Commit bc0fa814 authored by Dan Williams's avatar Dan Williams

Merge branches 'amba' and 'dma40' into dmaengine

...@@ -13,6 +13,14 @@ ...@@ -13,6 +13,14 @@
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
/*
* Maxium size for a single dma descriptor
* Size is limited to 16 bits.
* Size is in the units of addr-widths (1,2,4,8 bytes)
* Larger transfers will be split up to multiple linked desc
*/
#define STEDMA40_MAX_SEG_SIZE 0xFFFF
/* dev types for memcpy */ /* dev types for memcpy */
#define STEDMA40_DEV_DST_MEMORY (-1) #define STEDMA40_DEV_DST_MEMORY (-1)
#define STEDMA40_DEV_SRC_MEMORY (-1) #define STEDMA40_DEV_SRC_MEMORY (-1)
......
This diff is collapsed.
This diff is collapsed.
/* /*
* Copyright (C) ST-Ericsson SA 2007-2010 * Copyright (C) ST-Ericsson SA 2007-2010
* Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
* License terms: GNU General Public License (GPL) version 2 * License terms: GNU General Public License (GPL) version 2
*/ */
...@@ -122,15 +122,15 @@ void d40_phy_cfg(struct stedma40_chan_cfg *cfg, ...@@ -122,15 +122,15 @@ void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
*dst_cfg = dst; *dst_cfg = dst;
} }
int d40_phy_fill_lli(struct d40_phy_lli *lli, static int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data, dma_addr_t data,
u32 data_size, u32 data_size,
int psize, int psize,
dma_addr_t next_lli, dma_addr_t next_lli,
u32 reg_cfg, u32 reg_cfg,
bool term_int, bool term_int,
u32 data_width, u32 data_width,
bool is_device) bool is_device)
{ {
int num_elems; int num_elems;
...@@ -139,13 +139,6 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli, ...@@ -139,13 +139,6 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli,
else else
num_elems = 2 << psize; num_elems = 2 << psize;
/*
* Size is 16bit. data_width is 8, 16, 32 or 64 bit
* Block large than 64 KiB must be split.
*/
if (data_size > (0xffff << data_width))
return -EINVAL;
/* Must be aligned */ /* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width)) if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL; return -EINVAL;
...@@ -187,55 +180,118 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli, ...@@ -187,55 +180,118 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli,
return 0; return 0;
} }
static int d40_seg_size(int size, int data_width1, int data_width2)
{
u32 max_w = max(data_width1, data_width2);
u32 min_w = min(data_width1, data_width2);
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
if (seg_max > STEDMA40_MAX_SEG_SIZE)
seg_max -= (1 << max_w);
if (size <= seg_max)
return size;
if (size <= 2 * seg_max)
return ALIGN(size / 2, 1 << max_w);
return seg_max;
}
struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t addr,
u32 size,
int psize,
dma_addr_t lli_phys,
u32 reg_cfg,
bool term_int,
u32 data_width1,
u32 data_width2,
bool is_device)
{
int err;
dma_addr_t next = lli_phys;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
if (term_int && size_rest == 0)
next = 0;
else
next = ALIGN(next + sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
err = d40_phy_fill_lli(lli,
addr,
size_seg,
psize,
next,
reg_cfg,
!next,
data_width1,
is_device);
if (err)
goto err;
lli++;
if (!is_device)
addr += size_seg;
} while (size_rest);
return lli;
err:
return NULL;
}
int d40_phy_sg_to_lli(struct scatterlist *sg, int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
dma_addr_t target, dma_addr_t target,
struct d40_phy_lli *lli, struct d40_phy_lli *lli_sg,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width1,
u32 data_width2,
int psize) int psize)
{ {
int total_size = 0; int total_size = 0;
int i; int i;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
dma_addr_t next_lli_phys;
dma_addr_t dst; dma_addr_t dst;
int err = 0; struct d40_phy_lli *lli = lli_sg;
dma_addr_t l_phys = lli_phys;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
/* If this scatter list entry is the last one, no next link */
if (sg_len - 1 == i)
next_lli_phys = 0;
else
next_lli_phys = ALIGN(lli_phys + (i + 1) *
sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
if (target) if (target)
dst = target; dst = target;
else else
dst = sg_phys(current_sg); dst = sg_phys(current_sg);
err = d40_phy_fill_lli(&lli[i], l_phys = ALIGN(lli_phys + (lli - lli_sg) *
dst, sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
sg_dma_len(current_sg),
psize, lli = d40_phy_buf_to_lli(lli,
next_lli_phys, dst,
reg_cfg, sg_dma_len(current_sg),
!next_lli_phys, psize,
data_width, l_phys,
target == dst); reg_cfg,
if (err) sg_len - 1 == i,
goto err; data_width1,
data_width2,
target == dst);
if (lli == NULL)
return -EINVAL;
} }
return total_size; return total_size;
err:
return err;
} }
...@@ -315,17 +371,20 @@ void d40_log_lli_lcla_write(struct d40_log_lli *lcla, ...@@ -315,17 +371,20 @@ void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
writel(lli_dst->lcsp13, &lcla[1].lcsp13); writel(lli_dst->lcsp13, &lcla[1].lcsp13);
} }
void d40_log_fill_lli(struct d40_log_lli *lli, static void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size, dma_addr_t data, u32 data_size,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width,
bool addr_inc) bool addr_inc)
{ {
lli->lcsp13 = reg_cfg; lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */ /* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) << lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
/* 16 LSBs address of the current element */ /* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */ /* 16 MSBs address of the current element */
...@@ -348,55 +407,94 @@ int d40_log_sg_to_dev(struct scatterlist *sg, ...@@ -348,55 +407,94 @@ int d40_log_sg_to_dev(struct scatterlist *sg,
int total_size = 0; int total_size = 0;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
struct d40_log_lli *lli_src = lli->src;
struct d40_log_lli *lli_dst = lli->dst;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
if (direction == DMA_TO_DEVICE) { if (direction == DMA_TO_DEVICE) {
d40_log_fill_lli(&lli->src[i], lli_src =
sg_phys(current_sg), d40_log_buf_to_lli(lli_src,
sg_dma_len(current_sg), sg_phys(current_sg),
lcsp->lcsp1, src_data_width, sg_dma_len(current_sg),
true); lcsp->lcsp1, src_data_width,
d40_log_fill_lli(&lli->dst[i], dst_data_width,
dev_addr, true);
sg_dma_len(current_sg), lli_dst =
lcsp->lcsp3, dst_data_width, d40_log_buf_to_lli(lli_dst,
false); dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
false);
} else { } else {
d40_log_fill_lli(&lli->dst[i], lli_dst =
sg_phys(current_sg), d40_log_buf_to_lli(lli_dst,
sg_dma_len(current_sg), sg_phys(current_sg),
lcsp->lcsp3, dst_data_width, sg_dma_len(current_sg),
true); lcsp->lcsp3, dst_data_width,
d40_log_fill_lli(&lli->src[i], src_data_width,
dev_addr, true);
sg_dma_len(current_sg), lli_src =
lcsp->lcsp1, src_data_width, d40_log_buf_to_lli(lli_src,
false); dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
false);
} }
} }
return total_size; return total_size;
} }
struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t addr,
int size,
u32 lcsp13, /* src or dst*/
u32 data_width1,
u32 data_width2,
bool addr_inc)
{
struct d40_log_lli *lli = lli_sg;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
d40_log_fill_lli(lli,
addr,
size_seg,
lcsp13, data_width1,
addr_inc);
if (addr_inc)
addr += size_seg;
lli++;
} while (size_rest);
return lli;
}
int d40_log_sg_to_lli(struct scatterlist *sg, int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width) u32 data_width1, u32 data_width2)
{ {
int total_size = 0; int total_size = 0;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
struct d40_log_lli *lli = lli_sg;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
lli = d40_log_buf_to_lli(lli,
d40_log_fill_lli(&lli_sg[i], sg_phys(current_sg),
sg_phys(current_sg), sg_dma_len(current_sg),
sg_dma_len(current_sg), lcsp13,
lcsp13, data_width, data_width1, data_width2, true);
true);
} }
return total_size; return total_size;
} }
...@@ -292,18 +292,20 @@ int d40_phy_sg_to_lli(struct scatterlist *sg, ...@@ -292,18 +292,20 @@ int d40_phy_sg_to_lli(struct scatterlist *sg,
struct d40_phy_lli *lli, struct d40_phy_lli *lli,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width1,
u32 data_width2,
int psize); int psize);
int d40_phy_fill_lli(struct d40_phy_lli *lli, struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t data, dma_addr_t data,
u32 data_size, u32 data_size,
int psize, int psize,
dma_addr_t next_lli, dma_addr_t next_lli,
u32 reg_cfg, u32 reg_cfg,
bool term_int, bool term_int,
u32 data_width, u32 data_width1,
bool is_device); u32 data_width2,
bool is_device);
void d40_phy_lli_write(void __iomem *virtbase, void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num, u32 phy_chan_num,
...@@ -312,12 +314,12 @@ void d40_phy_lli_write(void __iomem *virtbase, ...@@ -312,12 +314,12 @@ void d40_phy_lli_write(void __iomem *virtbase,
/* Logical channels */ /* Logical channels */
void d40_log_fill_lli(struct d40_log_lli *lli, struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t data, dma_addr_t addr,
u32 data_size, int size,
u32 reg_cfg, u32 lcsp13, /* src or dst*/
u32 data_width, u32 data_width1, u32 data_width2,
bool addr_inc); bool addr_inc);
int d40_log_sg_to_dev(struct scatterlist *sg, int d40_log_sg_to_dev(struct scatterlist *sg,
int sg_len, int sg_len,
...@@ -332,7 +334,7 @@ int d40_log_sg_to_lli(struct scatterlist *sg, ...@@ -332,7 +334,7 @@ int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width); u32 data_width1, u32 data_width2);
void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
......
...@@ -22,6 +22,15 @@ ...@@ -22,6 +22,15 @@
#include <linux/dmaengine.h> #include <linux/dmaengine.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
struct pl08x_lli;
struct pl08x_driver_data;
/* Bitmasks for selecting AHB ports for DMA transfers */
enum {
PL08X_AHB1 = (1 << 0),
PL08X_AHB2 = (1 << 1)
};
/** /**
* struct pl08x_channel_data - data structure to pass info between * struct pl08x_channel_data - data structure to pass info between
* platform and PL08x driver regarding channel configuration * platform and PL08x driver regarding channel configuration
...@@ -48,6 +57,8 @@ ...@@ -48,6 +57,8 @@
* round round round) * round round round)
* @single: the device connected to this channel will request single * @single: the device connected to this channel will request single
* DMA transfers, not bursts. (Bursts are default.) * DMA transfers, not bursts. (Bursts are default.)
* @periph_buses: the device connected to this channel is accessible via
* these buses (use PL08X_AHB1 | PL08X_AHB2).
*/ */
struct pl08x_channel_data { struct pl08x_channel_data {
char *bus_id; char *bus_id;
...@@ -55,10 +66,10 @@ struct pl08x_channel_data { ...@@ -55,10 +66,10 @@ struct pl08x_channel_data {
int max_signal; int max_signal;
u32 muxval; u32 muxval;
u32 cctl; u32 cctl;
u32 ccfg;
dma_addr_t addr; dma_addr_t addr;
bool circular_buffer; bool circular_buffer;
bool single; bool single;
u8 periph_buses;
}; };
/** /**
...@@ -74,7 +85,7 @@ struct pl08x_bus_data { ...@@ -74,7 +85,7 @@ struct pl08x_bus_data {
dma_addr_t addr; dma_addr_t addr;
u8 maxwidth; u8 maxwidth;
u8 buswidth; u8 buswidth;
u32 fill_bytes; size_t fill_bytes;
}; };
/** /**
...@@ -92,11 +103,6 @@ struct pl08x_phy_chan { ...@@ -92,11 +103,6 @@ struct pl08x_phy_chan {
spinlock_t lock; spinlock_t lock;
int signal; int signal;
struct pl08x_dma_chan *serving; struct pl08x_dma_chan *serving;
u32 csrc;
u32 cdst;
u32 clli;
u32 cctl;
u32 ccfg;
}; };
/** /**
...@@ -108,21 +114,19 @@ struct pl08x_txd { ...@@ -108,21 +114,19 @@ struct pl08x_txd {
struct dma_async_tx_descriptor tx; struct dma_async_tx_descriptor tx;
struct list_head node; struct list_head node;
enum dma_data_direction direction; enum dma_data_direction direction;
struct pl08x_bus_data srcbus; dma_addr_t src_addr;
struct pl08x_bus_data dstbus; dma_addr_t dst_addr;
int len; size_t len;
dma_addr_t llis_bus; dma_addr_t llis_bus;
void *llis_va; void *llis_va;
struct pl08x_channel_data *cd;
bool active; bool active;
/* Default cctl value for LLIs */
u32 cctl;
/* /*
* Settings to be put into the physical channel when we * Settings to be put into the physical channel when we
* trigger this txd * trigger this txd. Other registers are in llis_va[0].
*/ */
u32 csrc; u32 ccfg;
u32 cdst;
u32 clli;
u32 cctl;
}; };
/** /**
...@@ -147,6 +151,8 @@ enum pl08x_dma_chan_state { ...@@ -147,6 +151,8 @@ enum pl08x_dma_chan_state {
* struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
* @chan: wrappped abstract channel * @chan: wrappped abstract channel
* @phychan: the physical channel utilized by this channel, if there is one * @phychan: the physical channel utilized by this channel, if there is one
* @phychan_hold: if non-zero, hold on to the physical channel even if we
* have no pending entries
* @tasklet: tasklet scheduled by the IRQ to handle actual work etc * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
* @name: name of channel * @name: name of channel
* @cd: channel platform data * @cd: channel platform data
...@@ -154,11 +160,8 @@ enum pl08x_dma_chan_state { ...@@ -154,11 +160,8 @@ enum pl08x_dma_chan_state {
* @runtime_direction: current direction of this channel according to * @runtime_direction: current direction of this channel according to
* runtime config * runtime config
* @lc: last completed transaction on this channel * @lc: last completed transaction on this channel
* @desc_list: queued transactions pending on this channel * @pend_list: queued transactions pending on this channel
* @at: active transaction on this channel * @at: active transaction on this channel
* @lockflags: sometimes we let a lock last between two function calls,
* especially prep/submit, and then we need to store the IRQ flags
* in the channel state, here
* @lock: a lock for this channel data * @lock: a lock for this channel data
* @host: a pointer to the host (internal use) * @host: a pointer to the host (internal use)
* @state: whether the channel is idle, paused, running etc * @state: whether the channel is idle, paused, running etc
...@@ -169,18 +172,17 @@ enum pl08x_dma_chan_state { ...@@ -169,18 +172,17 @@ enum pl08x_dma_chan_state {
struct pl08x_dma_chan { struct pl08x_dma_chan {
struct dma_chan chan; struct dma_chan chan;
struct pl08x_phy_chan *phychan; struct pl08x_phy_chan *phychan;
int phychan_hold;
struct tasklet_struct tasklet; struct tasklet_struct tasklet;
char *name; char *name;
struct pl08x_channel_data *cd; struct pl08x_channel_data *cd;
dma_addr_t runtime_addr; dma_addr_t runtime_addr;
enum dma_data_direction runtime_direction; enum dma_data_direction runtime_direction;
atomic_t last_issued;
dma_cookie_t lc; dma_cookie_t lc;
struct list_head desc_list; struct list_head pend_list;
struct pl08x_txd *at; struct pl08x_txd *at;
unsigned long lockflags;
spinlock_t lock; spinlock_t lock;
void *host; struct pl08x_driver_data *host;
enum pl08x_dma_chan_state state; enum pl08x_dma_chan_state state;
bool slave; bool slave;
struct pl08x_txd *waiting; struct pl08x_txd *waiting;
...@@ -199,8 +201,8 @@ struct pl08x_dma_chan { ...@@ -199,8 +201,8 @@ struct pl08x_dma_chan {
* less than zero, else it returns the allocated signal number * less than zero, else it returns the allocated signal number
* @put_signal: indicate to the platform that this physical signal is not * @put_signal: indicate to the platform that this physical signal is not
* running any DMA transfer and multiplexing can be recycled * running any DMA transfer and multiplexing can be recycled
* @bus_bit_lli: Bit[0] of the address indicated which AHB bus master the * @lli_buses: buses which LLIs can be fetched from: PL08X_AHB1 | PL08X_AHB2
* LLI addresses are on 0/1 Master 1/2. * @mem_buses: buses which memory can be accessed from: PL08X_AHB1 | PL08X_AHB2
*/ */
struct pl08x_platform_data { struct pl08x_platform_data {
struct pl08x_channel_data *slave_channels; struct pl08x_channel_data *slave_channels;
...@@ -208,6 +210,8 @@ struct pl08x_platform_data { ...@@ -208,6 +210,8 @@ struct pl08x_platform_data {
struct pl08x_channel_data memcpy_channel; struct pl08x_channel_data memcpy_channel;
int (*get_signal)(struct pl08x_dma_chan *); int (*get_signal)(struct pl08x_dma_chan *);
void (*put_signal)(struct pl08x_dma_chan *); void (*put_signal)(struct pl08x_dma_chan *);
u8 lli_buses;
u8 mem_buses;
}; };
#ifdef CONFIG_AMBA_PL08X #ifdef CONFIG_AMBA_PL08X
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment