Commit d7824fff authored by Avi Kivity's avatar Avi Kivity

KVM: MMU: Avoid calling gfn_to_page() in mmu_set_spte()

Since gfn_to_page() is a sleeping function, and we want to make the core mmu
spinlocked, we need to pass the page from the walker context (which can sleep)
to the shadow context (which cannot).

[marcelo: avoid recursive locking of mmap_sem]
Signed-off-by: default avatarAvi Kivity <avi@qumranet.com>
parent 7ec54588
...@@ -890,11 +890,10 @@ struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva) ...@@ -890,11 +890,10 @@ struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte, static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
unsigned pt_access, unsigned pte_access, unsigned pt_access, unsigned pte_access,
int user_fault, int write_fault, int dirty, int user_fault, int write_fault, int dirty,
int *ptwrite, gfn_t gfn) int *ptwrite, gfn_t gfn, struct page *page)
{ {
u64 spte; u64 spte;
int was_rmapped = is_rmap_pte(*shadow_pte); int was_rmapped = is_rmap_pte(*shadow_pte);
struct page *page;
pgprintk("%s: spte %llx access %x write_fault %d" pgprintk("%s: spte %llx access %x write_fault %d"
" user_fault %d gfn %lx\n", " user_fault %d gfn %lx\n",
...@@ -912,8 +911,6 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte, ...@@ -912,8 +911,6 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
if (!(pte_access & ACC_EXEC_MASK)) if (!(pte_access & ACC_EXEC_MASK))
spte |= PT64_NX_MASK; spte |= PT64_NX_MASK;
page = gfn_to_page(vcpu->kvm, gfn);
spte |= PT_PRESENT_MASK; spte |= PT_PRESENT_MASK;
if (pte_access & ACC_USER_MASK) if (pte_access & ACC_USER_MASK)
spte |= PT_USER_MASK; spte |= PT_USER_MASK;
...@@ -979,6 +976,11 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) ...@@ -979,6 +976,11 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
int level = PT32E_ROOT_LEVEL; int level = PT32E_ROOT_LEVEL;
hpa_t table_addr = vcpu->arch.mmu.root_hpa; hpa_t table_addr = vcpu->arch.mmu.root_hpa;
int pt_write = 0; int pt_write = 0;
struct page *page;
down_read(&current->mm->mmap_sem);
page = gfn_to_page(vcpu->kvm, gfn);
up_read(&current->mm->mmap_sem);
for (; ; level--) { for (; ; level--) {
u32 index = PT64_INDEX(v, level); u32 index = PT64_INDEX(v, level);
...@@ -989,7 +991,7 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) ...@@ -989,7 +991,7 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
if (level == 1) { if (level == 1) {
mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL, mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
0, write, 1, &pt_write, gfn); 0, write, 1, &pt_write, gfn, page);
return pt_write || is_io_pte(table[index]); return pt_write || is_io_pte(table[index]);
} }
...@@ -1005,6 +1007,7 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) ...@@ -1005,6 +1007,7 @@ static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
NULL); NULL);
if (!new_table) { if (!new_table) {
pgprintk("nonpaging_map: ENOMEM\n"); pgprintk("nonpaging_map: ENOMEM\n");
kvm_release_page_clean(page);
return -ENOMEM; return -ENOMEM;
} }
...@@ -1347,6 +1350,43 @@ static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) ...@@ -1347,6 +1350,43 @@ static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
return !!(spte && (*spte & PT_ACCESSED_MASK)); return !!(spte && (*spte & PT_ACCESSED_MASK));
} }
static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes)
{
gfn_t gfn;
int r;
u64 gpte = 0;
if (bytes != 4 && bytes != 8)
return;
/*
* Assume that the pte write on a page table of the same type
* as the current vcpu paging mode. This is nearly always true
* (might be false while changing modes). Note it is verified later
* by update_pte().
*/
if (is_pae(vcpu)) {
/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
if ((bytes == 4) && (gpa % 4 == 0)) {
r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
if (r)
return;
memcpy((void *)&gpte + (gpa % 8), new, 4);
} else if ((bytes == 8) && (gpa % 8 == 0)) {
memcpy((void *)&gpte, new, 8);
}
} else {
if ((bytes == 4) && (gpa % 4 == 0))
memcpy((void *)&gpte, new, 4);
}
if (!is_present_pte(gpte))
return;
gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
vcpu->arch.update_pte.gfn = gfn;
vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
}
void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes) const u8 *new, int bytes)
{ {
...@@ -1367,6 +1407,7 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, ...@@ -1367,6 +1407,7 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
int npte; int npte;
pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes); pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
mutex_lock(&vcpu->kvm->lock); mutex_lock(&vcpu->kvm->lock);
++vcpu->kvm->stat.mmu_pte_write; ++vcpu->kvm->stat.mmu_pte_write;
kvm_mmu_audit(vcpu, "pre pte write"); kvm_mmu_audit(vcpu, "pre pte write");
...@@ -1437,6 +1478,10 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, ...@@ -1437,6 +1478,10 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
} }
kvm_mmu_audit(vcpu, "post pte write"); kvm_mmu_audit(vcpu, "post pte write");
mutex_unlock(&vcpu->kvm->lock); mutex_unlock(&vcpu->kvm->lock);
if (vcpu->arch.update_pte.page) {
kvm_release_page_clean(vcpu->arch.update_pte.page);
vcpu->arch.update_pte.page = NULL;
}
} }
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
......
...@@ -245,6 +245,7 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, ...@@ -245,6 +245,7 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
{ {
pt_element_t gpte; pt_element_t gpte;
unsigned pte_access; unsigned pte_access;
struct page *npage;
gpte = *(const pt_element_t *)pte; gpte = *(const pt_element_t *)pte;
if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) { if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
...@@ -256,8 +257,14 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, ...@@ -256,8 +257,14 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
return; return;
pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte); pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte); pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
return;
npage = vcpu->arch.update_pte.page;
if (!npage)
return;
get_page(npage);
mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0, mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
gpte & PT_DIRTY_MASK, NULL, gpte_to_gfn(gpte)); gpte & PT_DIRTY_MASK, NULL, gpte_to_gfn(gpte), npage);
} }
/* /*
...@@ -265,7 +272,8 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, ...@@ -265,7 +272,8 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
*/ */
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *walker, struct guest_walker *walker,
int user_fault, int write_fault, int *ptwrite) int user_fault, int write_fault, int *ptwrite,
struct page *page)
{ {
hpa_t shadow_addr; hpa_t shadow_addr;
int level; int level;
...@@ -321,8 +329,10 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, ...@@ -321,8 +329,10 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
r = kvm_read_guest_atomic(vcpu->kvm, r = kvm_read_guest_atomic(vcpu->kvm,
walker->pte_gpa[level - 2], walker->pte_gpa[level - 2],
&curr_pte, sizeof(curr_pte)); &curr_pte, sizeof(curr_pte));
if (r || curr_pte != walker->ptes[level - 2]) if (r || curr_pte != walker->ptes[level - 2]) {
kvm_release_page_clean(page);
return NULL; return NULL;
}
} }
shadow_addr = __pa(shadow_page->spt); shadow_addr = __pa(shadow_page->spt);
shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
...@@ -333,7 +343,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, ...@@ -333,7 +343,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access, mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access,
user_fault, write_fault, user_fault, write_fault,
walker->ptes[walker->level-1] & PT_DIRTY_MASK, walker->ptes[walker->level-1] & PT_DIRTY_MASK,
ptwrite, walker->gfn); ptwrite, walker->gfn, page);
return shadow_ent; return shadow_ent;
} }
...@@ -362,6 +372,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, ...@@ -362,6 +372,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
u64 *shadow_pte; u64 *shadow_pte;
int write_pt = 0; int write_pt = 0;
int r; int r;
struct page *page;
pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code); pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
kvm_mmu_audit(vcpu, "pre page fault"); kvm_mmu_audit(vcpu, "pre page fault");
...@@ -388,9 +399,11 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, ...@@ -388,9 +399,11 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
return 0; return 0;
} }
page = gfn_to_page(vcpu->kvm, walker.gfn);
mutex_lock(&vcpu->kvm->lock); mutex_lock(&vcpu->kvm->lock);
shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
&write_pt); &write_pt, page);
pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__, pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
shadow_pte, *shadow_pte, write_pt); shadow_pte, *shadow_pte, write_pt);
......
...@@ -224,6 +224,11 @@ struct kvm_vcpu_arch { ...@@ -224,6 +224,11 @@ struct kvm_vcpu_arch {
int last_pt_write_count; int last_pt_write_count;
u64 *last_pte_updated; u64 *last_pte_updated;
struct {
gfn_t gfn; /* presumed gfn during guest pte update */
struct page *page; /* page corresponding to that gfn */
} update_pte;
struct i387_fxsave_struct host_fx_image; struct i387_fxsave_struct host_fx_image;
struct i387_fxsave_struct guest_fx_image; struct i387_fxsave_struct guest_fx_image;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment