Commit f9de7342 authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'spi/topic/atmel', 'spi/topic/bcm2385',...

Merge remote-tracking branches 'spi/topic/atmel', 'spi/topic/bcm2385', 'spi/topic/bcm2835', 'spi/topic/bcm53xx' and 'spi/topic/bitbang' into spi-next
...@@ -180,11 +180,17 @@ ...@@ -180,11 +180,17 @@
| SPI_BF(name, value)) | SPI_BF(name, value))
/* Register access macros */ /* Register access macros */
#ifdef CONFIG_AVR32
#define spi_readl(port, reg) \ #define spi_readl(port, reg) \
__raw_readl((port)->regs + SPI_##reg) __raw_readl((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \ #define spi_writel(port, reg, value) \
__raw_writel((value), (port)->regs + SPI_##reg) __raw_writel((value), (port)->regs + SPI_##reg)
#else
#define spi_readl(port, reg) \
readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
writel_relaxed((value), (port)->regs + SPI_##reg)
#endif
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
* cache operations; better heuristics consider wordsize and bitrate. * cache operations; better heuristics consider wordsize and bitrate.
*/ */
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* *
* Copyright (C) 2012 Chris Boot * Copyright (C) 2012 Chris Boot
* Copyright (C) 2013 Stephen Warren * Copyright (C) 2013 Stephen Warren
* Copyright (C) 2015 Martin Sperl
* *
* This driver is inspired by: * This driver is inspired by:
* spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
...@@ -29,6 +30,7 @@ ...@@ -29,6 +30,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/spi/spi.h> #include <linux/spi/spi.h>
...@@ -66,8 +68,10 @@ ...@@ -66,8 +68,10 @@
#define BCM2835_SPI_CS_CS_10 0x00000002 #define BCM2835_SPI_CS_CS_10 0x00000002
#define BCM2835_SPI_CS_CS_01 0x00000001 #define BCM2835_SPI_CS_CS_01 0x00000001
#define BCM2835_SPI_TIMEOUT_MS 30000 #define BCM2835_SPI_POLLING_LIMIT_US 30
#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS) #define BCM2835_SPI_TIMEOUT_MS 30000
#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
| SPI_NO_CS | SPI_3WIRE)
#define DRV_NAME "spi-bcm2835" #define DRV_NAME "spi-bcm2835"
...@@ -75,10 +79,10 @@ struct bcm2835_spi { ...@@ -75,10 +79,10 @@ struct bcm2835_spi {
void __iomem *regs; void __iomem *regs;
struct clk *clk; struct clk *clk;
int irq; int irq;
struct completion done;
const u8 *tx_buf; const u8 *tx_buf;
u8 *rx_buf; u8 *rx_buf;
int len; int tx_len;
int rx_len;
}; };
static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg) static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
...@@ -91,205 +95,315 @@ static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val) ...@@ -91,205 +95,315 @@ static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
writel(val, bs->regs + reg); writel(val, bs->regs + reg);
} }
static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs, int len) static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
{ {
u8 byte; u8 byte;
while (len--) { while ((bs->rx_len) &&
(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
if (bs->rx_buf) if (bs->rx_buf)
*bs->rx_buf++ = byte; *bs->rx_buf++ = byte;
bs->rx_len--;
} }
} }
static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs, int len) static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
{ {
u8 byte; u8 byte;
if (len > bs->len) while ((bs->tx_len) &&
len = bs->len; (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
while (len--) {
byte = bs->tx_buf ? *bs->tx_buf++ : 0; byte = bs->tx_buf ? *bs->tx_buf++ : 0;
bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
bs->len--; bs->tx_len--;
} }
} }
static void bcm2835_spi_reset_hw(struct spi_master *master)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* Disable SPI interrupts and transfer */
cs &= ~(BCM2835_SPI_CS_INTR |
BCM2835_SPI_CS_INTD |
BCM2835_SPI_CS_TA);
/* and reset RX/TX FIFOS */
cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
/* and reset the SPI_HW */
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
}
static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{ {
struct spi_master *master = dev_id; struct spi_master *master = dev_id;
struct bcm2835_spi *bs = spi_master_get_devdata(master); struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* /* Read as many bytes as possible from FIFO */
* RXR - RX needs Reading. This means 12 (or more) bytes have been bcm2835_rd_fifo(bs);
* transmitted and hence 12 (or more) bytes have been received. /* Write as many bytes as possible to FIFO */
* bcm2835_wr_fifo(bs);
* The FIFO is 16-bytes deep. We check for this interrupt to keep the
* FIFO full; we have a 4-byte-time buffer for IRQ latency. We check /* based on flags decide if we can finish the transfer */
* this before DONE (TX empty) just in case we delayed processing this if (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE) {
* interrupt for some reason. /* Transfer complete - reset SPI HW */
* bcm2835_spi_reset_hw(master);
* We only check for this case if we have more bytes to TX; at the end /* wake up the framework */
* of the transfer, we ignore this pipelining optimization, and let complete(&master->xfer_completion);
* bcm2835_spi_finish_transfer() drain the RX FIFO. }
return IRQ_HANDLED;
}
static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs,
unsigned long xfer_time_us)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
unsigned long timeout = jiffies +
max(4 * xfer_time_us * HZ / 1000000, 2uL);
/* enable HW block without interrupts */
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
/* set timeout to 4x the expected time, or 2 jiffies */
/* loop until finished the transfer */
while (bs->rx_len) {
/* read from fifo as much as possible */
bcm2835_rd_fifo(bs);
/* fill in tx fifo as much as possible */
bcm2835_wr_fifo(bs);
/* if we still expect some data after the read,
* check for a possible timeout
*/
if (bs->rx_len && time_after(jiffies, timeout)) {
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* and return timeout */
return -ETIMEDOUT;
}
}
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* and return without waiting for completion */
return 0;
}
static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* fill in fifo if we have gpio-cs
* note that there have been rare events where the native-CS
* flapped for <1us which may change the behaviour
* with gpio-cs this does not happen, so it is implemented
* only for this case
*/ */
if (bs->len && (cs & BCM2835_SPI_CS_RXR)) { if (gpio_is_valid(spi->cs_gpio)) {
/* Read 12 bytes of data */ /* enable HW block, but without interrupts enabled
bcm2835_rd_fifo(bs, 12); * this would triggern an immediate interrupt
/* Write up to 12 bytes */
bcm2835_wr_fifo(bs, 12);
/*
* We must have written something to the TX FIFO due to the
* bs->len check above, so cannot be DONE. Hence, return
* early. Note that DONE could also be set if we serviced an
* RXR interrupt really late.
*/ */
return IRQ_HANDLED; bcm2835_wr(bs, BCM2835_SPI_CS,
cs | BCM2835_SPI_CS_TA);
/* fill in tx fifo as much as possible */
bcm2835_wr_fifo(bs);
} }
/* /*
* DONE - TX empty. This occurs when we first enable the transfer * Enable the HW block. This will immediately trigger a DONE (TX
* since we do not pre-fill the TX FIFO. At any other time, given that * empty) interrupt, upon which we will fill the TX FIFO with the
* we refill the TX FIFO above based on RXR, and hence ignore DONE if * first TX bytes. Pre-filling the TX FIFO here to avoid the
* RXR is set, DONE really does mean end-of-transfer. * interrupt doesn't work:-(
*/ */
if (cs & BCM2835_SPI_CS_DONE) { cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
if (bs->len) { /* First interrupt in a transfer */ bcm2835_wr(bs, BCM2835_SPI_CS, cs);
bcm2835_wr_fifo(bs, 16);
} else { /* Transfer complete */
/* Disable SPI interrupts */
cs &= ~(BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD);
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
/*
* Wake up bcm2835_spi_transfer_one(), which will call
* bcm2835_spi_finish_transfer(), to drain the RX FIFO.
*/
complete(&bs->done);
}
return IRQ_HANDLED;
}
return IRQ_NONE; /* signal that we need to wait for completion */
return 1;
} }
static int bcm2835_spi_start_transfer(struct spi_device *spi, static int bcm2835_spi_transfer_one(struct spi_master *master,
struct spi_transfer *tfr) struct spi_device *spi,
struct spi_transfer *tfr)
{ {
struct bcm2835_spi *bs = spi_master_get_devdata(spi->master); struct bcm2835_spi *bs = spi_master_get_devdata(master);
unsigned long spi_hz, clk_hz, cdiv; unsigned long spi_hz, clk_hz, cdiv;
u32 cs = BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; unsigned long spi_used_hz, xfer_time_us;
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* set clock */
spi_hz = tfr->speed_hz; spi_hz = tfr->speed_hz;
clk_hz = clk_get_rate(bs->clk); clk_hz = clk_get_rate(bs->clk);
if (spi_hz >= clk_hz / 2) { if (spi_hz >= clk_hz / 2) {
cdiv = 2; /* clk_hz/2 is the fastest we can go */ cdiv = 2; /* clk_hz/2 is the fastest we can go */
} else if (spi_hz) { } else if (spi_hz) {
/* CDIV must be a power of two */ /* CDIV must be a multiple of two */
cdiv = roundup_pow_of_two(DIV_ROUND_UP(clk_hz, spi_hz)); cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
cdiv += (cdiv % 2);
if (cdiv >= 65536) if (cdiv >= 65536)
cdiv = 0; /* 0 is the slowest we can go */ cdiv = 0; /* 0 is the slowest we can go */
} else } else {
cdiv = 0; /* 0 is the slowest we can go */ cdiv = 0; /* 0 is the slowest we can go */
}
spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
/* handle all the modes */
if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
cs |= BCM2835_SPI_CS_REN;
if (spi->mode & SPI_CPOL) if (spi->mode & SPI_CPOL)
cs |= BCM2835_SPI_CS_CPOL; cs |= BCM2835_SPI_CS_CPOL;
if (spi->mode & SPI_CPHA) if (spi->mode & SPI_CPHA)
cs |= BCM2835_SPI_CS_CPHA; cs |= BCM2835_SPI_CS_CPHA;
if (!(spi->mode & SPI_NO_CS)) { /* for gpio_cs set dummy CS so that no HW-CS get changed
if (spi->mode & SPI_CS_HIGH) { * we can not run this in bcm2835_spi_set_cs, as it does
cs |= BCM2835_SPI_CS_CSPOL; * not get called for cs_gpio cases, so we need to do it here
cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select; */
} if (gpio_is_valid(spi->cs_gpio) || (spi->mode & SPI_NO_CS))
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
cs |= spi->chip_select;
}
reinit_completion(&bs->done); /* set transmit buffers and length */
bs->tx_buf = tfr->tx_buf; bs->tx_buf = tfr->tx_buf;
bs->rx_buf = tfr->rx_buf; bs->rx_buf = tfr->rx_buf;
bs->len = tfr->len; bs->tx_len = tfr->len;
bs->rx_len = tfr->len;
bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); /* calculate the estimated time in us the transfer runs */
/* xfer_time_us = tfr->len
* Enable the HW block. This will immediately trigger a DONE (TX * 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
* empty) interrupt, upon which we will fill the TX FIFO with the * 1000000 / spi_used_hz;
* first TX bytes. Pre-filling the TX FIFO here to avoid the
* interrupt doesn't work:-(
*/
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
return 0; /* for short requests run polling*/
if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
return bcm2835_spi_transfer_one_poll(master, spi, tfr,
cs, xfer_time_us);
return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
} }
static int bcm2835_spi_finish_transfer(struct spi_device *spi, static void bcm2835_spi_handle_err(struct spi_master *master,
struct spi_transfer *tfr, bool cs_change) struct spi_message *msg)
{ {
struct bcm2835_spi *bs = spi_master_get_devdata(spi->master); bcm2835_spi_reset_hw(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); }
static void bcm2835_spi_set_cs(struct spi_device *spi, bool gpio_level)
{
/*
* we can assume that we are "native" as per spi_set_cs
* calling us ONLY when cs_gpio is not set
* we can also assume that we are CS < 3 as per bcm2835_spi_setup
* we would not get called because of error handling there.
* the level passed is the electrical level not enabled/disabled
* so it has to get translated back to enable/disable
* see spi_set_cs in spi.c for the implementation
*/
/* Drain RX FIFO */ struct spi_master *master = spi->master;
while (cs & BCM2835_SPI_CS_RXD) { struct bcm2835_spi *bs = spi_master_get_devdata(master);
bcm2835_rd_fifo(bs, 1); u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
cs = bcm2835_rd(bs, BCM2835_SPI_CS); bool enable;
/* calculate the enable flag from the passed gpio_level */
enable = (spi->mode & SPI_CS_HIGH) ? gpio_level : !gpio_level;
/* set flags for "reverse" polarity in the registers */
if (spi->mode & SPI_CS_HIGH) {
/* set the correct CS-bits */
cs |= BCM2835_SPI_CS_CSPOL;
cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
} else {
/* clean the CS-bits */
cs &= ~BCM2835_SPI_CS_CSPOL;
cs &= ~(BCM2835_SPI_CS_CSPOL0 << spi->chip_select);
} }
if (tfr->delay_usecs) /* select the correct chip_select depending on disabled/enabled */
udelay(tfr->delay_usecs); if (enable) {
/* set cs correctly */
if (spi->mode & SPI_NO_CS) {
/* use the "undefined" chip-select */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
} else {
/* set the chip select */
cs &= ~(BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01);
cs |= spi->chip_select;
}
} else {
/* disable CSPOL which puts HW-CS into deselected state */
cs &= ~BCM2835_SPI_CS_CSPOL;
/* use the "undefined" chip-select as precaution */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
}
if (cs_change) /* finally set the calculated flags in SPI_CS */
/* Clear TA flag */ bcm2835_wr(bs, BCM2835_SPI_CS, cs);
bcm2835_wr(bs, BCM2835_SPI_CS, cs & ~BCM2835_SPI_CS_TA); }
return 0; static int chip_match_name(struct gpio_chip *chip, void *data)
{
return !strcmp(chip->label, data);
} }
static int bcm2835_spi_transfer_one(struct spi_master *master, static int bcm2835_spi_setup(struct spi_device *spi)
struct spi_message *mesg)
{ {
struct bcm2835_spi *bs = spi_master_get_devdata(master); int err;
struct spi_transfer *tfr; struct gpio_chip *chip;
struct spi_device *spi = mesg->spi; /*
int err = 0; * sanity checking the native-chipselects
unsigned int timeout; */
bool cs_change; if (spi->mode & SPI_NO_CS)
return 0;
list_for_each_entry(tfr, &mesg->transfers, transfer_list) { if (gpio_is_valid(spi->cs_gpio))
err = bcm2835_spi_start_transfer(spi, tfr); return 0;
if (err) if (spi->chip_select > 1) {
goto out; /* error in the case of native CS requested with CS > 1
* officially there is a CS2, but it is not documented
timeout = wait_for_completion_timeout(&bs->done, * which GPIO is connected with that...
msecs_to_jiffies(BCM2835_SPI_TIMEOUT_MS)); */
if (!timeout) { dev_err(&spi->dev,
err = -ETIMEDOUT; "setup: only two native chip-selects are supported\n");
goto out; return -EINVAL;
} }
/* now translate native cs to GPIO */
cs_change = tfr->cs_change || /* get the gpio chip for the base */
list_is_last(&tfr->transfer_list, &mesg->transfers); chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
if (!chip)
return 0;
err = bcm2835_spi_finish_transfer(spi, tfr, cs_change); /* and calculate the real CS */
if (err) spi->cs_gpio = chip->base + 8 - spi->chip_select;
goto out;
mesg->actual_length += (tfr->len - bs->len); /* and set up the "mode" and level */
} dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
spi->chip_select, spi->cs_gpio);
out: /* set up GPIO as output and pull to the correct level */
/* Clear FIFOs, and disable the HW block */ err = gpio_direction_output(spi->cs_gpio,
bcm2835_wr(bs, BCM2835_SPI_CS, (spi->mode & SPI_CS_HIGH) ? 0 : 1);
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); if (err) {
mesg->status = err; dev_err(&spi->dev,
spi_finalize_current_message(master); "could not set CS%i gpio %i as output: %i",
spi->chip_select, spi->cs_gpio, err);
return err;
}
/* the implementation of pinctrl-bcm2835 currently does not
* set the GPIO value when using gpio_direction_output
* so we are setting it here explicitly
*/
gpio_set_value(spi->cs_gpio, (spi->mode & SPI_CS_HIGH) ? 0 : 1);
return 0; return 0;
} }
...@@ -312,13 +426,14 @@ static int bcm2835_spi_probe(struct platform_device *pdev) ...@@ -312,13 +426,14 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
master->mode_bits = BCM2835_SPI_MODE_BITS; master->mode_bits = BCM2835_SPI_MODE_BITS;
master->bits_per_word_mask = SPI_BPW_MASK(8); master->bits_per_word_mask = SPI_BPW_MASK(8);
master->num_chipselect = 3; master->num_chipselect = 3;
master->transfer_one_message = bcm2835_spi_transfer_one; master->setup = bcm2835_spi_setup;
master->set_cs = bcm2835_spi_set_cs;
master->transfer_one = bcm2835_spi_transfer_one;
master->handle_err = bcm2835_spi_handle_err;
master->dev.of_node = pdev->dev.of_node; master->dev.of_node = pdev->dev.of_node;
bs = spi_master_get_devdata(master); bs = spi_master_get_devdata(master);
init_completion(&bs->done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
bs->regs = devm_ioremap_resource(&pdev->dev, res); bs->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(bs->regs)) { if (IS_ERR(bs->regs)) {
...@@ -343,13 +458,13 @@ static int bcm2835_spi_probe(struct platform_device *pdev) ...@@ -343,13 +458,13 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
clk_prepare_enable(bs->clk); clk_prepare_enable(bs->clk);
err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
dev_name(&pdev->dev), master); dev_name(&pdev->dev), master);
if (err) { if (err) {
dev_err(&pdev->dev, "could not request IRQ: %d\n", err); dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
goto out_clk_disable; goto out_clk_disable;
} }
/* initialise the hardware */ /* initialise the hardware with the default polarities */
bcm2835_wr(bs, BCM2835_SPI_CS, bcm2835_wr(bs, BCM2835_SPI_CS,
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
......
...@@ -44,7 +44,7 @@ static int bcm53xxspi_wait(struct bcm53xxspi *b53spi, unsigned int timeout_ms) ...@@ -44,7 +44,7 @@ static int bcm53xxspi_wait(struct bcm53xxspi *b53spi, unsigned int timeout_ms)
u32 tmp; u32 tmp;
/* SPE bit has to be 0 before we read MSPI STATUS */ /* SPE bit has to be 0 before we read MSPI STATUS */
deadline = jiffies + BCM53XXSPI_SPE_TIMEOUT_MS * HZ / 1000; deadline = jiffies + msecs_to_jiffies(BCM53XXSPI_SPE_TIMEOUT_MS);
do { do {
tmp = bcm53xxspi_read(b53spi, B53SPI_MSPI_SPCR2); tmp = bcm53xxspi_read(b53spi, B53SPI_MSPI_SPCR2);
if (!(tmp & B53SPI_MSPI_SPCR2_SPE)) if (!(tmp & B53SPI_MSPI_SPCR2_SPE))
...@@ -56,7 +56,7 @@ static int bcm53xxspi_wait(struct bcm53xxspi *b53spi, unsigned int timeout_ms) ...@@ -56,7 +56,7 @@ static int bcm53xxspi_wait(struct bcm53xxspi *b53spi, unsigned int timeout_ms)
goto spi_timeout; goto spi_timeout;
/* Check status */ /* Check status */
deadline = jiffies + timeout_ms * HZ / 1000; deadline = jiffies + msecs_to_jiffies(timeout_ms);
do { do {
tmp = bcm53xxspi_read(b53spi, B53SPI_MSPI_MSPI_STATUS); tmp = bcm53xxspi_read(b53spi, B53SPI_MSPI_MSPI_STATUS);
if (tmp & B53SPI_MSPI_MSPI_STATUS_SPIF) { if (tmp & B53SPI_MSPI_MSPI_STATUS_SPIF) {
......
...@@ -49,12 +49,17 @@ bitbang_txrx_be_cpha0(struct spi_device *spi, ...@@ -49,12 +49,17 @@ bitbang_txrx_be_cpha0(struct spi_device *spi,
{ {
/* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */ /* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */
bool oldbit = !(word & 1);
/* clock starts at inactive polarity */ /* clock starts at inactive polarity */
for (word <<= (32 - bits); likely(bits); bits--) { for (word <<= (32 - bits); likely(bits); bits--) {
/* setup MSB (to slave) on trailing edge */ /* setup MSB (to slave) on trailing edge */
if ((flags & SPI_MASTER_NO_TX) == 0) if ((flags & SPI_MASTER_NO_TX) == 0) {
setmosi(spi, word & (1 << 31)); if ((word & (1 << 31)) != oldbit) {
setmosi(spi, word & (1 << 31));
oldbit = word & (1 << 31);
}
}
spidelay(nsecs); /* T(setup) */ spidelay(nsecs); /* T(setup) */
setsck(spi, !cpol); setsck(spi, !cpol);
...@@ -76,13 +81,18 @@ bitbang_txrx_be_cpha1(struct spi_device *spi, ...@@ -76,13 +81,18 @@ bitbang_txrx_be_cpha1(struct spi_device *spi,
{ {
/* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */ /* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */
bool oldbit = !(word & (1 << 31));
/* clock starts at inactive polarity */ /* clock starts at inactive polarity */
for (word <<= (32 - bits); likely(bits); bits--) { for (word <<= (32 - bits); likely(bits); bits--) {
/* setup MSB (to slave) on leading edge */ /* setup MSB (to slave) on leading edge */
setsck(spi, !cpol); setsck(spi, !cpol);
if ((flags & SPI_MASTER_NO_TX) == 0) if ((flags & SPI_MASTER_NO_TX) == 0) {
setmosi(spi, word & (1 << 31)); if ((word & (1 << 31)) != oldbit) {
setmosi(spi, word & (1 << 31));
oldbit = word & (1 << 31);
}
}
spidelay(nsecs); /* T(setup) */ spidelay(nsecs); /* T(setup) */
setsck(spi, cpol); setsck(spi, cpol);
......
...@@ -850,6 +850,9 @@ static int spi_transfer_one_message(struct spi_master *master, ...@@ -850,6 +850,9 @@ static int spi_transfer_one_message(struct spi_master *master,
if (msg->status == -EINPROGRESS) if (msg->status == -EINPROGRESS)
msg->status = ret; msg->status = ret;
if (msg->status)
master->handle_err(master, msg);
spi_finalize_current_message(master); spi_finalize_current_message(master);
return ret; return ret;
......
...@@ -294,6 +294,8 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv) ...@@ -294,6 +294,8 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* transfer_one_message are mutually exclusive; when both * transfer_one_message are mutually exclusive; when both
* are set, the generic subsystem does not call your * are set, the generic subsystem does not call your
* transfer_one callback. * transfer_one callback.
* @handle_err: the subsystem calls the driver to handle and error that occurs
* in the generic implementation of transfer_one_message().
* @unprepare_message: undo any work done by prepare_message(). * @unprepare_message: undo any work done by prepare_message().
* @cs_gpios: Array of GPIOs to use as chip select lines; one per CS * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
* number. Any individual value may be -ENOENT for CS lines that * number. Any individual value may be -ENOENT for CS lines that
...@@ -448,6 +450,8 @@ struct spi_master { ...@@ -448,6 +450,8 @@ struct spi_master {
void (*set_cs)(struct spi_device *spi, bool enable); void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_master *master, struct spi_device *spi, int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *transfer); struct spi_transfer *transfer);
void (*handle_err)(struct spi_master *master,
struct spi_message *message);
/* gpio chip select */ /* gpio chip select */
int *cs_gpios; int *cs_gpios;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment