device_cgroup: rework device access check and exception checking
commit 79d71974 upstream. Whenever a device file is opened and checked against current device cgroup rules, it uses the same function (may_access()) as when a new exception rule is added by writing devices.{allow,deny}. And in both cases, the algorithm is the same, doesn't matter the behavior. First problem is having device access to be considered the same as rule checking. Consider the following structure: A (default behavior: allow, exceptions disallow access) \ B (default behavior: allow, exceptions disallow access) A new exception is added to B by writing devices.deny: c 12:34 rw When checking if that exception is allowed in may_access(): if (dev_cgroup->behavior == DEVCG_DEFAULT_ALLOW) { if (behavior == DEVCG_DEFAULT_ALLOW) { /* the exception will deny access to certain devices */ return true; Which is ok, since B is not getting more privileges than A, it doesn't matter and the rule is accepted Now, consider it's a device file open check and the process belongs to cgroup B. The access will be generated as: behavior: allow exception: c 12:34 rw The very same chunk of code will allow it, even if there's an explicit exception telling to do otherwise. A simple test case: # mkdir new_group # cd new_group # echo $$ >tasks # echo "c 1:3 w" >devices.deny # echo >/dev/null # echo $? 0 This is a serious bug and was introduced on c39a2a30 devcg: prepare may_access() for hierarchy support To solve this problem, the device file open function was split from the new exception check. Second problem is how exceptions are processed by may_access(). The first part of the said function tries to match fully with an existing exception: list_for_each_entry_rcu(ex, &dev_cgroup->exceptions, list) { if ((refex->type & DEV_BLOCK) && !(ex->type & DEV_BLOCK)) continue; if ((refex->type & DEV_CHAR) && !(ex->type & DEV_CHAR)) continue; if (ex->major != ~0 && ex->major != refex->major) continue; if (ex->minor != ~0 && ex->minor != refex->minor) continue; if (refex->access & (~ex->access)) continue; match = true; break; } That means the new exception should be contained into an existing one to be considered a match: New exception Existing match? notes b 12:34 rwm b 12:34 rwm yes b 12:34 r b *:34 rw yes b 12:34 rw b 12:34 w no extra "r" b *:34 rw b 12:34 rw no too broad "*" b *:34 rw b *:34 rwm yes Which is fine in some cases. Consider: A (default behavior: deny, exceptions allow access) \ B (default behavior: deny, exceptions allow access) In this case the full match makes sense, the new exception cannot add more access than the parent allows But this doesn't always work, consider: A (default behavior: allow, exceptions disallow access) \ B (default behavior: deny, exceptions allow access) In this case, a new exception in B shouldn't match any of the exceptions in A, after all you can't allow something that was forbidden by A. But consider this scenario: New exception Existing in A match? outcome b 12:34 rw b 12:34 r no exception is accepted Because the new exception has "w" as extra, it doesn't match, so it'll be added to B's exception list. The same problem can happen during a file access check. Consider a cgroup with allow as default behavior: Access Exception match? b 12:34 rw b 12:34 r no In this case, the access didn't match any of the exceptions in the cgroup, which is required since exceptions will disallow access. To solve this problem, two new functions were created to match an exception either fully or partially. In the example above, a partial check will be performed and it'll produce a match since at least "b 12:34 r" from "b 12:34 rw" access matches. Cc: cgroups@vger.kernel.org Cc: Tejun Heo <tj@kernel.org> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Aristeu Rozanski <arozansk@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Showing
Please register or sign in to comment