- 12 Jul, 2016 9 commits
-
-
Paolo Bonzini authored
commit d14bdb55 upstream. MOV to DR6 or DR7 causes a #GP if an attempt is made to write a 1 to any of bits 63:32. However, this is not detected at KVM_SET_DEBUGREGS time, and the next KVM_RUN oopses: general protection fault: 0000 [#1] SMP CPU: 2 PID: 14987 Comm: a.out Not tainted 4.4.9-300.fc23.x86_64 #1 Hardware name: LENOVO 2325F51/2325F51, BIOS G2ET32WW (1.12 ) 05/30/2012 [...] Call Trace: [<ffffffffa072c93d>] kvm_arch_vcpu_ioctl_run+0x141d/0x14e0 [kvm] [<ffffffffa071405d>] kvm_vcpu_ioctl+0x33d/0x620 [kvm] [<ffffffff81241648>] do_vfs_ioctl+0x298/0x480 [<ffffffff812418a9>] SyS_ioctl+0x79/0x90 [<ffffffff817a0f2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Code: 55 83 ff 07 48 89 e5 77 27 89 ff ff 24 fd 90 87 80 81 0f 23 fe 5d c3 0f 23 c6 5d c3 0f 23 ce 5d c3 0f 23 d6 5d c3 0f 23 de 5d c3 <0f> 23 f6 5d c3 0f 0b 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 RIP [<ffffffff810639eb>] native_set_debugreg+0x2b/0x40 RSP <ffff88005836bd50> Testcase (beautified/reduced from syzkaller output): #include <unistd.h> #include <sys/syscall.h> #include <string.h> #include <stdint.h> #include <linux/kvm.h> #include <fcntl.h> #include <sys/ioctl.h> long r[8]; int main() { struct kvm_debugregs dr = { 0 }; r[2] = open("/dev/kvm", O_RDONLY); r[3] = ioctl(r[2], KVM_CREATE_VM, 0); r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7); memcpy(&dr, "\x5d\x6a\x6b\xe8\x57\x3b\x4b\x7e\xcf\x0d\xa1\x72" "\xa3\x4a\x29\x0c\xfc\x6d\x44\x00\xa7\x52\xc7\xd8" "\x00\xdb\x89\x9d\x78\xb5\x54\x6b\x6b\x13\x1c\xe9" "\x5e\xd3\x0e\x40\x6f\xb4\x66\xf7\x5b\xe3\x36\xcb", 48); r[7] = ioctl(r[4], KVM_SET_DEBUGREGS, &dr); r[6] = ioctl(r[4], KVM_RUN, 0); } Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Aaro Koskinen authored
commit c796d1d9 upstream. Limit idle ticks to total ticks. This prevents the annoying rackmeter leds fully ON / OFF blinking state that happens on fully idling G5 Xserve systems. Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Javier Martinez Canillas authored
commit cb0eefcc upstream. The I2C core always reports the MODALIAS uevent as "i2c:<client name" regardless if the driver was matched using the I2C id_table or the of_match_table. So the driver needs to export the I2C table and this be built into the module or udev won't have the necessary information to auto load the correct module when the device is added. Signed-off-by: Javier Martinez Canillas <javier@osg.samsung.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Jakub Sitnicki authored
[ Upstream commit 00bc0ef5 ] At present we perform an xfrm_lookup() for each UDPv6 message we send. The lookup involves querying the flow cache (flow_cache_lookup) and, in case of a cache miss, creating an XFRM bundle. If we miss the flow cache, we can end up creating a new bundle and deriving the path MTU (xfrm_init_pmtu) from on an already transformed dst_entry, which we pass from the socket cache (sk->sk_dst_cache) down to xfrm_lookup(). This can happen only if we're caching the dst_entry in the socket, that is when we're using a connected UDP socket. To put it another way, the path MTU shrinks each time we miss the flow cache, which later on leads to incorrectly fragmented payload. It can be observed with ESPv6 in transport mode: 1) Set up a transformation and lower the MTU to trigger fragmentation # ip xfrm policy add dir out src ::1 dst ::1 \ tmpl src ::1 dst ::1 proto esp spi 1 # ip xfrm state add src ::1 dst ::1 \ proto esp spi 1 enc 'aes' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b # ip link set dev lo mtu 1500 2) Monitor the packet flow and set up an UDP sink # tcpdump -ni lo -ttt & # socat udp6-listen:12345,fork /dev/null & 3) Send a datagram that needs fragmentation with a connected socket # perl -e 'print "@" x 1470 | socat - udp6:[::1]:12345 2016/06/07 18:52:52 socat[724] E read(3, 0x555bb3d5ba00, 8192): Protocol error 00:00:00.000000 IP6 ::1 > ::1: frag (0|1448) ESP(spi=0x00000001,seq=0x2), length 1448 00:00:00.000014 IP6 ::1 > ::1: frag (1448|32) 00:00:00.000050 IP6 ::1 > ::1: ESP(spi=0x00000001,seq=0x3), length 1272 (^ ICMPv6 Parameter Problem) 00:00:00.000022 IP6 ::1 > ::1: ESP(spi=0x00000001,seq=0x5), length 136 4) Compare it to a non-connected socket # perl -e 'print "@" x 1500' | socat - udp6-sendto:[::1]:12345 00:00:40.535488 IP6 ::1 > ::1: frag (0|1448) ESP(spi=0x00000001,seq=0x6), length 1448 00:00:00.000010 IP6 ::1 > ::1: frag (1448|64) What happens in step (3) is: 1) when connecting the socket in __ip6_datagram_connect(), we perform an XFRM lookup, miss the flow cache, create an XFRM bundle, and cache the destination, 2) afterwards, when sending the datagram, we perform an XFRM lookup, again, miss the flow cache (due to mismatch of flowi6_iif and flowi6_oif, which is an issue of its own), and recreate an XFRM bundle based on the cached (and already transformed) destination. To prevent the recreation of an XFRM bundle, avoid an XFRM lookup altogether whenever we already have a destination entry cached in the socket. This prevents the path MTU shrinkage and brings us on par with UDPv4. The fix also benefits connected PINGv6 sockets, another user of ip6_sk_dst_lookup_flow(), who also suffer messages being transformed twice. Joint work with Hannes Frederic Sowa. Reported-by: Jan Tluka <jtluka@redhat.com> Signed-off-by: Jakub Sitnicki <jkbs@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Yuchung Cheng authored
[ Upstream commit ce3cf4ec ] The v6 tcp stats scan do not provide TLP and ER timer information correctly like the v4 version . This patch fixes that. Fixes: 6ba8a3b1 ("tcp: Tail loss probe (TLP)") Fixes: eed530b6 ("tcp: early retransmit") Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Hannes Frederic Sowa authored
[ Upstream commit e5aed006 ] In case we find a socket with encapsulation enabled we should call the encap_recv function even if just a udp header without payload is available. The callbacks are responsible for correctly verifying and dropping the packets. Also, in case the header validation fails for geneve and vxlan we shouldn't put the skb back into the socket queue, no one will pick them up there. Instead we can simply discard them in the respective encap_recv functions. [js] 3.12 does not have geneve yet. Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Herbert Xu authored
[ Upstream commit 92964c79 ] When we free cb->skb after a dump, we do it after releasing the lock. This means that a new dump could have started in the time being and we'll end up freeing their skb instead of ours. This patch saves the skb and module before we unlock so we free the right memory. Fixes: 16b304f3 ("netlink: Eliminate kmalloc in netlink dump operation.") Reported-by: Baozeng Ding <sploving1@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Andrey Ryabinin authored
commit 6d6f2833 upstream. Jim reported: UBSAN: Undefined behaviour in arch/x86/events/intel/core.c:3708:12 shift exponent 35 is too large for 32-bit type 'long unsigned int' The use of 'unsigned long' type obviously is not correct here, make it 'unsigned long long' instead. Reported-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Imre Palik <imrep@amazon.de> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 2c33645d ("perf/x86: Honor the architectural performance monitoring version") Link: http://lkml.kernel.org/r/1462974711-10037-1-git-send-email-aryabinin@virtuozzo.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Cc: Kevin Christopher <kevinc@vmware.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Palik, Imre authored
commit 2c33645d upstream. Architectural performance monitoring, version 1, doesn't support fixed counters. Currently, even if a hypervisor advertises support for architectural performance monitoring version 1, perf may still try to use the fixed counters, as the constraints are set up based on the CPU model. This patch ensures that perf honors the architectural performance monitoring version returned by CPUID, and it only uses the fixed counters for version 2 and above. (Some of the ideas in this patch came from Peter Zijlstra.) Signed-off-by: Imre Palik <imrep@amazon.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Anthony Liguori <aliguori@amazon.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1433767609-1039-1-git-send-email-imrep.amz@gmail.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Cc: Kevin Christopher <kevinc@vmware.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
- 23 Jun, 2016 10 commits
-
-
David S. Miller authored
[ Upstream commit 7cafc0b8 ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
David S. Miller authored
[ Upstream commit d11c2a0d ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
David S. Miller authored
[ Upstream commit 9ea46abe ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Babu Moger authored
[ Upstream commit d0c31e02 ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
David S. Miller authored
[ Upstream commit 397d1533 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
David S. Miller authored
[ Upstream commit 49fa5230 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b953 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Mike Frysinger authored
[ Upstream commit 1a40b953 ] A system call trace trigger on entry allows the tracing process to inspect and potentially change the traced process's registers. Account for that by reloading the %g1 (syscall number) and %i0-%i5 (syscall argument) values. We need to be careful to revalidate the range of %g1, and reload the system call table entry it corresponds to into %l7. Reported-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net> Tested-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Russell Currey authored
commit 871e178e upstream. In the "ibm,configure-pe" and "ibm,configure-bridge" RTAS calls, the spec states that values of 9900-9905 can be returned, indicating that software should delay for 10^x (where x is the last digit, i.e. 990x) milliseconds and attempt the call again. Currently, the kernel doesn't know about this, and respecting it fixes some PCI failures when the hypervisor is busy. The delay is capped at 0.2 seconds. Signed-off-by: Russell Currey <ruscur@russell.cc> Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Ralf Baechle authored
commit d7de4134 upstream. TASK_SIZE was defined as 0x7fff8000UL which for 64k pages is not a multiple of the page size. Somewhere further down the math fails such that executing an ELF binary fails. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Joshua Henderson <joshua.henderson@microchip.com> Cc: James Hogan <james.hogan@imgtec.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Taku Izumi authored
commit b07461a8 upstream. AER errors might be recorded when powering-on devices. These errors can be ignored, so firmware usually clears them before the OS enumerates devices. However, firmware is not involved when devices are added via hotplug, so the OS may discover power-up errors that should be ignored. The same may happen when powering up devices when resuming after suspend. Clear the AER error status registers during enumeration and resume. [bhelgaas: changelog, remove repetitive comments] Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
- 15 Jun, 2016 21 commits
-
-
Jiri Slaby authored
-
Loic Poulain authored
commit 84cb3df0 upstream. HCI_UART_PROTO_SET flag is set before hci_uart_set_proto call. If we receive data from tty layer during this procedure, proto pointer may not be assigned yet, leading to null pointer dereference in rx method hci_uart_tty_receive. This patch fixes this issue by introducing HCI_UART_PROTO_READY flag in order to avoid any proto operation before proto opening and assignment. Signed-off-by: Loic Poulain <loic.poulain@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Wei-Ning Huang authored
commit 9a01242d upstream. In some case, the btmrvl_sdio firmware would fail to active within the polling time. Increase the polling interval to 100 msec to fix the issue. Signed-off-by: Wei-Ning Huang <wnhuang@chromium.org> Signed-off-by: Wei-Ning Huang <wnhuang@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Colin Ian King authored
commit a75fa128 upstream. The error return err is not initialized for the case when pci_map_rom fails and no ROM can me mapped. Fix this by setting ret to -ENODATA; (this is the same error value that is returned if the ROM data is successfully mapped but does not match the expected ROM signature.). Issue found from static code analysis using CoverityScan. Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Dan Bogdan Nechita authored
commit 1bb850a1 upstream. Currently writing the attributes with "echo" will result in comparing: "enabled\n" with "enabled\0" and attribute is always set to false. Use the sysfs_streq() instead because it treats both NUL and new-line-then-NUL as equivalent string terminations. Signed-off-by: Dan Bogdan Nechita <dan.bogdan.nechita@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Oliver Neukum <oliver@neukum.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Dave Chinner authored
commit 7d3aa7fe upstream. We don't write back stale inodes so we should skip them in xfs_iflush_cluster, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Dave Chinner authored
commit 51b07f30 upstream. Some careless idiot(*) wrote crap code in commit 1a3e8f3d ("xfs: convert inode cache lookups to use RCU locking") back in late 2010, and so xfs_iflush_cluster checks the wrong inode for whether it is still valid under RCU protection. Fix it to lock and check the correct inode. (*) Careless-idiot: Dave Chinner <dchinner@redhat.com> Discovered-by: Brain Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Dave Chinner authored
commit b1438f47 upstream. When a failure due to an inode buffer occurs, the error handling fails to abort the inode writeback correctly. This can result in the inode being reclaimed whilst still in the AIL, leading to use-after-free situations as well as filesystems that cannot be unmounted as the inode log items left in the AIL never get removed. Fix this by ensuring fatal errors from xfs_imap_to_bp() result in the inode flush being aborted correctly. [js] 3.12 needs EAGAIN, not -EAGAIN Reported-by: Shyam Kaushik <shyam@zadarastorage.com> Diagnosed-by: Shyam Kaushik <shyam@zadarastorage.com> Tested-by: Shyam Kaushik <shyam@zadarastorage.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Ville Syrjälä authored
commit 3017cd63 upstream. With netconsole (at least) the pr_err("... disablingn") call can recurse back into the dma-debug code, where it'll try to grab free_entries_lock again. Avoid the problem by doing the printk after dropping the lock. Link: http://lkml.kernel.org/r/1463678421-18683-1-git-send-email-ville.syrjala@linux.intel.comSigned-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Nicolai Stange authored
commit 935244cd upstream. Currently, in ext4_mb_init(), there's a loop like the following: do { ... offset += 1 << (sb->s_blocksize_bits - i); i++; } while (i <= sb->s_blocksize_bits + 1); Note that the updated offset is used in the loop's next iteration only. However, at the last iteration, that is at i == sb->s_blocksize_bits + 1, the shift count becomes equal to (unsigned)-1 > 31 (c.f. C99 6.5.7(3)) and UBSAN reports UBSAN: Undefined behaviour in fs/ext4/mballoc.c:2621:15 shift exponent 4294967295 is too large for 32-bit type 'int' [...] Call Trace: [<ffffffff818c4d25>] dump_stack+0xbc/0x117 [<ffffffff818c4c69>] ? _atomic_dec_and_lock+0x169/0x169 [<ffffffff819411ab>] ubsan_epilogue+0xd/0x4e [<ffffffff81941cac>] __ubsan_handle_shift_out_of_bounds+0x1fb/0x254 [<ffffffff81941ab1>] ? __ubsan_handle_load_invalid_value+0x158/0x158 [<ffffffff814b6dc1>] ? kmem_cache_alloc+0x101/0x390 [<ffffffff816fc13b>] ? ext4_mb_init+0x13b/0xfd0 [<ffffffff814293c7>] ? create_cache+0x57/0x1f0 [<ffffffff8142948a>] ? create_cache+0x11a/0x1f0 [<ffffffff821c2168>] ? mutex_lock+0x38/0x60 [<ffffffff821c23ab>] ? mutex_unlock+0x1b/0x50 [<ffffffff814c26ab>] ? put_online_mems+0x5b/0xc0 [<ffffffff81429677>] ? kmem_cache_create+0x117/0x2c0 [<ffffffff816fcc49>] ext4_mb_init+0xc49/0xfd0 [...] Observe that the mentioned shift exponent, 4294967295, equals (unsigned)-1. Unless compilers start to do some fancy transformations (which at least GCC 6.0.0 doesn't currently do), the issue is of cosmetic nature only: the such calculated value of offset is never used again. Silence UBSAN by introducing another variable, offset_incr, holding the next increment to apply to offset and adjust that one by right shifting it by one position per loop iteration. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=114701 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=112161Signed-off-by: Nicolai Stange <nicstange@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Nicolai Stange authored
commit b5cb316c upstream. Currently, in mb_find_order_for_block(), there's a loop like the following: while (order <= e4b->bd_blkbits + 1) { ... bb += 1 << (e4b->bd_blkbits - order); } Note that the updated bb is used in the loop's next iteration only. However, at the last iteration, that is at order == e4b->bd_blkbits + 1, the shift count becomes negative (c.f. C99 6.5.7(3)) and UBSAN reports UBSAN: Undefined behaviour in fs/ext4/mballoc.c:1281:11 shift exponent -1 is negative [...] Call Trace: [<ffffffff818c4d35>] dump_stack+0xbc/0x117 [<ffffffff818c4c79>] ? _atomic_dec_and_lock+0x169/0x169 [<ffffffff819411bb>] ubsan_epilogue+0xd/0x4e [<ffffffff81941cbc>] __ubsan_handle_shift_out_of_bounds+0x1fb/0x254 [<ffffffff81941ac1>] ? __ubsan_handle_load_invalid_value+0x158/0x158 [<ffffffff816e93a0>] ? ext4_mb_generate_from_pa+0x590/0x590 [<ffffffff816502c8>] ? ext4_read_block_bitmap_nowait+0x598/0xe80 [<ffffffff816e7b7e>] mb_find_order_for_block+0x1ce/0x240 [...] Unless compilers start to do some fancy transformations (which at least GCC 6.0.0 doesn't currently do), the issue is of cosmetic nature only: the such calculated value of bb is never used again. Silence UBSAN by introducing another variable, bb_incr, holding the next increment to apply to bb and adjust that one by right shifting it by one position per loop iteration. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=114701 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=112161Signed-off-by: Nicolai Stange <nicstange@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Theodore Ts'o authored
commit c9eb13a9 upstream. If the orphaned inode list contains inode #5, ext4_iget() returns a bad inode (since the bootloader inode should never be referenced directly). Because of the bad inode, we end up processing the inode repeatedly and this hangs the machine. This can be reproduced via: mke2fs -t ext4 /tmp/foo.img 100 debugfs -w -R "ssv last_orphan 5" /tmp/foo.img mount -o loop /tmp/foo.img /mnt (But don't do this if you are using an unpatched kernel if you care about the system staying functional. :-) This bug was found by the port of American Fuzzy Lop into the kernel to find file system problems[1]. (Since it *only* happens if inode #5 shows up on the orphan list --- 3, 7, 8, etc. won't do it, it's not surprising that AFL needed two hours before it found it.) [1] http://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing%2C%20Vault%202016_0.pdf Reported by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Lyude authored
commit 255f0e7c upstream. During boot, MST hotplugs are generally expected (even if no physical hotplugging occurs) and result in DRM's connector topology changing. This means that using num_connector from the current mode configuration can lead to the number of connectors changing under us. This can lead to some nasty scenarios in fbcon: - We allocate an array to the size of dev->mode_config.num_connectors. - MST hotplug occurs, dev->mode_config.num_connectors gets incremented. - We try to loop through each element in the array using the new value of dev->mode_config.num_connectors, and end up going out of bounds since dev->mode_config.num_connectors is now larger then the array we allocated. fb_helper->connector_count however, will always remain consistent while we do a modeset in fb_helper. Note: This is just polish for 4.7, Dave Airlie's drm_connector refcounting fixed these bugs for real. But it's good enough duct-tape for stable kernel backporting, since backporting the refcounting changes is way too invasive. Signed-off-by: Lyude <cpaul@redhat.com> [danvet: Clarify why we need this. Also remove the now unused "dev" local variable to appease gcc.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1463065021-18280-3-git-send-email-cpaul@redhat.comSigned-off-by: Jiri Slaby <jslaby@suse.cz>
-
Itai Handler authored
commit 7ccca1d5 upstream. Fix possible out of bounds read, by adding missing comma. The code may read pass the end of the dsi_errors array when the most significant bit (bit #31) in the intr_stat register is set. This bug has been detected using CppCheck (static analysis tool). Signed-off-by: Itai Handler <itai_handler@hotmail.com> Signed-off-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Tomáš Trnka authored
commit c0cb8bf3 upstream. The length of the GSS MIC token need not be a multiple of four bytes. It is then padded by XDR to a multiple of 4 B, but unwrap_integ_data() would previously only trim mic.len + 4 B. The remaining up to three bytes would then trigger a check in nfs4svc_decode_compoundargs(), leading to a "garbage args" error and mount failure: nfs4svc_decode_compoundargs: compound not properly padded! nfsd: failed to decode arguments! This would prevent older clients using the pre-RFC 4121 MIC format (37-byte MIC including a 9-byte OID) from mounting exports from v3.9+ servers using krb5i. The trimming was introduced by commit 4c190e2f ("sunrpc: trim off trailing checksum before returning decrypted or integrity authenticated buffer"). Fixes: 4c190e2f "unrpc: trim off trailing checksum..." Signed-off-by: Tomáš Trnka <ttrnka@mail.muni.cz> Acked-by: Jeff Layton <jlayton@poochiereds.net> Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Ross Lagerwall authored
commit f0f39387 upstream. Commit ff1e22e7 ("xen/events: Mask a moving irq") open-coded irq_move_irq() but left out checking if the IRQ is disabled. This broke resuming from suspend since it tries to move a (disabled) irq without holding the IRQ's desc->lock. Fix it by adding in a check for disabled IRQs. The resulting stacktrace was: kernel BUG at /build/linux-UbQGH5/linux-4.4.0/kernel/irq/migration.c:31! invalid opcode: 0000 [#1] SMP Modules linked in: xenfs xen_privcmd ... CPU: 0 PID: 9 Comm: migration/0 Not tainted 4.4.0-22-generic #39-Ubuntu Hardware name: Xen HVM domU, BIOS 4.6.1-xs125180 05/04/2016 task: ffff88003d75ee00 ti: ffff88003d7bc000 task.ti: ffff88003d7bc000 RIP: 0010:[<ffffffff810e26e2>] [<ffffffff810e26e2>] irq_move_masked_irq+0xd2/0xe0 RSP: 0018:ffff88003d7bfc50 EFLAGS: 00010046 RAX: 0000000000000000 RBX: ffff88003d40ba00 RCX: 0000000000000001 RDX: 0000000000000001 RSI: 0000000000000100 RDI: ffff88003d40bad8 RBP: ffff88003d7bfc68 R08: 0000000000000000 R09: ffff88003d000000 R10: 0000000000000000 R11: 000000000000023c R12: ffff88003d40bad0 R13: ffffffff81f3a4a0 R14: 0000000000000010 R15: 00000000ffffffff FS: 0000000000000000(0000) GS:ffff88003da00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd4264de624 CR3: 0000000037922000 CR4: 00000000003406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: ffff88003d40ba38 0000000000000024 0000000000000000 ffff88003d7bfca0 ffffffff814c8d92 00000010813ef89d 00000000805ea732 0000000000000009 0000000000000024 ffff88003cc39b80 ffff88003d7bfce0 ffffffff814c8f66 Call Trace: [<ffffffff814c8d92>] eoi_pirq+0xb2/0xf0 [<ffffffff814c8f66>] __startup_pirq+0xe6/0x150 [<ffffffff814ca659>] xen_irq_resume+0x319/0x360 [<ffffffff814c7e75>] xen_suspend+0xb5/0x180 [<ffffffff81120155>] multi_cpu_stop+0xb5/0xe0 [<ffffffff811200a0>] ? cpu_stop_queue_work+0x80/0x80 [<ffffffff811203d0>] cpu_stopper_thread+0xb0/0x140 [<ffffffff810a94e6>] ? finish_task_switch+0x76/0x220 [<ffffffff810ca731>] ? __raw_callee_save___pv_queued_spin_unlock+0x11/0x20 [<ffffffff810a3935>] smpboot_thread_fn+0x105/0x160 [<ffffffff810a3830>] ? sort_range+0x30/0x30 [<ffffffff810a0588>] kthread+0xd8/0xf0 [<ffffffff810a04b0>] ? kthread_create_on_node+0x1e0/0x1e0 [<ffffffff8182568f>] ret_from_fork+0x3f/0x70 [<ffffffff810a04b0>] ? kthread_create_on_node+0x1e0/0x1e0 Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Hari Bathini authored
commit 8ed8ab40 upstream. Some of the interrupt vectors on 64-bit POWER server processors are only 32 bytes long (8 instructions), which is not enough for the full first-level interrupt handler. For these we need to branch to an out-of-line (OOL) handler. But when we are running a relocatable kernel, interrupt vectors till __end_interrupts marker are copied down to real address 0x100. So, branching to labels (ie. OOL handlers) outside this section must be handled differently (see LOAD_HANDLER()), considering relocatable kernel, which would need at least 4 instructions. However, branching from interrupt vector means that we corrupt the CFAR (come-from address register) on POWER7 and later processors as mentioned in commit 1707dd16. So, EXCEPTION_PROLOG_0 (6 instructions) that contains the part up to the point where the CFAR is saved in the PACA should be part of the short interrupt vectors before we branch out to OOL handlers. But as mentioned already, there are interrupt vectors on 64-bit POWER server processors that are only 32 bytes long (like vectors 0x4f00, 0x4f20, etc.), which cannot accomodate the above two cases at the same time owing to space constraint. Currently, in these interrupt vectors, we simply branch out to OOL handlers, without using LOAD_HANDLER(), which leaves us vulnerable when running a relocatable kernel (eg. kdump case). While this has been the case for sometime now and kdump is used widely, we were fortunate not to see any problems so far, for three reasons: 1. In almost all cases, production kernel (relocatable) is used for kdump as well, which would mean that crashed kernel's OOL handler would be at the same place where we end up branching to, from short interrupt vector of kdump kernel. 2. Also, OOL handler was unlikely the reason for crash in almost all the kdump scenarios, which meant we had a sane OOL handler from crashed kernel that we branched to. 3. On most 64-bit POWER server processors, page size is large enough that marking interrupt vector code as executable (see commit 429d2e83) leads to marking OOL handler code from crashed kernel, that sits right below interrupt vector code from kdump kernel, as executable as well. Let us fix this by moving the __end_interrupts marker down past OOL handlers to make sure that we also copy OOL handlers to real address 0x100 when running a relocatable kernel. This fix has been tested successfully in kdump scenario, on an LPAR with 4K page size by using different default/production kernel and kdump kernel. Also tested by manually corrupting the OOL handlers in the first kernel and then kdump'ing, and then causing the OOL handlers to fire - mpe. Fixes: c1fb6816 ("powerpc: Add relocation on exception vector handlers") Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
wang yanqing authored
commit 873ffe15 upstream. In commit a269913c ("rtlwifi: Rework rtl_lps_leave() and rtl_lps_enter() to use work queue"), the tests for enter/exit power-save mode were inverted. With this change applied, the wifi connection becomes much more stable. Fixes: a269913c ("rtlwifi: Rework rtl_lps_leave() and rtl_lps_enter() to use work queue") Signed-off-by: Wang YanQing <udknight@gmail.com> Acked-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Prarit Bhargava authored
commit ad67b437 upstream. b84106b4 ("PCI: Disable IO/MEM decoding for devices with non-compliant BARs") disabled BAR sizing for BARs 0-5 of devices that don't comply with the PCI spec. But it didn't do anything for expansion ROM BARs, so we still try to size them, resulting in warnings like this on Broadwell-EP: pci 0000:ff:12.0: BAR 6: failed to assign [mem size 0x00000001 pref] Move the non-compliant BAR check from __pci_read_base() up to pci_read_bases() so it applies to the expansion ROM BAR as well as to BARs 0-5. Note that direct callers of __pci_read_base(), like sriov_init(), will now bypass this check. We haven't had reports of devices with broken SR-IOV BARs yet. [bhelgaas: changelog] Fixes: b84106b4 ("PCI: Disable IO/MEM decoding for devices with non-compliant BARs") Signed-off-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> CC: Thomas Gleixner <tglx@linutronix.de> CC: Ingo Molnar <mingo@redhat.com> CC: "H. Peter Anvin" <hpa@zytor.com> CC: Andi Kleen <ak@linux.intel.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Dave Gerlach authored
commit c998c078 upstream. Currently the 'registered' member of the cpuidle_device struct is set to 1 during cpuidle_register_device. In this same function there are checks to see if the device is already registered to prevent duplicate calls to register the device, but this value is never set to 0 even on unregister of the device. Because of this, any attempt to call cpuidle_register_device after a call to cpuidle_unregister_device will fail which shouldn't be the case. To prevent this, set registered to 0 when the device is unregistered. Fixes: c878a52d (cpuidle: Check if device is already registered) Signed-off-by: Dave Gerlach <d-gerlach@ti.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Raghava Aditya Renukunta authored
commit fc4bf75e upstream. Typically under error conditions, it is possible for aac_command_thread() to miss the wakeup from kthread_stop() and go back to sleep, causing it to hang aac_shutdown. In the observed scenario, the adapter is not functioning correctly and so aac_fib_send() never completes (or time-outs depending on how it was called). Shortly after aac_command_thread() starts it performs aac_fib_send(SendHostTime) which hangs. When aac_probe_one /aac_get_adapter_info send time outs, kthread_stop is called which breaks the command thread out of it's hang. The code will still go back to sleep in schedule_timeout() without checking kthread_should_stop() so it causes aac_probe_one to hang until the schedule_timeout() which is 30 minutes. Fixed by: Adding another kthread_should_stop() before schedule_timeout() Signed-off-by: Raghava Aditya Renukunta <RaghavaAditya.Renukunta@microsemi.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-