- 29 Jun, 2017 6 commits
-
-
Luc Van Oostenryck authored
Here the functions reloc_insn_movw() & reloc_insn_imm() are used to read, modify and write back ARM instructions, which are always stored in memory in little-endian order. These values are thus correctly converted to/from native order but the pointers used to hold their addresses are declared as for native order values. Fix this by declaring the pointers as __le32* and remove the casts that are now unneeded. Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Luc Van Oostenryck authored
aarch64_insn_write() is used to write an instruction. As on ARM64 in-memory instructions are always stored in little-endian order, this function, taking the instruction opcode in native order, correctly convert it to little-endian before sending it to an helper function __aarch64_insn_write() which will do the effective write. This is all good, but the variable and argument holding the converted value are not annotated for a little-endian value but left for native values. Fix this by adjusting the prototype of the helper and directly using the result of cpu_to_le32() without passing by an intermediate variable (which was not a distinct one but the same as the one holding the native value). Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Luc Van Oostenryck authored
The function arch64_insn_read() is used to read an instruction. On AM64 instructions are always stored in little-endian order and thus the function correctly do a little-to-native endian conversion to the value just read. However, the variable used to hold the value before the conversion is not declared for a little-endian value but for a native one. Fix this by using the correct type for the declaration: __le32 Note: This only works because the function reading the value, probe_kernel_read((), takes a void pointer and void pointers are endian-agnostic. Otherwise probe_kernel_read() should also be properly annotated (or worse, need to be specialized). Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Luc Van Oostenryck authored
Here we're reading thumb or ARM instructions, which are always stored in memory in little-endian order. These values are thus correctly converted to native order but the intermediate value should be annotated as for little-endian values. Fix this by declaring the intermediate var as __le32 or __le16. Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Luc Van Oostenryck authored
Here we're reading thumb or ARM instructions, which are always stored in memory in little-endian order. These values are thus correctly converted to native order but the intermediate value should be annotated as for little-endian values. Fix this by declaring the intermediate var as __le32 or __le16. Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Arnd Bergmann authored
With CONFIG_RAS disabled, we get two harmless warnings about unused functions: include/linux/ras.h:37:13: error: 'log_arm_hw_error' defined but not used [-Werror=unused-function] static void log_arm_hw_error(struct cper_sec_proc_arm *err) { return; } include/linux/ras.h:33:13: error: 'log_non_standard_event' defined but not used [-Werror=unused-function] static void log_non_standard_event(const guid_t *sec_type, Clearly these are meant to be 'inline', like the other stubs in the same header. Fixes: 297b64c7 ("ras: acpi / apei: generate trace event for unrecognized CPER section") Fixes: e9279e83 ("trace, ras: add ARM processor error trace event") Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
- 26 Jun, 2017 3 commits
-
-
Will Deacon authored
Merge in arm64 ACPI RAS support (APEI/GHES) from Tyler Baicar.
-
Will Deacon authored
Merge in arm64 perf updates: * xgene system PMUv3 support * 16-bit events for ARMv8.1
-
Luc Van Oostenryck authored
ARM64 depends on the macro __AARCH64EB__ being defined or not to correctly select or define endian-specific macros, structures or pieces of code. This macro is predefined by the compiler but sparse knows nothing about it and thus may pre-process files differently from what gcc would. Fix this by passing '-D__AARCH64EL__' or '-D__AARCH64EB__' to sparse depending of the endianness of the kernel, like defined by GCC. Note: In most case it won't change anything since most arm64 use little-endian (but an allyesconfig would use big-endian!). CC: Catalin Marinas <catalin.marinas@arm.com> CC: Will Deacon <will.deacon@arm.com> CC: linux-arm-kernel@lists.infradead.org Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
- 23 Jun, 2017 2 commits
-
-
Mark Rutland authored
When a kernel is built without CONFIG_ARM64_MODULE_PLTS, we don't generate the expected branch instruction in ftrace_make_nop(). This means we pass zero (rather than a valid branch) to ftrace_modify_code() as the expected instruction to validate. This causes us to return -EINVAL to the core ftrace code for a valid case, resulting in a splat at boot time. This was an unintended effect of commit: 68764420 ("arm64: ftrace: fix building without CONFIG_MODULES") ... which incorrectly moved the generation of the branch instruction into the ifdef for CONFIG_ARM64_MODULE_PLTS. This patch fixes the issue by moving the ifdef inside of the relevant if-else case, and always checking that the branch is in range, regardless of CONFIG_ARM64_MODULE_PLTS. This ensures that we generate the expected branch instruction, and also improves our sanity checks. For consistency, both ftrace_make_nop() and ftrace_make_call() are updated with this pattern. Fixes: 68764420 ("arm64: ftrace: fix building without CONFIG_MODULES") Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reported-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
This patch defines an extra_context signal frame record that can be used to describe an expanded signal frame, and modifies the context block allocator and signal frame setup and parsing code to create, populate, parse and decode this block as necessary. To avoid abuse by userspace, parse_user_sigframe() attempts to ensure that: * no more than one extra_context is accepted; * the extra context data is a sensible size, and properly placed and aligned. The extra_context data is required to start at the first 16-byte aligned address immediately after the dummy terminator record following extra_context in rt_sigframe.__reserved[] (as ensured during signal delivery). This serves as a sanity-check that the signal frame has not been moved or copied without taking the extra data into account. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> [will: add __force annotation when casting extra_datap to __user pointer] Signed-off-by: Will Deacon <will.deacon@arm.com>
-
- 22 Jun, 2017 19 commits
-
-
Tyler Baicar authored
Check for pending errors when probing GHES entries. It is possible that a fatal error is already pending at this point, so we should handle it as soon as the driver is probed. This also avoids a potential issue if there was an interrupt that was already cleared for an error since the GHES driver wasn't present. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Hoan Tran authored
This patch adds support for SoC-wide (AKA uncore) Performance Monitoring Unit version 3. It can support up to - 2 IOB PMU instances - 8 L3C PMU instances - 2 MCB PMU instances - 8 MCU PMU instances and these PMUs support 64 bit counter Signed-off-by: Hoan Tran <hotran@apm.com> [Mark: stop counters in _xgene_pmu_isr()] Signed-off-by: Mark Rutland <mark.rutland@arm.com> [will: make xgene_pmu_v3_ops static] Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Hoan Tran authored
This patch moves PMU leaf functions into a function pointer structure. It helps code maintain and expasion easier. Signed-off-by: Hoan Tran <hotran@apm.com> [Mark: remove redundant cast] Signed-off-by: Mark Rutland <mark.rutland@arm.com> [will: make xgene_pmu_ops static] Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Hoan Tran authored
This patch parses PMU Subnode from a match table. Signed-off-by: Hoan Tran <hotran@apm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
Currently external aborts are unsupported by the guest abort handling. Add handling for SEAs so that the host kernel reports SEAs which occur in the guest kernel. When an SEA occurs in the guest kernel, the guest exits and is routed to kvm_handle_guest_abort(). Prior to this patch, a print message of an unsupported FSC would be printed and nothing else would happen. With this patch, the code gets routed to the APEI handling of SEAs in the host kernel to report the SEA information. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
Currently there are trace events for the various RAS errors with the exception of ARM processor type errors. Add a new trace event for such errors so that the user will know when they occur. These trace events are consistent with the ARM processor error section type defined in UEFI 2.6 spec section N.2.4.4. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
The UEFI spec includes non-standard section type support in the Common Platform Error Record. This is defined in section N.2.3 of UEFI version 2.5. Currently if the CPER section's type (UUID) does not match any section type that the kernel knows how to parse, a trace event is not generated. Generate a trace event which contains the raw error data for non-standard section type error records. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Tested-by: Shiju Jose <shiju.jose@huawei.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
UEFI spec allows for non-standard section in Common Platform Error Record. This is defined in section N.2.3 of UEFI version 2.5. Currently if the CPER section's type (UUID) does not match with one of the section types that the kernel knows how to parse, the section is skipped. Therefore, user is not able to see such CPER data, for instance, error record of non-standard section. This change prints out the raw data in hex in the dmesg buffer so that non-standard sections are reported to the user. Non-standard section type errors should be reported to the user because these can include errors which are vendor specific. The data length is taken from Error Data length field of Generic Error Data Entry. The following is a sample output from dmesg: Hardware error from APEI Generic Hardware Error Source: 2 It has been corrected by h/w and requires no further action event severity: corrected time: precise 2017-03-15 20:37:35 Error 0, type: corrected section type: unknown, d2e2621c-f936-468d-0d84-15a4ed015c8b section length: 0x238 00000000: 4d415201 4d492031 453a4d45 435f4343 .RAM1 IMEM:ECC_C 00000010: 53515f45 44525f42 00000000 00000000 E_QSB_RD........ 00000020: 00000000 00000000 00000000 00000000 ................ 00000030: 00000000 00000000 01010000 01010000 ................ 00000040: 00000000 00000000 00000005 00000000 ................ 00000050: 01010000 00000000 00000001 00dddd00 ................ ... The raw data from the error can then be decoded using vendor specific tools. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Jonathan (Zhixiong) Zhang authored
Even if an error status block's severity is fatal, the kernel does not honor the severity level and panic. With the firmware first model, the platform could inform the OS about a fatal hardware error through the non-NMI GHES notification type. The OS should panic when a hardware error record is received with this severity. Call panic() after CPER data in error status block is printed if severity is fatal, before each error section is handled. Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
ARM APEI extension proposal added SEA (Synchronous External Abort) notification type for ARMv8. Add a new GHES error source handling function for SEA. If an error source's notification type is SEA, then this function can be registered into the SEA exception handler. That way GHES will parse and report SEA exceptions when they occur. An SEA can interrupt code that had interrupts masked and is treated as an NMI. To aid this the page of address space for mapping APEI buffers while in_nmi() is always reserved, and ghes_ioremap_pfn_nmi() is changed to use the helper methods to find the prot_t to map with in the same way as ghes_ioremap_pfn_irq(). Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
SEA exceptions are often caused by an uncorrected hardware error, and are handled when data abort and instruction abort exception classes have specific values for their Fault Status Code. When SEA occurs, before killing the process, report the error in the kernel logs. Update fault_info[] with specific SEA faults so that the new SEA handler is used. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [will: use NULL instead of 0 when assigning si_addr] Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Mark Rutland authored
When debugging a kernel panic(), it can be useful to know which CPU features have been detected by the kernel, as some code paths can depend on these (and may have been patched at runtime). This patch adds a notifier to dump the detected CPU caps (as a hex string) at panic(), when we log other information useful for debugging. On a Juno R1 system running v4.12-rc5, this looks like: [ 615.431249] Kernel panic - not syncing: Fatal exception in interrupt [ 615.437609] SMP: stopping secondary CPUs [ 615.441872] Kernel Offset: disabled [ 615.445372] CPU features: 0x02086 [ 615.448522] Memory Limit: none A developer can decode this by looking at the corresponding <asm/cpucaps.h> bits. For example, the above decodes as: * bit 1: ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE * bit 2: ARM64_WORKAROUND_845719 * bit 7: ARM64_WORKAROUND_834220 * bit 13: ARM64_HAS_32BIT_EL0 Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
When reading current's user-writable TLS register (which occurs when dumping core for native tasks), it is possible that userspace has modified it since the time the task was last scheduled out. The new TLS register value is not guaranteed to have been written immediately back to thread_struct in this case. As a result, a coredump can capture stale data for this register. Reading the register for a stopped task via ptrace is unaffected. For native tasks, this patch explicitly flushes the TPIDR_EL0 register back to thread_struct before dumping when operating on current, thus ensuring that coredump contents are up to date. For compat tasks, the TLS register is not user-writable and so cannot be out of sync, so no flush is required in compat_tls_get(). Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
When reading the FPSIMD state of current (which occurs when dumping core), it is possible that userspace has modified the FPSIMD registers since the time the task was last scheduled out. Such changes are not guaranteed to be reflected immedately in thread_struct. As a result, a coredump can contain stale values for these registers. Reading the registers of a stopped task via ptrace is unaffected. This patch explicitly flushes the CPU state back to thread_struct before dumping when operating on current, thus ensuring that coredump contents are up to date. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
Currently, VFP registers are omitted from coredumps for compat processes, due to a bug in the REGSET_COMPAT_VFP regset implementation. compat_vfp_get() needs to transfer non-contiguous data from thread_struct.fpsimd_state, and uses put_user() to handle the offending trailing word (FPSCR). This fails when copying to a kernel address (i.e., kbuf && !ubuf), which is what happens when dumping core. As a result, the ELF coredump core code silently omits the NT_ARM_VFP note from the dump. It would be possible to work around this with additional special case code for the put_user(), but since user_regset_copyout() is explicitly designed to handle this scenario it is cleaner to port the put_user() to a user_regset_copyout() call, which this patch does. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
Add support for ARM Common Platform Error Record (CPER). UEFI 2.6 specification adds support for ARM specific processor error information to be reported as part of the CPER records. This provides more detail on for processor error logs. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
The ACPI 6.1 spec added a timestamp to the generic error data entry structure. Print the timestamp out when printing out the error information. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
The ACPI 6.1 spec adds a new revision of the generic error data entry structure. Add support to handle the new structure as well as properly verify and iterate through the generic data entries. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Tyler Baicar authored
A RAS (Reliability, Availability, Serviceability) controller may be a separate processor running in parallel with OS execution, and may generate error records for consumption by the OS. If the RAS controller produces multiple error records, then they may be overwritten before the OS has consumed them. The Generic Hardware Error Source (GHES) v2 structure introduces the capability for the OS to acknowledge the consumption of the error record generated by the RAS controller. A RAS controller supporting GHESv2 shall wait for the acknowledgment before writing a new error record, thus eliminating the race condition. Add support for parsing of GHESv2 sub-tables as well. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
- 20 Jun, 2017 9 commits
-
-
git://git.infradead.org/users/hch/uuidWill Deacon authored
Pull in uuid-types branch from Christoph, since this conflicts heavily with the ACPI/APEI RAS work from Tyler Baicer and was created as an immutable branch to avoid conflicts with ACPI development.
-
Luc Van Oostenryck authored
When using sparse on the arm64 tree we get many thousands of warnings like 'constant ... is so big it is unsigned long long' or 'shift too big (32) for type unsigned long'. This happens because by default sparse considers the machine as 32bit and defines the size of the types accordingly. Fix this by passing the '-m64' flag to sparse so that sparse can correctly define longs as being 64bit. CC: Catalin Marinas <catalin.marinas@arm.com> CC: Will Deacon <will.deacon@arm.com> CC: linux-arm-kernel@lists.infradead.org Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
This patch factors out the allocator for signal frame optional records into a separate function, to ensure consistency and facilitate later expansion. No overrun checking is currently done, because the allocation is in user memory and anyway the kernel never tries to allocate enough space in the signal frame yet for an overrun to occur. This behaviour will be refined in future patches. The approach taken in this patch to allocation of the terminator record is not very clean: this will also be replaced in subsequent patches. For future extension, a comment is added in sigcontext.h documenting the current static allocations in __reserved[]. This will be important for determining under what circumstances userspace may or may not see an expanded signal frame. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
In preparation for expanding the signal frame, this patch refactors the signal frame setup code in setup_sigframe() into two separate passes. The first pass, setup_sigframe_layout(), determines the size of the signal frame and its internal layout, including the presence and location of optional records. The resulting knowledge is used to allocate and locate the user stack space required for the signal frame and to determine which optional records to include. The second pass, setup_sigframe(), is called once the stack frame is allocated in order to populate it with the necessary context information. As a result of these changes, it becomes more natural to represent locations in the signal frame by a base pointer and an offset, since the absolute address of each location is not known during the layout pass. To be more consistent with this logic, parse_user_sigframe() is refactored to describe signal frame locations in a similar way. This change has no effect on the signal ABI, but will make it easier to expand the signal frame in future patches. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
Currently, rt_sigreturn does very limited checking on the sigcontext coming from userspace. Future additions to the sigcontext data will increase the potential for surprises. Also, it is not clear whether the sigcontext extension records are supposed to occur in a particular order. To allow the parsing code to be extended more easily, this patch factors out the sigcontext parsing into a separate function, and adds extra checks to validate the well-formedness of the sigcontext structure. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Dave Martin authored
In order to be able to increase the amount of the data currently written to the __reserved[] array in the signal frame, it is necessary to overwrite the locations currently occupied by the {fp,lr} frame link record pushed at the top of the signal stack. In order for this to work, this patch detaches the frame link record from struct rt_sigframe and places it separately at the top of the signal stack. This will allow subsequent patches to insert data between it and __reserved[]. This change relies on the non-ABI status of the placement of the frame record with respect to struct sigframe: this status is undocumented, but the placement is not declared or described in the user headers, and known unwinder implementations (libgcc, libunwind, gdb) appear not to rely on it. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Ard Biesheuvel authored
To avoid issues with the /proc/kcore code getting confused about the kernels block mappings in the VMALLOC region, enable the existing facility that describes the [_text, _end) interval as a separate KCORE_TEXT region, which supersedes the KCORE_VMALLOC region that it intersects with on arm64. Reported-by: Tan Xiaojun <tanxiaojun@huawei.com> Tested-by: Tan Xiaojun <tanxiaojun@huawei.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Laura Abbott <labbott@redhat.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Ard Biesheuvel authored
Instead of passing each start address into is_vmalloc_or_module_addr() to decide whether it falls into either the VMALLOC or the MODULES region, we can simply check the type field of the current kcore_list entry, since it will be set to KCORE_VMALLOC based on exactly the same conditions. As a bonus, when reading the KCORE_TEXT region on architectures that have one, this will avoid using vread() on the region if it happens to intersect with a KCORE_VMALLOC region. This is due the fact that the KCORE_TEXT region is the first one to be added to the kcore region list. Reported-by: Tan Xiaojun <tanxiaojun@huawei.com> Tested-by: Tan Xiaojun <tanxiaojun@huawei.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Laura Abbott <labbott@redhat.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
Ard Biesheuvel authored
As it turns out, arm64 deviates from other architectures in the way it maps the VMALLOC region: on most (all?) other architectures, it resides strictly above the kernel's direct mapping of DRAM, but on arm64, this is the other way around. For instance, for a 48-bit VA configuration, we have modules : 0xffff000000000000 - 0xffff000008000000 ( 128 MB) vmalloc : 0xffff000008000000 - 0xffff7dffbfff0000 (129022 GB) ... vmemmap : 0xffff7e0000000000 - 0xffff800000000000 ( 2048 GB maximum) 0xffff7e0000000000 - 0xffff7e0003ff0000 ( 63 MB actual) memory : 0xffff800000000000 - 0xffff8000ffc00000 ( 4092 MB) This has mostly gone unnoticed until now, but it does appear that it breaks an assumption in the kmem read/write code, which does something like if (p < (unsigned long) high_memory) { ... use straight copy_[to|from]_user() using p as virtual address ... } ... if (count > 0) { ... use vread/vwrite for accesses past high_memory ... } The first condition will inadvertently hold for the VMALLOC region if VMALLOC_START < PAGE_OFFSET [which is the case on arm64], but the read or write will subsequently fail the virt_addr_valid() check, resulting in a -ENXIO return value. Given how kmem seems to be living in borrowed time anyway, and given the fact that nobody noticed that the read/write interface is broken on arm64 in the first place, let's not bother trying to fix it, but simply disable the /dev/kmem interface entirely for arm64. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-
- 15 Jun, 2017 1 commit
-
-
Dustin Brown authored
The kernel watchdog is a great debugging tool for finding tasks that consume a disproportionate amount of CPU time in contiguous chunks. One can imagine building a similar watchdog for arbitrary driver threads using save_stack_trace_tsk() and print_stack_trace(). However, this is not viable for dynamically loaded driver modules on ARM platforms because save_stack_trace_tsk() is not exported for those architectures. Export save_stack_trace_tsk() for the ARM64 architecture to align with x86 and support various debugging use cases such as arbitrary driver thread watchdog timers. Signed-off-by: Dustin Brown <dustinb@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
-