Commit dc43d9fa authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-mtrr-for-linus' of...

Merge branch 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  x86, mtrr: Use pci_dev->revision
  x86, mtrr: use stop_machine APIs for doing MTRR rendezvous
  stop_machine: implement stop_machine_from_inactive_cpu()
  stop_machine: reorganize stop_cpus() implementation
  x86, mtrr: lock stop machine during MTRR rendezvous sequence
parents 80775068 50c31e4a
...@@ -79,7 +79,6 @@ void set_mtrr_ops(const struct mtrr_ops *ops) ...@@ -79,7 +79,6 @@ void set_mtrr_ops(const struct mtrr_ops *ops)
static int have_wrcomb(void) static int have_wrcomb(void)
{ {
struct pci_dev *dev; struct pci_dev *dev;
u8 rev;
dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL); dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
if (dev != NULL) { if (dev != NULL) {
...@@ -89,13 +88,11 @@ static int have_wrcomb(void) ...@@ -89,13 +88,11 @@ static int have_wrcomb(void)
* chipsets to be tagged * chipsets to be tagged
*/ */
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS && if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) { dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev); dev->revision <= 5) {
if (rev <= 5) { pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n"); pci_dev_put(dev);
pci_dev_put(dev); return 0;
return 0;
}
} }
/* /*
* Intel 450NX errata # 23. Non ascending cacheline evictions to * Intel 450NX errata # 23. Non ascending cacheline evictions to
...@@ -137,55 +134,43 @@ static void __init init_table(void) ...@@ -137,55 +134,43 @@ static void __init init_table(void)
} }
struct set_mtrr_data { struct set_mtrr_data {
atomic_t count;
atomic_t gate;
unsigned long smp_base; unsigned long smp_base;
unsigned long smp_size; unsigned long smp_size;
unsigned int smp_reg; unsigned int smp_reg;
mtrr_type smp_type; mtrr_type smp_type;
}; };
static DEFINE_PER_CPU(struct cpu_stop_work, mtrr_work);
/** /**
* mtrr_work_handler - Synchronisation handler. Executed by "other" CPUs. * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
* by all the CPUs.
* @info: pointer to mtrr configuration data * @info: pointer to mtrr configuration data
* *
* Returns nothing. * Returns nothing.
*/ */
static int mtrr_work_handler(void *info) static int mtrr_rendezvous_handler(void *info)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
struct set_mtrr_data *data = info; struct set_mtrr_data *data = info;
unsigned long flags;
atomic_dec(&data->count);
while (!atomic_read(&data->gate))
cpu_relax();
local_irq_save(flags);
atomic_dec(&data->count);
while (atomic_read(&data->gate))
cpu_relax();
/* The master has cleared me to execute */ /*
* We use this same function to initialize the mtrrs during boot,
* resume, runtime cpu online and on an explicit request to set a
* specific MTRR.
*
* During boot or suspend, the state of the boot cpu's mtrrs has been
* saved, and we want to replicate that across all the cpus that come
* online (either at the end of boot or resume or during a runtime cpu
* online). If we're doing that, @reg is set to something special and on
* all the cpu's we do mtrr_if->set_all() (On the logical cpu that
* started the boot/resume sequence, this might be a duplicate
* set_all()).
*/
if (data->smp_reg != ~0U) { if (data->smp_reg != ~0U) {
mtrr_if->set(data->smp_reg, data->smp_base, mtrr_if->set(data->smp_reg, data->smp_base,
data->smp_size, data->smp_type); data->smp_size, data->smp_type);
} else if (mtrr_aps_delayed_init) { } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
/*
* Initialize the MTRRs inaddition to the synchronisation.
*/
mtrr_if->set_all(); mtrr_if->set_all();
} }
atomic_dec(&data->count);
while (!atomic_read(&data->gate))
cpu_relax();
atomic_dec(&data->count);
local_irq_restore(flags);
#endif #endif
return 0; return 0;
} }
...@@ -223,20 +208,11 @@ static inline int types_compatible(mtrr_type type1, mtrr_type type2) ...@@ -223,20 +208,11 @@ static inline int types_compatible(mtrr_type type1, mtrr_type type2)
* 14. Wait for buddies to catch up * 14. Wait for buddies to catch up
* 15. Enable interrupts. * 15. Enable interrupts.
* *
* What does that mean for us? Well, first we set data.count to the number * What does that mean for us? Well, stop_machine() will ensure that
* of CPUs. As each CPU announces that it started the rendezvous handler by * the rendezvous handler is started on each CPU. And in lockstep they
* decrementing the count, We reset data.count and set the data.gate flag * do the state transition of disabling interrupts, updating MTRR's
* allowing all the cpu's to proceed with the work. As each cpu disables * (the CPU vendors may each do it differently, so we call mtrr_if->set()
* interrupts, it'll decrement data.count once. We wait until it hits 0 and * callback and let them take care of it.) and enabling interrupts.
* proceed. We clear the data.gate flag and reset data.count. Meanwhile, they
* are waiting for that flag to be cleared. Once it's cleared, each
* CPU goes through the transition of updating MTRRs.
* The CPU vendors may each do it differently,
* so we call mtrr_if->set() callback and let them take care of it.
* When they're done, they again decrement data->count and wait for data.gate
* to be set.
* When we finish, we wait for data.count to hit 0 and toggle the data.gate flag
* Everyone then enables interrupts and we all continue on.
* *
* Note that the mechanism is the same for UP systems, too; all the SMP stuff * Note that the mechanism is the same for UP systems, too; all the SMP stuff
* becomes nops. * becomes nops.
...@@ -244,92 +220,26 @@ static inline int types_compatible(mtrr_type type1, mtrr_type type2) ...@@ -244,92 +220,26 @@ static inline int types_compatible(mtrr_type type1, mtrr_type type2)
static void static void
set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
{ {
struct set_mtrr_data data; struct set_mtrr_data data = { .smp_reg = reg,
unsigned long flags; .smp_base = base,
int cpu; .smp_size = size,
.smp_type = type
preempt_disable(); };
data.smp_reg = reg;
data.smp_base = base;
data.smp_size = size;
data.smp_type = type;
atomic_set(&data.count, num_booting_cpus() - 1);
/* Make sure data.count is visible before unleashing other CPUs */
smp_wmb();
atomic_set(&data.gate, 0);
/* Start the ball rolling on other CPUs */
for_each_online_cpu(cpu) {
struct cpu_stop_work *work = &per_cpu(mtrr_work, cpu);
if (cpu == smp_processor_id())
continue;
stop_one_cpu_nowait(cpu, mtrr_work_handler, &data, work);
}
while (atomic_read(&data.count))
cpu_relax();
/* Ok, reset count and toggle gate */
atomic_set(&data.count, num_booting_cpus() - 1);
smp_wmb();
atomic_set(&data.gate, 1);
local_irq_save(flags);
while (atomic_read(&data.count))
cpu_relax();
/* Ok, reset count and toggle gate */
atomic_set(&data.count, num_booting_cpus() - 1);
smp_wmb();
atomic_set(&data.gate, 0);
/* Do our MTRR business */
/*
* HACK!
*
* We use this same function to initialize the mtrrs during boot,
* resume, runtime cpu online and on an explicit request to set a
* specific MTRR.
*
* During boot or suspend, the state of the boot cpu's mtrrs has been
* saved, and we want to replicate that across all the cpus that come
* online (either at the end of boot or resume or during a runtime cpu
* online). If we're doing that, @reg is set to something special and on
* this cpu we still do mtrr_if->set_all(). During boot/resume, this
* is unnecessary if at this point we are still on the cpu that started
* the boot/resume sequence. But there is no guarantee that we are still
* on the same cpu. So we do mtrr_if->set_all() on this cpu aswell to be
* sure that we are in sync with everyone else.
*/
if (reg != ~0U)
mtrr_if->set(reg, base, size, type);
else
mtrr_if->set_all();
/* Wait for the others */ stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
while (atomic_read(&data.count)) }
cpu_relax();
atomic_set(&data.count, num_booting_cpus() - 1);
smp_wmb();
atomic_set(&data.gate, 1);
/*
* Wait here for everyone to have seen the gate change
* So we're the last ones to touch 'data'
*/
while (atomic_read(&data.count))
cpu_relax();
local_irq_restore(flags); static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
preempt_enable(); unsigned long size, mtrr_type type)
{
struct set_mtrr_data data = { .smp_reg = reg,
.smp_base = base,
.smp_size = size,
.smp_type = type
};
stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
cpu_callout_mask);
} }
/** /**
...@@ -783,7 +693,7 @@ void mtrr_ap_init(void) ...@@ -783,7 +693,7 @@ void mtrr_ap_init(void)
* 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
* lock to prevent mtrr entry changes * lock to prevent mtrr entry changes
*/ */
set_mtrr(~0U, 0, 0, 0); set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
} }
/** /**
......
...@@ -124,15 +124,19 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); ...@@ -124,15 +124,19 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
*/ */
int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
const struct cpumask *cpus);
#else /* CONFIG_STOP_MACHINE && CONFIG_SMP */ #else /* CONFIG_STOP_MACHINE && CONFIG_SMP */
static inline int __stop_machine(int (*fn)(void *), void *data, static inline int __stop_machine(int (*fn)(void *), void *data,
const struct cpumask *cpus) const struct cpumask *cpus)
{ {
unsigned long flags;
int ret; int ret;
local_irq_disable(); local_irq_save(flags);
ret = fn(data); ret = fn(data);
local_irq_enable(); local_irq_restore(flags);
return ret; return ret;
} }
...@@ -142,5 +146,11 @@ static inline int stop_machine(int (*fn)(void *), void *data, ...@@ -142,5 +146,11 @@ static inline int stop_machine(int (*fn)(void *), void *data,
return __stop_machine(fn, data, cpus); return __stop_machine(fn, data, cpus);
} }
static inline int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
const struct cpumask *cpus)
{
return __stop_machine(fn, data, cpus);
}
#endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */ #endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */
#endif /* _LINUX_STOP_MACHINE */ #endif /* _LINUX_STOP_MACHINE */
...@@ -136,10 +136,11 @@ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, ...@@ -136,10 +136,11 @@ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
static DEFINE_MUTEX(stop_cpus_mutex); static DEFINE_MUTEX(stop_cpus_mutex);
static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) static void queue_stop_cpus_work(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg,
struct cpu_stop_done *done)
{ {
struct cpu_stop_work *work; struct cpu_stop_work *work;
struct cpu_stop_done done;
unsigned int cpu; unsigned int cpu;
/* initialize works and done */ /* initialize works and done */
...@@ -147,9 +148,8 @@ int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) ...@@ -147,9 +148,8 @@ int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
work = &per_cpu(stop_cpus_work, cpu); work = &per_cpu(stop_cpus_work, cpu);
work->fn = fn; work->fn = fn;
work->arg = arg; work->arg = arg;
work->done = &done; work->done = done;
} }
cpu_stop_init_done(&done, cpumask_weight(cpumask));
/* /*
* Disable preemption while queueing to avoid getting * Disable preemption while queueing to avoid getting
...@@ -161,7 +161,15 @@ int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) ...@@ -161,7 +161,15 @@ int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
&per_cpu(stop_cpus_work, cpu)); &per_cpu(stop_cpus_work, cpu));
preempt_enable(); preempt_enable();
}
static int __stop_cpus(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_done done;
cpu_stop_init_done(&done, cpumask_weight(cpumask));
queue_stop_cpus_work(cpumask, fn, arg, &done);
wait_for_completion(&done.completion); wait_for_completion(&done.completion);
return done.executed ? done.ret : -ENOENT; return done.executed ? done.ret : -ENOENT;
} }
...@@ -431,8 +439,15 @@ static int stop_machine_cpu_stop(void *data) ...@@ -431,8 +439,15 @@ static int stop_machine_cpu_stop(void *data)
struct stop_machine_data *smdata = data; struct stop_machine_data *smdata = data;
enum stopmachine_state curstate = STOPMACHINE_NONE; enum stopmachine_state curstate = STOPMACHINE_NONE;
int cpu = smp_processor_id(), err = 0; int cpu = smp_processor_id(), err = 0;
unsigned long flags;
bool is_active; bool is_active;
/*
* When called from stop_machine_from_inactive_cpu(), irq might
* already be disabled. Save the state and restore it on exit.
*/
local_save_flags(flags);
if (!smdata->active_cpus) if (!smdata->active_cpus)
is_active = cpu == cpumask_first(cpu_online_mask); is_active = cpu == cpumask_first(cpu_online_mask);
else else
...@@ -460,7 +475,7 @@ static int stop_machine_cpu_stop(void *data) ...@@ -460,7 +475,7 @@ static int stop_machine_cpu_stop(void *data)
} }
} while (curstate != STOPMACHINE_EXIT); } while (curstate != STOPMACHINE_EXIT);
local_irq_enable(); local_irq_restore(flags);
return err; return err;
} }
...@@ -487,4 +502,57 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) ...@@ -487,4 +502,57 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
} }
EXPORT_SYMBOL_GPL(stop_machine); EXPORT_SYMBOL_GPL(stop_machine);
/**
* stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
* @fn: the function to run
* @data: the data ptr for the @fn()
* @cpus: the cpus to run the @fn() on (NULL = any online cpu)
*
* This is identical to stop_machine() but can be called from a CPU which
* is not active. The local CPU is in the process of hotplug (so no other
* CPU hotplug can start) and not marked active and doesn't have enough
* context to sleep.
*
* This function provides stop_machine() functionality for such state by
* using busy-wait for synchronization and executing @fn directly for local
* CPU.
*
* CONTEXT:
* Local CPU is inactive. Temporarily stops all active CPUs.
*
* RETURNS:
* 0 if all executions of @fn returned 0, any non zero return value if any
* returned non zero.
*/
int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
const struct cpumask *cpus)
{
struct stop_machine_data smdata = { .fn = fn, .data = data,
.active_cpus = cpus };
struct cpu_stop_done done;
int ret;
/* Local CPU must be inactive and CPU hotplug in progress. */
BUG_ON(cpu_active(raw_smp_processor_id()));
smdata.num_threads = num_active_cpus() + 1; /* +1 for local */
/* No proper task established and can't sleep - busy wait for lock. */
while (!mutex_trylock(&stop_cpus_mutex))
cpu_relax();
/* Schedule work on other CPUs and execute directly for local CPU */
set_state(&smdata, STOPMACHINE_PREPARE);
cpu_stop_init_done(&done, num_active_cpus());
queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
&done);
ret = stop_machine_cpu_stop(&smdata);
/* Busy wait for completion. */
while (!completion_done(&done.completion))
cpu_relax();
mutex_unlock(&stop_cpus_mutex);
return ret ?: done.ret;
}
#endif /* CONFIG_STOP_MACHINE */ #endif /* CONFIG_STOP_MACHINE */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment