Commit db0018a8 authored by Thara Gopinath's avatar Thara Gopinath Committed by Herbert Xu

crypto: qce - Add support for AEAD algorithms

Add register programming sequence for enabling AEAD
algorithms on the Qualcomm crypto engine.
Signed-off-by: default avatarThara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent e5d6181d
......@@ -15,6 +15,7 @@
#include "core.h"
#include "regs-v5.h"
#include "sha.h"
#include "aead.h"
static inline u32 qce_read(struct qce_device *qce, u32 offset)
{
......@@ -96,7 +97,7 @@ static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
}
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
#if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
{
u32 cfg = 0;
......@@ -139,7 +140,9 @@ static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
return cfg;
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
{
struct ahash_request *req = ahash_request_cast(async_req);
......@@ -225,7 +228,7 @@ static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
#if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
{
u32 cfg = 0;
......@@ -271,7 +274,9 @@ static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
return cfg;
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
{
u8 swap[QCE_AES_IV_LENGTH];
......@@ -386,6 +391,155 @@ static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};
static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};
static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
{
u32 *d = dst;
const u8 *s = src;
unsigned int n;
n = len / sizeof(u32);
for (; n > 0; n--) {
*d = be32_to_cpup((const __be32 *)s);
s += sizeof(u32);
d++;
}
return DIV_ROUND_UP(len, sizeof(u32));
}
static int qce_setup_regs_aead(struct crypto_async_request *async_req)
{
struct aead_request *req = aead_request_cast(async_req);
struct qce_aead_reqctx *rctx = aead_request_ctx(req);
struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
struct qce_device *qce = tmpl->qce;
u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
unsigned int enc_keylen = ctx->enc_keylen;
unsigned int auth_keylen = ctx->auth_keylen;
unsigned int enc_ivsize = rctx->ivsize;
unsigned int auth_ivsize = 0;
unsigned int enckey_words, enciv_words;
unsigned int authkey_words, authiv_words, authnonce_words;
unsigned long flags = rctx->flags;
u32 encr_cfg, auth_cfg, config, totallen;
u32 iv_last_word;
qce_setup_config(qce);
/* Write encryption key */
enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
/* Write encryption iv */
enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
if (IS_CCM(rctx->flags)) {
iv_last_word = enciv[enciv_words - 1];
qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
qce_write(qce, REG_CNTR_MASK, ~0);
qce_write(qce, REG_CNTR_MASK0, ~0);
qce_write(qce, REG_CNTR_MASK1, ~0);
qce_write(qce, REG_CNTR_MASK2, ~0);
}
/* Clear authentication IV and KEY registers of previous values */
qce_clear_array(qce, REG_AUTH_IV0, 16);
qce_clear_array(qce, REG_AUTH_KEY0, 16);
/* Clear byte count */
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
/* Write authentication key */
authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
/* Write initial authentication IV only for HMAC algorithms */
if (IS_SHA_HMAC(rctx->flags)) {
/* Write default authentication iv */
if (IS_SHA1_HMAC(rctx->flags)) {
auth_ivsize = SHA1_DIGEST_SIZE;
memcpy(authiv, std_iv_sha1, auth_ivsize);
} else if (IS_SHA256_HMAC(rctx->flags)) {
auth_ivsize = SHA256_DIGEST_SIZE;
memcpy(authiv, std_iv_sha256, auth_ivsize);
}
authiv_words = auth_ivsize / sizeof(u32);
qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
} else if (IS_CCM(rctx->flags)) {
/* Write nonce for CCM algorithms */
authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
}
/* Set up ENCR_SEG_CFG */
encr_cfg = qce_encr_cfg(flags, enc_keylen);
if (IS_ENCRYPT(flags))
encr_cfg |= BIT(ENCODE_SHIFT);
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
/* Set up AUTH_SEG_CFG */
auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
auth_cfg |= BIT(AUTH_LAST_SHIFT);
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
if (IS_ENCRYPT(flags)) {
if (IS_CCM(rctx->flags))
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
else
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
} else {
if (IS_CCM(rctx->flags))
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
else
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
}
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
totallen = rctx->cryptlen + rctx->assoclen;
/* Set the encryption size and start offset */
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
else
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
/* Set the authentication size and start offset */
qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
qce_write(qce, REG_AUTH_SEG_START, 0);
/* Write total length */
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
else
qce_write(qce, REG_SEG_SIZE, totallen);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
/* Start the process */
qce_crypto_go(qce, !IS_CCM(flags));
return 0;
}
#endif
int qce_start(struct crypto_async_request *async_req, u32 type)
{
switch (type) {
......@@ -396,6 +550,10 @@ int qce_start(struct crypto_async_request *async_req, u32 type)
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
case CRYPTO_ALG_TYPE_AHASH:
return qce_setup_regs_ahash(async_req);
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
case CRYPTO_ALG_TYPE_AEAD:
return qce_setup_regs_aead(async_req);
#endif
default:
return -EINVAL;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment