Commit c3dcb058 authored by Holger Dengler's avatar Holger Dengler Committed by Vasily Gorbik

s390/crypto: Add hardware acceleration for HMAC modes

Add new shash exploiting the HMAC hardware accelerations for SHA224,
SHA256, SHA384 and SHA512 introduced with message-security assist
extension 11.
Reviewed-by: default avatarHarald Freudenberger <freude@linux.ibm.com>
Signed-off-by: default avatarHolger Dengler <dengler@linux.ibm.com>
Signed-off-by: default avatarVasily Gorbik <gor@linux.ibm.com>
parent 80625b67
......@@ -794,6 +794,7 @@ CONFIG_CRYPTO_GHASH_S390=m
CONFIG_CRYPTO_AES_S390=m
CONFIG_CRYPTO_DES_S390=m
CONFIG_CRYPTO_CHACHA_S390=m
CONFIG_CRYPTO_HMAC_S390=m
CONFIG_ZCRYPT=m
CONFIG_PKEY=m
CONFIG_CRYPTO_PAES_S390=m
......
......@@ -781,6 +781,7 @@ CONFIG_CRYPTO_GHASH_S390=m
CONFIG_CRYPTO_AES_S390=m
CONFIG_CRYPTO_DES_S390=m
CONFIG_CRYPTO_CHACHA_S390=m
CONFIG_CRYPTO_HMAC_S390=m
CONFIG_ZCRYPT=m
CONFIG_PKEY=m
CONFIG_CRYPTO_PAES_S390=m
......
......@@ -132,4 +132,14 @@ config CRYPTO_CHACHA_S390
It is available as of z13.
config CRYPTO_HMAC_S390
tristate "Keyed-hash message authentication code: HMAC"
depends on S390
select CRYPTO_HASH
help
s390 specific HMAC hardware support for SHA224, SHA256, SHA384 and
SHA512.
Architecture: s390
endmenu
......@@ -15,6 +15,7 @@ obj-$(CONFIG_CRYPTO_CHACHA_S390) += chacha_s390.o
obj-$(CONFIG_S390_PRNG) += prng.o
obj-$(CONFIG_CRYPTO_GHASH_S390) += ghash_s390.o
obj-$(CONFIG_CRYPTO_CRC32_S390) += crc32-vx_s390.o
obj-$(CONFIG_CRYPTO_HMAC_S390) += hmac_s390.o
obj-y += arch_random.o
crc32-vx_s390-y := crc32-vx.o crc32le-vx.o crc32be-vx.o
......
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright IBM Corp. 2024
*
* s390 specific HMAC support.
*/
#define KMSG_COMPONENT "hmac_s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <asm/cpacf.h>
#include <crypto/sha2.h>
#include <crypto/internal/hash.h>
#include <linux/cpufeature.h>
#include <linux/module.h>
/*
* KMAC param block layout for sha2 function codes:
* The layout of the param block for the KMAC instruction depends on the
* blocksize of the used hashing sha2-algorithm function codes. The param block
* contains the hash chaining value (cv), the input message bit-length (imbl)
* and the hmac-secret (key). To prevent code duplication, the sizes of all
* these are calculated based on the blocksize.
*
* param-block:
* +-------+
* | cv |
* +-------+
* | imbl |
* +-------+
* | key |
* +-------+
*
* sizes:
* part | sh2-alg | calculation | size | type
* -----+---------+-------------+------+--------
* cv | 224/256 | blocksize/2 | 32 | u64[8]
* | 384/512 | | 64 | u128[8]
* imbl | 224/256 | blocksize/8 | 8 | u64
* | 384/512 | | 16 | u128
* key | 224/256 | blocksize | 64 | u8[64]
* | 384/512 | | 128 | u8[128]
*/
#define MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
#define MAX_IMBL_SIZE sizeof(u128)
#define MAX_BLOCK_SIZE SHA512_BLOCK_SIZE
#define SHA2_CV_SIZE(bs) ((bs) >> 1)
#define SHA2_IMBL_SIZE(bs) ((bs) >> 3)
#define SHA2_IMBL_OFFSET(bs) (SHA2_CV_SIZE(bs))
#define SHA2_KEY_OFFSET(bs) (SHA2_CV_SIZE(bs) + SHA2_IMBL_SIZE(bs))
struct s390_hmac_ctx {
u8 key[MAX_BLOCK_SIZE];
};
union s390_kmac_gr0 {
unsigned long reg;
struct {
unsigned long : 48;
unsigned long ikp : 1;
unsigned long iimp : 1;
unsigned long ccup : 1;
unsigned long : 6;
unsigned long fc : 7;
};
};
struct s390_kmac_sha2_ctx {
u8 param[MAX_DIGEST_SIZE + MAX_IMBL_SIZE + MAX_BLOCK_SIZE];
union s390_kmac_gr0 gr0;
u8 buf[MAX_BLOCK_SIZE];
unsigned int buflen;
};
/*
* kmac_sha2_set_imbl - sets the input message bit-length based on the blocksize
*/
static inline void kmac_sha2_set_imbl(u8 *param, unsigned int buflen,
unsigned int blocksize)
{
u8 *imbl = param + SHA2_IMBL_OFFSET(blocksize);
switch (blocksize) {
case SHA256_BLOCK_SIZE:
*(u64 *)imbl = (u64)buflen * BITS_PER_BYTE;
break;
case SHA512_BLOCK_SIZE:
*(u128 *)imbl = (u128)buflen * BITS_PER_BYTE;
break;
default:
break;
}
}
static int hash_key(const u8 *in, unsigned int inlen,
u8 *digest, unsigned int digestsize)
{
unsigned long func;
union {
struct sha256_paramblock {
u32 h[8];
u64 mbl;
} sha256;
struct sha512_paramblock {
u64 h[8];
u128 mbl;
} sha512;
} __packed param;
#define PARAM_INIT(x, y, z) \
param.sha##x.h[0] = SHA##y ## _H0; \
param.sha##x.h[1] = SHA##y ## _H1; \
param.sha##x.h[2] = SHA##y ## _H2; \
param.sha##x.h[3] = SHA##y ## _H3; \
param.sha##x.h[4] = SHA##y ## _H4; \
param.sha##x.h[5] = SHA##y ## _H5; \
param.sha##x.h[6] = SHA##y ## _H6; \
param.sha##x.h[7] = SHA##y ## _H7; \
param.sha##x.mbl = (z)
switch (digestsize) {
case SHA224_DIGEST_SIZE:
func = CPACF_KLMD_SHA_256;
PARAM_INIT(256, 224, inlen * 8);
break;
case SHA256_DIGEST_SIZE:
func = CPACF_KLMD_SHA_256;
PARAM_INIT(256, 256, inlen * 8);
break;
case SHA384_DIGEST_SIZE:
func = CPACF_KLMD_SHA_512;
PARAM_INIT(512, 384, inlen * 8);
break;
case SHA512_DIGEST_SIZE:
func = CPACF_KLMD_SHA_512;
PARAM_INIT(512, 512, inlen * 8);
break;
default:
return -EINVAL;
}
#undef PARAM_INIT
cpacf_klmd(func, &param, in, inlen);
memcpy(digest, &param, digestsize);
return 0;
}
static int s390_hmac_sha2_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
struct s390_hmac_ctx *tfm_ctx = crypto_shash_ctx(tfm);
unsigned int ds = crypto_shash_digestsize(tfm);
unsigned int bs = crypto_shash_blocksize(tfm);
memset(tfm_ctx, 0, sizeof(*tfm_ctx));
if (keylen > bs)
return hash_key(key, keylen, tfm_ctx->key, ds);
memcpy(tfm_ctx->key, key, keylen);
return 0;
}
static int s390_hmac_sha2_init(struct shash_desc *desc)
{
struct s390_hmac_ctx *tfm_ctx = crypto_shash_ctx(desc->tfm);
struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
unsigned int bs = crypto_shash_blocksize(desc->tfm);
memcpy(ctx->param + SHA2_KEY_OFFSET(bs),
tfm_ctx->key, bs);
ctx->buflen = 0;
ctx->gr0.reg = 0;
switch (crypto_shash_digestsize(desc->tfm)) {
case SHA224_DIGEST_SIZE:
ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_224;
break;
case SHA256_DIGEST_SIZE:
ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_256;
break;
case SHA384_DIGEST_SIZE:
ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_384;
break;
case SHA512_DIGEST_SIZE:
ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_512;
break;
default:
return -EINVAL;
}
return 0;
}
static int s390_hmac_sha2_update(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
unsigned int bs = crypto_shash_blocksize(desc->tfm);
unsigned int offset, n;
/* check current buffer */
offset = ctx->buflen % bs;
ctx->buflen += len;
if (offset + len < bs)
goto store;
/* process one stored block */
if (offset) {
n = bs - offset;
memcpy(ctx->buf + offset, data, n);
ctx->gr0.iimp = 1;
_cpacf_kmac(&ctx->gr0.reg, ctx->param, ctx->buf, bs);
data += n;
len -= n;
offset = 0;
}
/* process as many blocks as possible */
if (len >= bs) {
n = (len / bs) * bs;
ctx->gr0.iimp = 1;
_cpacf_kmac(&ctx->gr0.reg, ctx->param, data, n);
data += n;
len -= n;
}
store:
/* store incomplete block in buffer */
if (len)
memcpy(ctx->buf + offset, data, len);
return 0;
}
static int s390_hmac_sha2_final(struct shash_desc *desc, u8 *out)
{
struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
unsigned int bs = crypto_shash_blocksize(desc->tfm);
ctx->gr0.iimp = 0;
kmac_sha2_set_imbl(ctx->param, ctx->buflen, bs);
_cpacf_kmac(&ctx->gr0.reg, ctx->param, ctx->buf, ctx->buflen % bs);
memcpy(out, ctx->param, crypto_shash_digestsize(desc->tfm));
return 0;
}
static int s390_hmac_sha2_digest(struct shash_desc *desc,
const u8 *data, unsigned int len, u8 *out)
{
struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
unsigned int ds = crypto_shash_digestsize(desc->tfm);
int rc;
rc = s390_hmac_sha2_init(desc);
if (rc)
return rc;
ctx->gr0.iimp = 0;
kmac_sha2_set_imbl(ctx->param, len,
crypto_shash_blocksize(desc->tfm));
_cpacf_kmac(&ctx->gr0.reg, ctx->param, data, len);
memcpy(out, ctx->param, ds);
return 0;
}
#define S390_HMAC_SHA2_ALG(x) { \
.fc = CPACF_KMAC_HMAC_SHA_##x, \
.alg = { \
.init = s390_hmac_sha2_init, \
.update = s390_hmac_sha2_update, \
.final = s390_hmac_sha2_final, \
.digest = s390_hmac_sha2_digest, \
.setkey = s390_hmac_sha2_setkey, \
.descsize = sizeof(struct s390_kmac_sha2_ctx), \
.halg = { \
.digestsize = SHA##x##_DIGEST_SIZE, \
.base = { \
.cra_name = "hmac(sha" #x ")", \
.cra_driver_name = "hmac_s390_sha" #x, \
.cra_blocksize = SHA##x##_BLOCK_SIZE, \
.cra_priority = 400, \
.cra_ctxsize = sizeof(struct s390_hmac_ctx), \
.cra_module = THIS_MODULE, \
}, \
}, \
}, \
}
static struct s390_hmac_alg {
bool registered;
unsigned int fc;
struct shash_alg alg;
} s390_hmac_algs[] = {
S390_HMAC_SHA2_ALG(224),
S390_HMAC_SHA2_ALG(256),
S390_HMAC_SHA2_ALG(384),
S390_HMAC_SHA2_ALG(512),
};
static __always_inline void _s390_hmac_algs_unregister(void)
{
struct s390_hmac_alg *hmac;
int i;
for (i = ARRAY_SIZE(s390_hmac_algs) - 1; i >= 0; i--) {
hmac = &s390_hmac_algs[i];
if (!hmac->registered)
continue;
crypto_unregister_shash(&hmac->alg);
}
}
static int __init hmac_s390_init(void)
{
struct s390_hmac_alg *hmac;
int i, rc = -ENODEV;
if (!cpacf_query_func(CPACF_KLMD, CPACF_KLMD_SHA_256))
return -ENODEV;
if (!cpacf_query_func(CPACF_KLMD, CPACF_KLMD_SHA_512))
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(s390_hmac_algs); i++) {
hmac = &s390_hmac_algs[i];
if (!cpacf_query_func(CPACF_KMAC, hmac->fc))
continue;
rc = crypto_register_shash(&hmac->alg);
if (rc) {
pr_err("unable to register %s\n",
hmac->alg.halg.base.cra_name);
goto out;
}
hmac->registered = true;
pr_debug("registered %s\n", hmac->alg.halg.base.cra_name);
}
return rc;
out:
_s390_hmac_algs_unregister();
return rc;
}
static void __exit hmac_s390_exit(void)
{
_s390_hmac_algs_unregister();
}
module_cpu_feature_match(S390_CPU_FEATURE_MSA, hmac_s390_init);
module_exit(hmac_s390_exit);
MODULE_DESCRIPTION("S390 HMAC driver");
MODULE_LICENSE("GPL");
......@@ -123,6 +123,10 @@
#define CPACF_KMAC_DEA 0x01
#define CPACF_KMAC_TDEA_128 0x02
#define CPACF_KMAC_TDEA_192 0x03
#define CPACF_KMAC_HMAC_SHA_224 0x70
#define CPACF_KMAC_HMAC_SHA_256 0x71
#define CPACF_KMAC_HMAC_SHA_384 0x72
#define CPACF_KMAC_HMAC_SHA_512 0x73
/*
* Function codes for the PCKMO (PERFORM CRYPTOGRAPHIC KEY MANAGEMENT)
......@@ -427,35 +431,52 @@ static inline void cpacf_klmd(unsigned long func, void *param,
}
/**
* cpacf_kmac() - executes the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE)
* instruction
* @func: the function code passed to KM; see CPACF_KMAC_xxx defines
* _cpacf_kmac() - executes the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE)
* instruction and updates flags in gr0
* @gr0: pointer to gr0 (fc and flags) passed to KMAC; see CPACF_KMAC_xxx defines
* @param: address of parameter block; see POP for details on each func
* @src: address of source memory area
* @src_len: length of src operand in bytes
*
* Returns 0 for the query func, number of processed bytes for digest funcs
*/
static inline int cpacf_kmac(unsigned long func, void *param,
const u8 *src, long src_len)
static inline int _cpacf_kmac(unsigned long *gr0, void *param,
const u8 *src, long src_len)
{
union register_pair s;
s.even = (unsigned long)src;
s.odd = (unsigned long)src_len;
asm volatile(
" lgr 0,%[fc]\n"
" lgr 0,%[r0]\n"
" lgr 1,%[pba]\n"
"0: .insn rre,%[opc] << 16,0,%[src]\n"
" brc 1,0b\n" /* handle partial completion */
: [src] "+&d" (s.pair)
: [fc] "d" (func), [pba] "d" ((unsigned long)param),
" lgr %[r0],0\n"
: [r0] "+d" (*gr0), [src] "+&d" (s.pair)
: [pba] "d" ((unsigned long)param),
[opc] "i" (CPACF_KMAC)
: "cc", "memory", "0", "1");
return src_len - s.odd;
}
/**
* cpacf_kmac() - executes the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE)
* instruction
* @func: function code passed to KMAC; see CPACF_KMAC_xxx defines
* @param: address of parameter block; see POP for details on each func
* @src: address of source memory area
* @src_len: length of src operand in bytes
*
* Returns 0 for the query func, number of processed bytes for digest funcs
*/
static inline int cpacf_kmac(unsigned long func, void *param,
const u8 *src, long src_len)
{
return _cpacf_kmac(&func, param, src, src_len);
}
/**
* cpacf_kmctr() - executes the KMCTR (CIPHER MESSAGE WITH COUNTER) instruction
* @func: the function code passed to KMCTR; see CPACF_KMCTR_xxx defines
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment