Commit eb23ee4f authored by Johannes Weiner's avatar Johannes Weiner Committed by Andrew Morton

mm: zswap: function ordering: shrink_memcg_cb

shrink_memcg_cb() is called by the shrinker and is based on
zswap_writeback_entry(). Move it in between. Save one fwd decl.

Link: https://lkml.kernel.org/r/20240130014208.565554-21-hannes@cmpxchg.orgSigned-off-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
Reviewed-by: default avatarNhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
parent 9986d35d
......@@ -1254,7 +1254,67 @@ static int zswap_writeback_entry(struct zswap_entry *entry,
* shrinker functions
**********************************/
static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
spinlock_t *lock, void *arg);
spinlock_t *lock, void *arg)
{
struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
bool *encountered_page_in_swapcache = (bool *)arg;
swp_entry_t swpentry;
enum lru_status ret = LRU_REMOVED_RETRY;
int writeback_result;
/*
* Rotate the entry to the tail before unlocking the LRU,
* so that in case of an invalidation race concurrent
* reclaimers don't waste their time on it.
*
* If writeback succeeds, or failure is due to the entry
* being invalidated by the swap subsystem, the invalidation
* will unlink and free it.
*
* Temporary failures, where the same entry should be tried
* again immediately, almost never happen for this shrinker.
* We don't do any trylocking; -ENOMEM comes closest,
* but that's extremely rare and doesn't happen spuriously
* either. Don't bother distinguishing this case.
*
* But since they do exist in theory, the entry cannot just
* be unlinked, or we could leak it. Hence, rotate.
*/
list_move_tail(item, &l->list);
/*
* Once the lru lock is dropped, the entry might get freed. The
* swpentry is copied to the stack, and entry isn't deref'd again
* until the entry is verified to still be alive in the tree.
*/
swpentry = entry->swpentry;
/*
* It's safe to drop the lock here because we return either
* LRU_REMOVED_RETRY or LRU_RETRY.
*/
spin_unlock(lock);
writeback_result = zswap_writeback_entry(entry, swpentry);
if (writeback_result) {
zswap_reject_reclaim_fail++;
ret = LRU_RETRY;
/*
* Encountering a page already in swap cache is a sign that we are shrinking
* into the warmer region. We should terminate shrinking (if we're in the dynamic
* shrinker context).
*/
if (writeback_result == -EEXIST && encountered_page_in_swapcache)
*encountered_page_in_swapcache = true;
} else {
zswap_written_back_pages++;
}
spin_lock(lock);
return ret;
}
static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
struct shrink_control *sc)
......@@ -1354,69 +1414,6 @@ static void zswap_alloc_shrinker(struct zswap_pool *pool)
pool->shrinker->seeks = DEFAULT_SEEKS;
}
static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
spinlock_t *lock, void *arg)
{
struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
bool *encountered_page_in_swapcache = (bool *)arg;
swp_entry_t swpentry;
enum lru_status ret = LRU_REMOVED_RETRY;
int writeback_result;
/*
* Rotate the entry to the tail before unlocking the LRU,
* so that in case of an invalidation race concurrent
* reclaimers don't waste their time on it.
*
* If writeback succeeds, or failure is due to the entry
* being invalidated by the swap subsystem, the invalidation
* will unlink and free it.
*
* Temporary failures, where the same entry should be tried
* again immediately, almost never happen for this shrinker.
* We don't do any trylocking; -ENOMEM comes closest,
* but that's extremely rare and doesn't happen spuriously
* either. Don't bother distinguishing this case.
*
* But since they do exist in theory, the entry cannot just
* be unlinked, or we could leak it. Hence, rotate.
*/
list_move_tail(item, &l->list);
/*
* Once the lru lock is dropped, the entry might get freed. The
* swpentry is copied to the stack, and entry isn't deref'd again
* until the entry is verified to still be alive in the tree.
*/
swpentry = entry->swpentry;
/*
* It's safe to drop the lock here because we return either
* LRU_REMOVED_RETRY or LRU_RETRY.
*/
spin_unlock(lock);
writeback_result = zswap_writeback_entry(entry, swpentry);
if (writeback_result) {
zswap_reject_reclaim_fail++;
ret = LRU_RETRY;
/*
* Encountering a page already in swap cache is a sign that we are shrinking
* into the warmer region. We should terminate shrinking (if we're in the dynamic
* shrinker context).
*/
if (writeback_result == -EEXIST && encountered_page_in_swapcache)
*encountered_page_in_swapcache = true;
} else {
zswap_written_back_pages++;
}
spin_lock(lock);
return ret;
}
static int shrink_memcg(struct mem_cgroup *memcg)
{
struct zswap_pool *pool;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment