define FHC_CONTROL_IXIST 0x00000200 /* 0=FHC tells clock board it exists */
#define FHC_CONTROL_XMSTR 0x00000100 /* 1=Causes this FHC to be XIR master*/
#define FHC_CONTROL_LLED 0x00000040 /* 0=Left LED ON */
#define FHC_CONTROL_MLED 0x00000020 /* 1=Middle LED ON */
#define FHC_CONTROL_RLED 0x00000010 /* 1=Right LED */
#define FHC_CONTROL_BPINS 0x00000003 /* Spare Bidirectional Pins */
#define FHC_PREGS_BSR 0x30UL /* FHC Board Status Register */
#define FHC_BSR_DA64 0x00040000 /* Port A: 0=128bit 1=64bit data path */
#define FHC_BSR_DB64 0x00020000 /* Port B: 0=128bit 1=64bit data path */
#define FHC_BSR_BID 0x0001e000 /* Board ID */
#define FHC_BSR_SA 0x00001c00 /* Port A UPA Speed (from the pins) */
#define FHC_BSR_SB 0x00000380 /* Port B UPA Speed (from the pins) */
#define FHC_BSR_NDIAG 0x00000040 /* Not in Diag Mode */
#define FHC_BSR_NTBED 0x00000020 /* Not in TestBED Mode */
#define FHC_BSR_NIA 0x0000001c /* Jumper, bit 18 in PROM space */
#define FHC_BSR_SI 0x00000001 /* Spare input pin value */
#define FHC_PREGS_ECC 0x40UL /* FHC ECC Control Register (16 bits) */
#define FHC_PREGS_JCTRL 0xf0UL /* FHC JTAG Control Register */
#define FHC_JTAG_CTRL_MENAB 0x80000000 /* Indicates this is JTAG Master */
#define FHC_JTAG_CTRL_MNONE 0x40000000 /* Indicates no JTAG Master present */
#define FHC_PREGS_JCMD 0x100UL /* FHC JTAG Command Register */
unsigned long ireg; /* FHC IGN reg */
#define FHC_IREG_IGN 0x00UL /* This FHC's IGN */
unsigned long ffregs; /* FHC fanfail regs */
#define FHC_FFREGS_IMAP 0x00UL /* FHC Fanfail IMAP */
#define FHC_FFREGS_ICLR 0x10UL /* FHC Fanfail ICLR */
unsigned long sregs; /* FHC system regs */
#define FHC_SREGS_IMAP 0x00UL /* FHC System IMAP */
#define FHC_SREGS_ICLR 0x10UL /* FHC System ICLR */
unsigned long uregs; /* FHC uart regs */
#define FHC_UREGS_IMAP 0x00UL /* FHC Uart IMAP */
#define FHC_UREGS_ICLR 0x10UL /* FHC Uart ICLR */
unsigned long tregs; /* FHC TOD regs */
#define FHC_TREGS_IMAP 0x00UL /* FHC TOD IMAP */
#define FHC_TREGS_ICLR 0x10UL /* FHC TOD ICLR */
};
struct linux_fhc {
struct linux_fhc *next;
struct linux_central *parent; /* NULL if not central FHC */
struct fhc_regs fhc_regs;
int board;
int jtag_master;
struct device_node *prom_node;
struct linux_prom_ranges fhc_ranges[PROMREG_MAX];
int num_fhc_ranges;
};
#endif /* !(_SPARC64_FHC_H) */
/* fpumacro.h: FPU related macros.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC64_FPUMACRO_H
#define _SPARC64_FPUMACRO_H
#include <asm/asi.h>
#include <asm/visasm.h>
struct fpustate {
u32 regs[64];
};
#define FPUSTATE (struct fpustate *)(current_thread_info()->fpregs)
static inline unsigned long fprs_read(void)
{
unsigned long retval;
__asm__ __volatile__("rd %%fprs, %0" : "=r" (retval));
return retval;
}
static inline void fprs_write(unsigned long val)
{
__asm__ __volatile__("wr %0, 0x0, %%fprs" : : "r" (val));
}
#endif /* !(_SPARC64_FPUMACRO_H) */
#ifndef _ASM_SPARC64_HUGETLB_H
#define _ASM_SPARC64_HUGETLB_H
#include <asm/page.h>
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void hugetlb_prefault_arch_hook(struct mm_struct *mm);
static inline int is_hugepage_only_range(struct mm_struct *mm,
unsigned long addr,
unsigned long len) {
return 0;
}
/*
* If the arch doesn't supply something else, assume that hugepage
* size aligned regions are ok without further preparation.
*/
static inline int prepare_hugepage_range(unsigned long addr, unsigned long len)
{
if (len & ~HPAGE_MASK)
return -EINVAL;
if (addr & ~HPAGE_MASK)
return -EINVAL;
return 0;
}
static inline void hugetlb_free_pgd_range(struct mmu_gather **tlb,
unsigned long addr, unsigned long end,
unsigned long floor,
unsigned long ceiling)
{
free_pgd_range(tlb, addr, end, floor, ceiling);
}
static inline void huge_ptep_clear_flush(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
}
static inline int huge_pte_none(pte_t pte)
{
return pte_none(pte);
}
static inline pte_t huge_pte_wrprotect(pte_t pte)
{
return pte_wrprotect(pte);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
ptep_set_wrprotect(mm, addr, ptep);
}
static inline int huge_ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t pte, int dirty)
{
return ptep_set_access_flags(vma, addr, ptep, pte, dirty);
}
static inline pte_t huge_ptep_get(pte_t *ptep)
{
return *ptep;
}
static inline int arch_prepare_hugepage(struct page *page)
{
return 0;
}
static inline void arch_release_hugepage(struct page *page)
{
}
#endif /* _ASM_SPARC64_HUGETLB_H */
#ifndef _SPARC64_HVTRAP_H
#define _SPARC64_HVTRAP_H
#ifndef __ASSEMBLY__
#include <linux/types.h>
struct hvtramp_mapping {
__u64 vaddr;
__u64 tte;
};
struct hvtramp_descr {
__u32 cpu;
__u32 num_mappings;
__u64 fault_info_va;
__u64 fault_info_pa;
__u64 thread_reg;
struct hvtramp_mapping maps[1];
};
extern void hv_cpu_startup(unsigned long hvdescr_pa);
#endif
#define HVTRAMP_DESCR_CPU 0x00
#define HVTRAMP_DESCR_NUM_MAPPINGS 0x04
#define HVTRAMP_DESCR_FAULT_INFO_VA 0x08
#define HVTRAMP_DESCR_FAULT_INFO_PA 0x10
#define HVTRAMP_DESCR_THREAD_REG 0x18
#define HVTRAMP_DESCR_MAPS 0x20
#define HVTRAMP_MAPPING_VADDR 0x00
#define HVTRAMP_MAPPING_TTE 0x08
#define HVTRAMP_MAPPING_SIZE 0x10
#endif /* _SPARC64_HVTRAP_H */
This diff is collapsed.
#ifndef _SPARC64_INTR_QUEUE_H
#define _SPARC64_INTR_QUEUE_H
/* Sun4v interrupt queue registers, accessed via ASI_QUEUE. */
#define INTRQ_CPU_MONDO_HEAD 0x3c0 /* CPU mondo head */
#define INTRQ_CPU_MONDO_TAIL 0x3c8 /* CPU mondo tail */
#define INTRQ_DEVICE_MONDO_HEAD 0x3d0 /* Device mondo head */
#define INTRQ_DEVICE_MONDO_TAIL 0x3d8 /* Device mondo tail */
#define INTRQ_RESUM_MONDO_HEAD 0x3e0 /* Resumable error mondo head */
#define INTRQ_RESUM_MONDO_TAIL 0x3e8 /* Resumable error mondo tail */
#define INTRQ_NONRESUM_MONDO_HEAD 0x3f0 /* Non-resumable error mondo head */
#define INTRQ_NONRESUM_MONDO_TAIL 0x3f8 /* Non-resumable error mondo head */
#endif /* !(_SPARC64_INTR_QUEUE_H) */
#ifndef _SPARC64_KPROBES_H
#define _SPARC64_KPROBES_H
#include <linux/types.h>
#include <linux/percpu.h>
typedef u32 kprobe_opcode_t;
#define BREAKPOINT_INSTRUCTION 0x91d02070 /* ta 0x70 */
#define BREAKPOINT_INSTRUCTION_2 0x91d02071 /* ta 0x71 */
#define MAX_INSN_SIZE 2
#define kretprobe_blacklist_size 0
#define arch_remove_kprobe(p) do {} while (0)
#define flush_insn_slot(p) \
do { flushi(&(p)->ainsn.insn[0]); \
flushi(&(p)->ainsn.insn[1]); \
} while (0)
void kretprobe_trampoline(void);
/* Architecture specific copy of original instruction*/
struct arch_specific_insn {
/* copy of the original instruction */
kprobe_opcode_t insn[MAX_INSN_SIZE];
};
struct prev_kprobe {
struct kprobe *kp;
unsigned long status;
unsigned long orig_tnpc;
unsigned long orig_tstate_pil;
};
/* per-cpu kprobe control block */
struct kprobe_ctlblk {
unsigned long kprobe_status;
unsigned long kprobe_orig_tnpc;
unsigned long kprobe_orig_tstate_pil;
struct pt_regs jprobe_saved_regs;
struct prev_kprobe prev_kprobe;
};
extern int kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data);
extern int kprobe_fault_handler(struct pt_regs *regs, int trapnr);
#endif /* _SPARC64_KPROBES_H */
#ifndef _SPARC64_LDC_H
#define _SPARC64_LDC_H
#include <asm/hypervisor.h>
extern int ldom_domaining_enabled;
extern void ldom_set_var(const char *var, const char *value);
extern void ldom_reboot(const char *boot_command);
extern void ldom_power_off(void);
/* The event handler will be evoked when link state changes
* or data becomes available on the receive side.
*
* For non-RAW links, if the LDC_EVENT_RESET event arrives the
* driver should reset all of it's internal state and reinvoke
* ldc_connect() to try and bring the link up again.
*
* For RAW links, ldc_connect() is not used. Instead the driver
* just waits for the LDC_EVENT_UP event.
*/
struct ldc_channel_config {
void (*event)(void *arg, int event);
u32 mtu;
unsigned int rx_irq;
unsigned int tx_irq;
u8 mode;
#define LDC_MODE_RAW 0x00
#define LDC_MODE_UNRELIABLE 0x01
#define LDC_MODE_RESERVED 0x02
#define LDC_MODE_STREAM 0x03
u8 debug;
#define LDC_DEBUG_HS 0x01
#define LDC_DEBUG_STATE 0x02
#define LDC_DEBUG_RX 0x04
#define LDC_DEBUG_TX 0x08
#define LDC_DEBUG_DATA 0x10
};
#define LDC_EVENT_RESET 0x01
#define LDC_EVENT_UP 0x02
#define LDC_EVENT_DATA_READY 0x04
#define LDC_STATE_INVALID 0x00
#define LDC_STATE_INIT 0x01
#define LDC_STATE_BOUND 0x02
#define LDC_STATE_READY 0x03
#define LDC_STATE_CONNECTED 0x04
struct ldc_channel;
/* Allocate state for a channel. */
extern struct ldc_channel *ldc_alloc(unsigned long id,
const struct ldc_channel_config *cfgp,
void *event_arg);
/* Shut down and free state for a channel. */
extern void ldc_free(struct ldc_channel *lp);
/* Register TX and RX queues of the link with the hypervisor. */
extern int ldc_bind(struct ldc_channel *lp, const char *name);
/* For non-RAW protocols we need to complete a handshake before
* communication can proceed. ldc_connect() does that, if the
* handshake completes successfully, an LDC_EVENT_UP event will
* be sent up to the driver.
*/
extern int ldc_connect(struct ldc_channel *lp);
extern int ldc_disconnect(struct ldc_channel *lp);
extern int ldc_state(struct ldc_channel *lp);
/* Read and write operations. Only valid when the link is up. */
extern int ldc_write(struct ldc_channel *lp, const void *buf,
unsigned int size);
extern int ldc_read(struct ldc_channel *lp, void *buf, unsigned int size);
#define LDC_MAP_SHADOW 0x01
#define LDC_MAP_DIRECT 0x02
#define LDC_MAP_IO 0x04
#define LDC_MAP_R 0x08
#define LDC_MAP_W 0x10
#define LDC_MAP_X 0x20
#define LDC_MAP_RW (LDC_MAP_R | LDC_MAP_W)
#define LDC_MAP_RWX (LDC_MAP_R | LDC_MAP_W | LDC_MAP_X)
#define LDC_MAP_ALL 0x03f
struct ldc_trans_cookie {
u64 cookie_addr;
u64 cookie_size;
};
struct scatterlist;
extern int ldc_map_sg(struct ldc_channel *lp,
struct scatterlist *sg, int num_sg,
struct ldc_trans_cookie *cookies, int ncookies,
unsigned int map_perm);
extern int ldc_map_single(struct ldc_channel *lp,
void *buf, unsigned int len,
struct ldc_trans_cookie *cookies, int ncookies,
unsigned int map_perm);
extern void ldc_unmap(struct ldc_channel *lp, struct ldc_trans_cookie *cookies,
int ncookies);
extern int ldc_copy(struct ldc_channel *lp, int copy_dir,
void *buf, unsigned int len, unsigned long offset,
struct ldc_trans_cookie *cookies, int ncookies);
static inline int ldc_get_dring_entry(struct ldc_channel *lp,
void *buf, unsigned int len,
unsigned long offset,
struct ldc_trans_cookie *cookies,
int ncookies)
{
return ldc_copy(lp, LDC_COPY_IN, buf, len, offset, cookies, ncookies);
}
static inline int ldc_put_dring_entry(struct ldc_channel *lp,
void *buf, unsigned int len,
unsigned long offset,
struct ldc_trans_cookie *cookies,
int ncookies)
{
return ldc_copy(lp, LDC_COPY_OUT, buf, len, offset, cookies, ncookies);
}
extern void *ldc_alloc_exp_dring(struct ldc_channel *lp, unsigned int len,
struct ldc_trans_cookie *cookies,
int *ncookies, unsigned int map_perm);
extern void ldc_free_exp_dring(struct ldc_channel *lp, void *buf,
unsigned int len,
struct ldc_trans_cookie *cookies, int ncookies);
#endif /* _SPARC64_LDC_H */
#ifndef _SPARC64_LMB_H
#define _SPARC64_LMB_H
#include <asm/oplib.h>
#define LMB_DBG(fmt...) prom_printf(fmt)
#define LMB_REAL_LIMIT 0
#endif /* !(_SPARC64_LMB_H) */
#ifndef _SPARC64_LSU_H
#define _SPARC64_LSU_H
#include <linux/const.h>
/* LSU Control Register */
#define LSU_CONTROL_PM _AC(0x000001fe00000000,UL) /* Phys-watchpoint byte mask*/
#define LSU_CONTROL_VM _AC(0x00000001fe000000,UL) /* Virt-watchpoint byte mask*/
#define LSU_CONTROL_PR _AC(0x0000000001000000,UL) /* Phys-rd watchpoint enable*/
#define LSU_CONTROL_PW _AC(0x0000000000800000,UL) /* Phys-wr watchpoint enable*/
#define LSU_CONTROL_VR _AC(0x0000000000400000,UL) /* Virt-rd watchpoint enable*/
#define LSU_CONTROL_VW _AC(0x0000000000200000,UL) /* Virt-wr watchpoint enable*/
#define LSU_CONTROL_FM _AC(0x00000000000ffff0,UL) /* Parity mask enables. */
#define LSU_CONTROL_DM _AC(0x0000000000000008,UL) /* Data MMU enable. */
#define LSU_CONTROL_IM _AC(0x0000000000000004,UL) /* Instruction MMU enable. */
#define LSU_CONTROL_DC _AC(0x0000000000000002,UL) /* Data cache enable. */
#define LSU_CONTROL_IC _AC(0x0000000000000001,UL) /* Instruction cache enable.*/
#endif /* !(_SPARC64_LSU_H) */
#ifndef _SPARC64_MDESC_H
#define _SPARC64_MDESC_H
#include <linux/types.h>
#include <linux/cpumask.h>
#include <asm/prom.h>
struct mdesc_handle;
/* Machine description operations are to be surrounded by grab and
* release calls. The mdesc_handle returned from the grab is
* the first argument to all of the operational calls that work
* on mdescs.
*/
extern struct mdesc_handle *mdesc_grab(void);
extern void mdesc_release(struct mdesc_handle *);
#define MDESC_NODE_NULL (~(u64)0)
extern u64 mdesc_node_by_name(struct mdesc_handle *handle,
u64 from_node, const char *name);
#define mdesc_for_each_node_by_name(__hdl, __node, __name) \
for (__node = mdesc_node_by_name(__hdl, MDESC_NODE_NULL, __name); \
(__node) != MDESC_NODE_NULL; \
__node = mdesc_node_by_name(__hdl, __node, __name))
/* Access to property values returned from mdesc_get_property() are
* only valid inside of a mdesc_grab()/mdesc_release() sequence.
* Once mdesc_release() is called, the memory backed up by these
* pointers may reference freed up memory.
*
* Therefore callers must make copies of any property values
* they need.
*
* These same rules apply to mdesc_node_name().
*/
extern const void *mdesc_get_property(struct mdesc_handle *handle,
u64 node, const char *name, int *lenp);
extern const char *mdesc_node_name(struct mdesc_handle *hp, u64 node);
/* MD arc iteration, the standard sequence is:
*
* unsigned long arc;
* mdesc_for_each_arc(arc, handle, node, MDESC_ARC_TYPE_{FWD,BACK}) {
* unsigned long target = mdesc_arc_target(handle, arc);
* ...
* }
*/
#define MDESC_ARC_TYPE_FWD "fwd"
#define MDESC_ARC_TYPE_BACK "back"
extern u64 mdesc_next_arc(struct mdesc_handle *handle, u64 from,
const char *arc_type);
#define mdesc_for_each_arc(__arc, __hdl, __node, __type) \
for (__arc = mdesc_next_arc(__hdl, __node, __type); \
(__arc) != MDESC_NODE_NULL; \
__arc = mdesc_next_arc(__hdl, __arc, __type))
extern u64 mdesc_arc_target(struct mdesc_handle *hp, u64 arc);
extern void mdesc_update(void);
struct mdesc_notifier_client {
void (*add)(struct mdesc_handle *handle, u64 node);
void (*remove)(struct mdesc_handle *handle, u64 node);
const char *node_name;
struct mdesc_notifier_client *next;
};
extern void mdesc_register_notifier(struct mdesc_notifier_client *client);
extern void mdesc_fill_in_cpu_data(cpumask_t mask);
extern void sun4v_mdesc_init(void);
#endif
#ifndef _SPARC64_MMZONE_H
#define _SPARC64_MMZONE_H
#ifdef CONFIG_NEED_MULTIPLE_NODES
extern struct pglist_data *node_data[];
#define NODE_DATA(nid) (node_data[nid])
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
#define node_end_pfn(nid) (NODE_DATA(nid)->node_end_pfn)
extern int numa_cpu_lookup_table[];
extern cpumask_t numa_cpumask_lookup_table[];
#endif /* CONFIG_NEED_MULTIPLE_NODES */
#endif /* _SPARC64_MMZONE_H */
/* ns87303.h: Configuration Register Description for the
* National Semiconductor PC87303 (SuperIO).
*
* Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be)
*/
#ifndef _SPARC_NS87303_H
#define _SPARC_NS87303_H 1
/*
* Control Register Index Values
*/
#define FER 0x00
#define FAR 0x01
#define PTR 0x02
#define FCR 0x03
#define PCR 0x04
#define KRR 0x05
#define PMC 0x06
#define TUP 0x07
#define SID 0x08
#define ASC 0x09
#define CS0CF0 0x0a
#define CS0CF1 0x0b
#define CS1CF0 0x0c
#define CS1CF1 0x0d
/* Function Enable Register (FER) bits */
#define FER_EDM 0x10 /* Encoded Drive and Motor pin information */
/* Function Address Register (FAR) bits */
#define FAR_LPT_MASK 0x03
#define FAR_LPTB 0x00
#define FAR_LPTA 0x01
#define FAR_LPTC 0x02
/* Power and Test Register (PTR) bits */
#define PTR_LPTB_IRQ7 0x08
#define PTR_LEVEL_IRQ 0x80 /* When not ECP/EPP: Use level IRQ */
#define PTR_LPT_REG_DIR 0x80 /* When ECP/EPP: LPT CTR controlls direction */
/* of the parallel port */
/* Function Control Register (FCR) bits */
#define FCR_LDE 0x10 /* Logical Drive Exchange */
#define FCR_ZWS_ENA 0x20 /* Enable short host read/write in ECP/EPP */
/* Printer Control Register (PCR) bits */
#define PCR_EPP_ENABLE 0x01
#define PCR_EPP_IEEE 0x02 /* Enable EPP Version 1.9 (IEEE 1284) */
#define PCR_ECP_ENABLE 0x04
#define PCR_ECP_CLK_ENA 0x08 /* If 0 ECP Clock is stopped on Power down */
#define PCR_IRQ_POLAR 0x20 /* If 0 IRQ is level high or negative pulse, */
/* if 1 polarity is inverted */
#define PCR_IRQ_ODRAIN 0x40 /* If 1, IRQ is open drain */
/* Tape UARTs and Parallel Port Config Register (TUP) bits */
#define TUP_EPP_TIMO 0x02 /* Enable EPP timeout IRQ */
/* Advanced SuperIO Config Register (ASC) bits */
#define ASC_LPT_IRQ7 0x01 /* Always use IRQ7 for LPT */
#define ASC_DRV2_SEL 0x02 /* Logical Drive Exchange controlled by TDR */
#define FER_RESERVED 0x00
#define FAR_RESERVED 0x00
#define PTR_RESERVED 0x73
#define FCR_RESERVED 0xc4
#define PCR_RESERVED 0x10
#define KRR_RESERVED 0x00
#define PMC_RESERVED 0x98
#define TUP_RESERVED 0xfb
#define SIP_RESERVED 0x00
#define ASC_RESERVED 0x18
#define CS0CF0_RESERVED 0x00
#define CS0CF1_RESERVED 0x08
#define CS1CF0_RESERVED 0x00
#define CS1CF1_RESERVED 0x08
#ifdef __KERNEL__
#include <linux/spinlock.h>
#include <asm/system.h>
#include <asm/io.h>
extern spinlock_t ns87303_lock;
static inline int ns87303_modify(unsigned long port, unsigned int index,
unsigned char clr, unsigned char set)
{
static unsigned char reserved[] = {
FER_RESERVED, FAR_RESERVED, PTR_RESERVED, FCR_RESERVED,
PCR_RESERVED, KRR_RESERVED, PMC_RESERVED, TUP_RESERVED,
SIP_RESERVED, ASC_RESERVED, CS0CF0_RESERVED, CS0CF1_RESERVED,
CS1CF0_RESERVED, CS1CF1_RESERVED
};
unsigned long flags;
unsigned char value;
if (index > 0x0d)
return -EINVAL;
spin_lock_irqsave(&ns87303_lock, flags);
outb(index, port);
value = inb(port + 1);
value &= ~(reserved[index] | clr);
value |= set;
outb(value, port + 1);
outb(value, port + 1);
spin_unlock_irqrestore(&ns87303_lock, flags);
return 0;
}
#endif /* __KERNEL__ */
#endif /* !(_SPARC_NS87303_H) */
This diff is collapsed.
#ifndef _SPARC64_PIL_H
#define _SPARC64_PIL_H
/* To avoid some locking problems, we hard allocate certain PILs
* for SMP cross call messages that must do a etrap/rtrap.
*
* A local_irq_disable() does not block the cross call delivery, so
* when SMP locking is an issue we reschedule the event into a PIL
* interrupt which is blocked by local_irq_disable().
*
* In fact any XCALL which has to etrap/rtrap has a problem because
* it is difficult to prevent rtrap from running BH's, and that would
* need to be done if the XCALL arrived while %pil==15.
*/
#define PIL_SMP_CALL_FUNC 1
#define PIL_SMP_RECEIVE_SIGNAL 2
#define PIL_SMP_CAPTURE 3
#define PIL_SMP_CTX_NEW_VERSION 4
#define PIL_DEVICE_IRQ 5
#endif /* !(_SPARC64_PIL_H) */
#ifndef _SPARC64_REBOOT_H
#define _SPARC64_REBOOT_H
extern void machine_alt_power_off(void);
#endif /* _SPARC64_REBOOT_H */
/* rwsem-const.h: RW semaphore counter constants. */
#ifndef _SPARC64_RWSEM_CONST_H
#define _SPARC64_RWSEM_CONST_H
#define RWSEM_UNLOCKED_VALUE 0x00000000
#define RWSEM_ACTIVE_BIAS 0x00000001
#define RWSEM_ACTIVE_MASK 0x0000ffff
#define RWSEM_WAITING_BIAS 0xffff0000
#define RWSEM_ACTIVE_READ_BIAS RWSEM_ACTIVE_BIAS
#define RWSEM_ACTIVE_WRITE_BIAS (RWSEM_WAITING_BIAS + RWSEM_ACTIVE_BIAS)
#endif /* _SPARC64_RWSEM_CONST_H */
/*
* rwsem.h: R/W semaphores implemented using CAS
*
* Written by David S. Miller (davem@redhat.com), 2001.
* Derived from asm-i386/rwsem.h
*/
#ifndef _SPARC64_RWSEM_H
#define _SPARC64_RWSEM_H
#ifndef _LINUX_RWSEM_H
#error "please don't include asm/rwsem.h directly, use linux/rwsem.h instead"
#endif
#ifdef __KERNEL__
#include <linux/list.h>
#include <linux/spinlock.h>
#include <asm/rwsem-const.h>
struct rwsem_waiter;
struct rw_semaphore {
signed int count;
spinlock_t wait_lock;
struct list_head wait_list;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define __RWSEM_DEP_MAP_INIT(lockname) , .dep_map = { .name = #lockname }
#else
# define __RWSEM_DEP_MAP_INIT(lockname)
#endif
#define __RWSEM_INITIALIZER(name) \
{ RWSEM_UNLOCKED_VALUE, SPIN_LOCK_UNLOCKED, LIST_HEAD_INIT((name).wait_list) \
__RWSEM_DEP_MAP_INIT(name) }
#define DECLARE_RWSEM(name) \
struct rw_semaphore name = __RWSEM_INITIALIZER(name)
extern void __init_rwsem(struct rw_semaphore *sem, const char *name,
struct lock_class_key *key);
#define init_rwsem(sem) \
do { \
static struct lock_class_key __key; \
\
__init_rwsem((sem), #sem, &__key); \
} while (0)
extern void __down_read(struct rw_semaphore *sem);
extern int __down_read_trylock(struct rw_semaphore *sem);
extern void __down_write(struct rw_semaphore *sem);
extern int __down_write_trylock(struct rw_semaphore *sem);
extern void __up_read(struct rw_semaphore *sem);
extern void __up_write(struct rw_semaphore *sem);
extern void __downgrade_write(struct rw_semaphore *sem);
static inline void __down_write_nested(struct rw_semaphore *sem, int subclass)
{
__down_write(sem);
}
static inline int rwsem_atomic_update(int delta, struct rw_semaphore *sem)
{
return atomic_add_return(delta, (atomic_t *)(&sem->count));
}
static inline void rwsem_atomic_add(int delta, struct rw_semaphore *sem)
{
atomic_add(delta, (atomic_t *)(&sem->count));
}
static inline int rwsem_is_locked(struct rw_semaphore *sem)
{
return (sem->count != 0);
}
#endif /* __KERNEL__ */
#endif /* _SPARC64_RWSEM_H */
#ifndef _SPARC64_SCRATCHPAD_H
#define _SPARC64_SCRATCHPAD_H
/* Sun4v scratchpad registers, accessed via ASI_SCRATCHPAD. */
#define SCRATCHPAD_MMU_MISS 0x00 /* Shared with OBP - set by OBP */
#define SCRATCHPAD_CPUID 0x08 /* Shared with OBP - set by hypervisor */
#define SCRATCHPAD_UTSBREG1 0x10
#define SCRATCHPAD_UTSBREG2 0x18
/* 0x20 and 0x28, hypervisor only... */
#define SCRATCHPAD_UNUSED1 0x30
#define SCRATCHPAD_UNUSED2 0x38 /* Reserved for OBP */
#endif /* !(_SPARC64_SCRATCHPAD_H) */
#ifndef _ASM_SECCOMP_H
#include <linux/thread_info.h> /* already defines TIF_32BIT */
#ifndef TIF_32BIT
#error "unexpected TIF_32BIT on sparc64"
#endif
#include <linux/unistd.h>
#define __NR_seccomp_read __NR_read
#define __NR_seccomp_write __NR_write
#define __NR_seccomp_exit __NR_exit
#define __NR_seccomp_sigreturn __NR_rt_sigreturn
#define __NR_seccomp_read_32 __NR_read
#define __NR_seccomp_write_32 __NR_write
#define __NR_seccomp_exit_32 __NR_exit
#define __NR_seccomp_sigreturn_32 __NR_sigreturn
#endif /* _ASM_SECCOMP_H */
This diff is collapsed.
#ifndef _SPARC64_SPARSEMEM_H
#define _SPARC64_SPARSEMEM_H
#ifdef __KERNEL__
#define SECTION_SIZE_BITS 30
#define MAX_PHYSADDR_BITS 42
#define MAX_PHYSMEM_BITS 42
#endif /* !(__KERNEL__) */
#endif /* !(_SPARC64_SPARSEMEM_H) */
This diff is collapsed.
This diff is collapsed.
#ifndef _SPARC64_STACKTRACE_H
#define _SPARC64_STACKTRACE_H
extern void stack_trace_flush(void);
#endif /* _SPARC64_STACKTRACE_H */
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment