Commit d4d791d4 authored by Alice Ryhl's avatar Alice Ryhl Committed by Tejun Heo

rust: workqueue: add low-level workqueue bindings

Define basic low-level bindings to a kernel workqueue. The API defined
here can only be used unsafely. Later commits will provide safe
wrappers.
Co-developed-by: default avatarGary Guo <gary@garyguo.net>
Signed-off-by: default avatarGary Guo <gary@garyguo.net>
Signed-off-by: default avatarAlice Ryhl <aliceryhl@google.com>
Reviewed-by: default avatarMartin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: default avatar"Andreas Hindborg (Samsung)" <nmi@metaspace.dk>
Reviewed-by: default avatarBenno Lossin <benno.lossin@proton.me>
Reviewed-by: default avatarBoqun Feng <boqun.feng@gmail.com>
Signed-off-by: default avatarTejun Heo <tj@kernel.org>
parent a8321776
......@@ -12,6 +12,7 @@
#include <linux/refcount.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
/* `bindgen` gets confused at certain things. */
const size_t BINDINGS_ARCH_SLAB_MINALIGN = ARCH_SLAB_MINALIGN;
......
......@@ -46,6 +46,7 @@
pub mod sync;
pub mod task;
pub mod types;
pub mod workqueue;
#[doc(hidden)]
pub use bindings;
......
// SPDX-License-Identifier: GPL-2.0
//! Work queues.
//!
//! C header: [`include/linux/workqueue.h`](../../../../include/linux/workqueue.h)
use crate::{bindings, types::Opaque};
/// A kernel work queue.
///
/// Wraps the kernel's C `struct workqueue_struct`.
///
/// It allows work items to be queued to run on thread pools managed by the kernel. Several are
/// always available, for example, `system`, `system_highpri`, `system_long`, etc.
#[repr(transparent)]
pub struct Queue(Opaque<bindings::workqueue_struct>);
// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
unsafe impl Send for Queue {}
// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
unsafe impl Sync for Queue {}
impl Queue {
/// Use the provided `struct workqueue_struct` with Rust.
///
/// # Safety
///
/// The caller must ensure that the provided raw pointer is not dangling, that it points at a
/// valid workqueue, and that it remains valid until the end of 'a.
pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
// SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
// caller promises that the pointer is not dangling.
unsafe { &*(ptr as *const Queue) }
}
/// Enqueues a work item.
///
/// This may fail if the work item is already enqueued in a workqueue.
///
/// The work item will be submitted using `WORK_CPU_UNBOUND`.
pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
where
W: RawWorkItem<ID> + Send + 'static,
{
let queue_ptr = self.0.get();
// SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
// `__enqueue` requirements are not relevant since `W` is `Send` and static.
//
// The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
// is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
// closure.
//
// Furthermore, if the C workqueue code accesses the pointer after this call to
// `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
// will have returned true. In this case, `__enqueue` promises that the raw pointer will
// stay valid until we call the function pointer in the `work_struct`, so the access is ok.
unsafe {
w.__enqueue(move |work_ptr| {
bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, queue_ptr, work_ptr)
})
}
}
}
/// A raw work item.
///
/// This is the low-level trait that is designed for being as general as possible.
///
/// The `ID` parameter to this trait exists so that a single type can provide multiple
/// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
/// you will implement this trait once for each field, using a different id for each field. The
/// actual value of the id is not important as long as you use different ids for different fields
/// of the same struct. (Fields of different structs need not use different ids.)
///
/// Note that the id is used only to select the right method to call during compilation. It wont be
/// part of the final executable.
///
/// # Safety
///
/// Implementers must ensure that any pointers passed to a `queue_work_on` closure by `__enqueue`
/// remain valid for the duration specified in the guarantees section of the documentation for
/// `__enqueue`.
pub unsafe trait RawWorkItem<const ID: u64> {
/// The return type of [`Queue::enqueue`].
type EnqueueOutput;
/// Enqueues this work item on a queue using the provided `queue_work_on` method.
///
/// # Guarantees
///
/// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
/// valid `work_struct` for the duration of the call to the closure. If the closure returns
/// true, then it is further guaranteed that the pointer remains valid until someone calls the
/// function pointer stored in the `work_struct`.
///
/// # Safety
///
/// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
///
/// If the work item type is annotated with any lifetimes, then you must not call the function
/// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
///
/// If the work item type is not [`Send`], then the function pointer must be called on the same
/// thread as the call to `__enqueue`.
unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
where
F: FnOnce(*mut bindings::work_struct) -> bool;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment