- 28 Jul, 2015 5 commits
-
-
Kees Cook authored
Since the API for jent_panic() does not include format string parameters, adjust the call to panic() to use a literal string to avoid any future callers from leaking format strings into the panic message. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Ahsan Atta authored
Signed-off-by: Ahsan Atta <ahsan.atta@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Bruce Allan authored
Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Bruce Allan authored
The subject macro mistakenly compares the passed-in ring size in bytes with ADF_RING_SIZE_4K which is 0x6 (an internal representation of 4KB) rather than comparing with the intended value of 4096. Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Bruce Allan authored
The element pci_dev_id in the struct adf_hw_device_data is redundant since the PCI device id can be retrieved from the struct pci_dev. Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 23 Jul, 2015 9 commits
-
-
Dan Streetman authored
Remove the common 'platform' registration module, and move the crypto compression driver registration into each of the pSeries and PowerNV platform NX 842 drivers. Change the nx-842.c code into simple common functions that each platform driver uses to perform constraints-based buffer changes, i.e. realigning and/or resizing buffers to match the driver's hardware requirements. The common 'platform' module was my mistake to create - since each platform driver will only load/operate when running on its own platform (i.e. a pSeries platform or a PowerNV platform), they can directly register with the crypto subsystem, using the same alg and driver name. This removes unneeded complexity. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
The last commit merged nx-842.c's code into nx-842-crypto.c. It did not rename nx-842-crypto.c to nx-842.c, in order to let the patch more clearly show what was merged. This just renames nx-842-crypto.c to nx-842.c, with no changes to its code. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Merge the nx-842.c code into nx-842-crypto.c. This allows later patches to remove the 'platform' driver, and instead allow each platform driver to directly register with the crypto compression api. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Replace the duplicated finishing code (set destination buffer length and set return code to 0) in the case of decompressing a buffer with no header with a goto to the success case of decompressing a buffer with a header. This is a trivial change that allows both success cases to use common code, and includes the pr_debug() msg in both cases as well. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Don't register the pSeries driver when parsing the device tree returns ENODEV. The nx842_probe() function in the pSeries driver returns error instead of registering as a crypto compression driver, when it receives an error return value from the nx842_OF_upd() function that probes the device tree nodes, except when ENODEV is returned. However ENODEV should not be a special case and the driver should not register when there is no hw device, or the hw device is disabled. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Move the kzalloc() calls in nx842_probe() and nx842_OF_upd() to the top of the functions, before taking the devdata spinlock. Since kzalloc() without GFP_ATOMIC can sleep, it can't be called while holding a spinlock. Move the calls to before taking the lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Remove the 'status' field from the pSeries NX driver data. The 'status' field isn't used by the driver at all; it simply checks the devicetree status node at initialization, and returns success if 'okay' and failure otherwise. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Dan Streetman authored
Remove the __init and __exit modifiers from the VIO driver probe and remove functions. The driver functions should not be marked __init/__exit because they can/will be called during runtime, not only at module init and exit. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tadeusz Struk authored
When multiple devices are present in the system the driver attempts to register the same algorithm many times. Changes in v2: - use proper synchronization mechanizm between register and unregister Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 21 Jul, 2015 2 commits
-
-
Tadeusz Struk authored
The condition checking allowed key length was invalid. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tadeusz Struk authored
The condition checking allowed key length was invalid. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 20 Jul, 2015 9 commits
-
-
LABBE Corentin authored
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
LABBE Corentin authored
Add support for the Security System included in Allwinner SoC A20. The Security System is a hardware cryptographic accelerator that support: - MD5 and SHA1 hash algorithms - AES block cipher in CBC/ECB mode with 128/196/256bits keys. - DES and 3DES block cipher in CBC/ECB mode Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
LABBE Corentin authored
This patch adds documentation for Device-Tree bindings for the Security System cryptographic accelerator driver. Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
LABBE Corentin authored
The Security System is a hardware cryptographic accelerator that support AES/MD5/SHA1/DES/3DES/PRNG algorithms. It could be found on many Allwinner SoC. This patch enable the Security System on the Allwinner A20 SoC Device-tree. Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
LABBE Corentin authored
The Security System is a hardware cryptographic accelerator that support AES/MD5/SHA1/DES/3DES/PRNG algorithms. It could be found on many Allwinner SoC. This patch enable the Security System on the Allwinner A10 SoC Device-tree. Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tudor Ambarus authored
An implicit truncation is done when using a variable of 64 bits in MATH command: warning: large integer implicitly truncated to unsigned type [-Woverflow] Silence the compiler by feeding it with an explicit truncated value. Signed-off-by: Tudor Ambarus <tudor.ambarus@freescale.com> Signed-off-by: Horia Geant? <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Horia Geant? authored
When successful, the descriptor that performs RNG initialization is allowed to return a status code of 7000_0000h, since last command in the descriptor is a JUMP HALT. Signed-off-by: Horia Geant? <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Horia Geant? authored
HW coherency won't work properly for CAAM write transactions if AWCACHE is left to default (POR) value - 4'b0001. It has to be programmed to 4'b0010, i.e. AXI3 Cacheable bit set. For platforms that have HW coherency support: -PPC-based: the update has no effect; CAAM coherency already works due to the IOMMU (PAMU) driver setting the correct memory coherency attributes -ARM-based: the update fixes cache coherency issues, since IOMMU (SMMU) driver is not programmed to behave similar to PAMU Signed-off-by: Horia Geant? <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Alex Porosanu authored
In order to ensure that the ERA property is properly read from DT on all platforms, of_property_read* function needs to be used. Signed-off-by: Alex Porosanu <alexandru.porosanu@freescale.com> Signed-off-by: Horia Geant? <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 17 Jul, 2015 15 commits
-
-
Martin Willi authored
Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two consecutive Poly1305 blocks in parallel using a derived key r^2. Loop unrolling can be more effectively mapped to SSE instructions, further increasing throughput. For large messages, throughput increases by ~45-65% compared to single block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Implements an x86_64 assembler driver for the Poly1305 authenticator. This single block variant holds the 130-bit integer in 5 32-bit words, but uses SSE to do two multiplications/additions in parallel. When calling updates with small blocks, the overhead for kernel_fpu_begin/ kernel_fpu_end() negates the perfmance gain. We therefore use the poly1305-generic fallback for small updates. For large messages, throughput increases by ~5-10% compared to poly1305-generic: testing speed of poly1305 (poly1305-generic) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
As architecture specific drivers need a software fallback, export Poly1305 init/update/final functions together with some helpers in a header file. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
The AVX2 variant of ChaCha20 is used only for messages with >= 512 bytes length. With the existing test vectors, the implementation could not be tested. Due that lack of such a long official test vector, this one is self-generated using chacha20-generic. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Extends the x86_64 ChaCha20 implementation by a function processing eight ChaCha20 blocks in parallel using AVX2. For large messages, throughput increases by ~55-70% compared to four block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes) test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes) test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes) test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes) test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing four ChaCha20 blocks in parallel. This avoids the word shuffling needed in the single block variant, further increasing throughput. For large messages, throughput increases by ~110% compared to single block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This single block variant works on a single state matrix using SSE instructions. It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate operations. For large messages, throughput increases by ~65% compared to chacha20-generic: testing speed of chacha20 (chacha20-generic) encryption test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes) test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes) test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes) test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes) test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
As architecture specific drivers need a software fallback, export a ChaCha20 en-/decryption function together with some helpers in a header file. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Martin Willi authored
Adds individual ChaCha20 and Poly1305 and a combined rfc7539esp AEAD speed test using mode numbers 214, 321 and 213. For Poly1305 we add a specific speed template, as it expects the key prepended to the input data. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Herbert Xu authored
This patch converts rfc7539 and rfc7539esp to the new AEAD interface. The test vectors for rfc7539esp have also been updated to include the IV. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Martin Willi <martin@strongswan.org>
-
Tadeusz Struk authored
Introduce constrains for RSA keys lengths. Only key lengths of 512, 1024, 1536, 2048, 3072, and 4096 bits will be supported. Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tadeusz Struk authored
Add RSA support to QAT driver. Removed unused RNG rings. Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tadeusz Struk authored
Add code that loads the MMP firmware Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Pingchao Yang authored
Load Modular Math Processor(MMP) firmware into QAT devices to support public key algorithm acceleration. Signed-off-by: Pingchao Yang <pingchao.yang@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-