- 06 Nov, 2015 40 commits
-
-
Vlastimil Babka authored
Some compaction tracepoints use zone->name to print which zone is being compacted. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch uses zone_idx() instead of zone->name as the raw value, and when printing, converts the zone_type to string using the appropriate EM() macros and some ugly tricks to overcome the problem that half the values depend on CONFIG_ options and one does not simply use #ifdef inside of #define. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=Normal order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Valentin Rothberg <valentinrothberg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Some compaction tracepoints convert the integer return values to strings using the compaction_status_string array. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch converts the private array to appropriate tracepoint macros that result in proper userspace support. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret= after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
oom_kill_process() sends SIGKILL to other thread groups sharing victim's mm. But printing "Kill process %d (%s) sharing same memory\n" lines makes no sense if they already have pending SIGKILL. This patch reduces the "Kill process" lines by printing that line with info level only if SIGKILL is not pending. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
At the for_each_process() loop in oom_kill_process(), we are comparing address of OOM victim's mm without holding a reference to that mm. If there are a lot of processes to compare or a lot of "Kill process %d (%s) sharing same memory" messages to print, for_each_process() loop could take very long time. It is possible that meanwhile the OOM victim exits and releases its mm, and then mm is allocated with the same address and assigned to some unrelated process. When we hit such race, the unrelated process will be killed by error. To make sure that the OOM victim's mm does not go away until for_each_process() loop finishes, get a reference on the OOM victim's mm before calling task_unlock(victim). [oleg@redhat.com: several fixes] Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
It was confirmed that a local unprivileged user can consume all memory reserves and hang up that system using time lag between the OOM killer sets TIF_MEMDIE on an OOM victim and sends SIGKILL to that victim, for printk() inside for_each_process() loop at oom_kill_process() can consume many seconds when there are many thread groups sharing the same memory. Before starting oom-depleter process: Node 0 DMA: 3*4kB (UM) 6*8kB (U) 4*16kB (UEM) 0*32kB 0*64kB 1*128kB (M) 2*256kB (EM) 2*512kB (UE) 2*1024kB (EM) 1*2048kB (E) 1*4096kB (M) = 9980kB Node 0 DMA32: 31*4kB (UEM) 27*8kB (UE) 32*16kB (UE) 13*32kB (UE) 14*64kB (UM) 7*128kB (UM) 8*256kB (UM) 8*512kB (UM) 3*1024kB (U) 4*2048kB (UM) 362*4096kB (UM) = 1503220kB As of invoking the OOM killer: Node 0 DMA: 11*4kB (UE) 8*8kB (UEM) 6*16kB (UE) 2*32kB (EM) 0*64kB 1*128kB (U) 3*256kB (UEM) 2*512kB (UE) 3*1024kB (UEM) 1*2048kB (U) 0*4096kB = 7308kB Node 0 DMA32: 1049*4kB (UEM) 507*8kB (UE) 151*16kB (UE) 53*32kB (UEM) 83*64kB (UEM) 52*128kB (EM) 25*256kB (UEM) 11*512kB (M) 6*1024kB (UM) 1*2048kB (M) 0*4096kB = 44556kB Between the thread group leader got TIF_MEMDIE and receives SIGKILL: Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB Node 0 DMA32: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB The oom-depleter's thread group leader which got TIF_MEMDIE started memset() in user space after the OOM killer set TIF_MEMDIE, and it was free to abuse ALLOC_NO_WATERMARKS by TIF_MEMDIE for memset() in user space until SIGKILL is delivered. If SIGKILL is delivered before TIF_MEMDIE is set, the oom-depleter can terminate without touching memory reserves. Although the possibility of hitting this time lag is very small for 3.19 and earlier kernels because TIF_MEMDIE is set immediately before sending SIGKILL, preemption or long interrupts (an extreme example is SysRq-t) can step between and allow memory allocations which are not needed for terminating the OOM victim. Fixes: 83363b91 ("oom: make sure that TIF_MEMDIE is set under task_lock") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make mem_cgroup_inactive_anon_is_low return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make inactive_anon/file_is_low return bool due to these particular functions only using either one or zero as their return value. No functional change. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ebru Akagunduz authored
max_ptes_swap specifies how many pages can be brought in from swap when collapsing a group of pages into a transparent huge page. /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap A higher value can cause excessive swap IO and waste memory. A lower value can prevent THPs from being collapsed, resulting fewer pages being collapsed into THPs, and lower memory access performance. Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jerome Marchand authored
Since commit 6539cc05 ("mm: memcontrol: fold mem_cgroup_do_charge()"), the order to pass to mem_cgroup_oom() is calculated by passing the number of pages to get_order() instead of the expected size in bytes. AFAICT, it only affects the value displayed in the oom warning message. This patch fix this. Michal said: : We haven't noticed that just because the OOM is enabled only for page : faults of order-0 (single page) and get_order work just fine. Thanks for : noticing this. If we ever start triggering OOM on different orders this : would be broken. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently kernel prints out results of every single unpoison event, which i= s not necessary because unpoison is purely a testing feature and testers can = get little or no information from lots of lines of unpoison log storm. So this patch ratelimits printk in unpoison_memory(). This patch introduces a file local ratelimit_state, which adds 64 bytes to memory-failure.o. If we apply pr_info_ratelimited() for 8 callsite below, 2= 56 bytes is added, so it's a win. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Junichi Nomura authored
filemap_fdatawait() is a function to wait for on-going writeback to complete but also consume and clear error status of the mapping set during writeback. The latter functionality is critical for applications to detect writeback error with system calls like fsync(2)/fdatasync(2). However filemap_fdatawait() is also used by sync(2) or FIFREEZE ioctl, which don't check error status of individual mappings. As a result, fsync() may not be able to detect writeback error if events happen in the following order: Application System admin ---------------------------------------------------------- write data on page cache Run sync command writeback completes with error filemap_fdatawait() clears error fsync returns success (but the data is not on disk) This patch adds filemap_fdatawait_keep_errors() for call sites where writeback error is not handled so that they don't clear error status. Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Fengguang Wu <fengguang.wu@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Introduce is_via_compact_memory() helper indicating compacting via /proc/sys/vm/compact_memory to improve readability. To catch this situation in __compaction_suitable, use order as parameter directly instead of using struct compact_control. This patch has no functional changes. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Cc: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Delete unnecessary if to let inactive_anon_is_low_global return directly. No functional changes. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently there's no easy way to get per-process usage of hugetlb pages, which is inconvenient because userspace applications which use hugetlb typically want to control their processes on the basis of how much memory (including hugetlb) they use. So this patch simply provides easy access to the info via /proc/PID/status. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Joern Engel <joern@logfs.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently /proc/PID/smaps provides no usage info for vma(VM_HUGETLB), which is inconvenient when we want to know per-task or per-vma base hugetlb usage. To solve this, this patch adds new fields for hugetlb usage like below: Size: 20480 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB AnonHugePages: 0 kB Shared_Hugetlb: 18432 kB Private_Hugetlb: 2048 kB Swap: 0 kB KernelPageSize: 2048 kB MMUPageSize: 2048 kB Locked: 0 kB VmFlags: rd wr mr mw me de ht [hughd@google.com: fix Private_Hugetlb alignment ] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Joern Engel <joern@logfs.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Maximal readahead size is limited now by two values: 1) by global 2Mb constant (MAX_READAHEAD in max_sane_readahead()) 2) by configurable per-device value* (bdi->ra_pages) There are devices, which require custom readahead limit. For instance, for RAIDs it's calculated as number of devices multiplied by chunk size times 2. Readahead size can never be larger than bdi->ra_pages * 2 value (POSIX_FADV_SEQUNTIAL doubles readahead size). If so, why do we need two limits? I suggest to completely remove this max_sane_readahead() stuff and use per-device readahead limit everywhere. Also, using right readahead size for RAID disks can significantly increase i/o performance: before: dd if=/dev/md2 of=/dev/null bs=100M count=100 100+0 records in 100+0 records out 10485760000 bytes (10 GB) copied, 12.9741 s, 808 MB/s after: $ dd if=/dev/md2 of=/dev/null bs=100M count=100 100+0 records in 100+0 records out 10485760000 bytes (10 GB) copied, 8.91317 s, 1.2 GB/s (It's an 8-disks RAID5 storage). This patch doesn't change sys_readahead and madvise(MADV_WILLNEED) behavior introduced by 6d2be915 ("mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages"). Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: onstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Commit a2f3aa02 ("[PATCH] Fix sparsemem on Cell") fixed an oops experienced on the Cell architecture when init-time functions, early_*(), are called at runtime by introducing an 'enum memmap_context' parameter to memmap_init_zone() and init_currently_empty_zone(). This parameter is intended to be used to tell whether the call of these two functions is being made on behalf of a hotplug event, or happening at boot-time. However, init_currently_empty_zone() does not use this parameter at all, so remove it. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Migration tries up to 10 times to migrate pages that return -EAGAIN until it gives up. If some pages fail all retries, they are counted towards the number of failed pages that migrate_pages() returns. They should also be counted in the /proc/vmstat pgmigrate_fail and in the mm_migrate_pages tracepoint. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
memblock_remove_range() is only used in the mm/memblock.c, so we can make it static. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Raghavendra K T authored
With the setup_nr_nodes(), we have already initialized node_possible_map. So it is safe to use for_each_node here. There are many places in the kernel that use hardcoded 'for' loop with nr_node_ids, because all other architectures have numa nodes populated serially. That should be reason we had maintained the same for powerpc. But, since sparse numa node ids possible on powerpc, we unnecessarily allocate memory for non existent numa nodes. For e.g., on a system with 0,1,16,17 as numa nodes nr_node_ids=18 and we allocate memory for nodes 2-14. This patch we allocate memory for only existing numa nodes. The patch is boot tested on a 4 node tuleta, confirming with printks that it works as expected. Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Greg Kurz <gkurz@linux.vnet.ibm.com> Cc: Grant Likely <grant.likely@linaro.org> Cc: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Raghavendra K T authored
The functions used in the patch are in slowpath, which gets called whenever alloc_super is called during mounts. Though this should not make difference for the architectures with sequential numa node ids, for the powerpc which can potentially have sparse node ids (for e.g., 4 node system having numa ids, 0,1,16,17 is common), this patch saves some unnecessary allocations for non existing numa nodes. Even without that saving, perhaps patch makes code more readable. [vdavydov@parallels.com: take memcg_aware check outside for_each loop] Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Greg Kurz <gkurz@linux.vnet.ibm.com> Cc: Grant Likely <grant.likely@linaro.org> Cc: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jonathan Corbet authored
get_vaddr_frames() has a comment that's *almost* a docbook comment; add the missing star so that the tools will find it properly. Signed-off-by: Jonathan Corbet <corbet@lwn.net> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
__memcg_kmem_bypass() decides whether a kmem allocation should be bypassed to the root memcg. Some conditions that it tests are valid criteria regarding who should be held accountable; however, there are a couple unnecessary tests for cold paths - __GFP_FAIL and fatal_signal_pending(). The previous patch updated try_charge() to handle both __GFP_FAIL and dying tasks correctly and the only thing these two tests are doing is making accounting less accurate and sprinkling tests for cold path conditions in the hot paths. There's nothing meaningful gained by these extra tests. This patch removes the two unnecessary tests from __memcg_kmem_bypass(). Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
try_charge() is the main charging logic of memcg. When it hits the limit but either can't fail the allocation due to __GFP_NOFAIL or the task is likely to free memory very soon, being OOM killed, has SIGKILL pending or exiting, it "bypasses" the charge to the root memcg and returns -EINTR. While this is one approach which can be taken for these situations, it has several issues. * It unnecessarily lies about the reality. The number itself doesn't go over the limit but the actual usage does. memcg is either forced to or actively chooses to go over the limit because that is the right behavior under the circumstances, which is completely fine, but, if at all avoidable, it shouldn't be misrepresenting what's happening by sneaking the charges into the root memcg. * Despite trying, we already do over-charge. kmemcg can't deal with switching over to the root memcg by the point try_charge() returns -EINTR, so it open-codes over-charing. * It complicates the callers. Each try_charge() user has to handle the weird -EINTR exception. memcg_charge_kmem() does the manual over-charging. mem_cgroup_do_precharge() performs unnecessary uncharging of root memcg, which BTW is inconsistent with what memcg_charge_kmem() does but not broken as [un]charging are noops on root memcg. mem_cgroup_try_charge() needs to switch the returned cgroup to the root one. The reality is that in memcg there are cases where we are forced and/or willing to go over the limit. Each such case needs to be scrutinized and justified but there definitely are situations where that is the right thing to do. We alredy do this but with a superficial and inconsistent disguise which leads to unnecessary complications. This patch updates try_charge() so that it over-charges and returns 0 when deemed necessary. -EINTR return is removed along with all special case handling in the callers. While at it, remove the local variable @ret, which was initialized to zero and never changed, along with done: label which just returned the always zero @ret. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
memcg_kmem_newpage_charge() and memcg_kmem_get_cache() are testing the same series of conditions to decide whether to bypass kmem accounting. Collect the tests into __memcg_kmem_bypass(). This is pure refactoring. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
Currently, try_charge() tries to reclaim memory synchronously when the high limit is breached; however, if the allocation doesn't have __GFP_WAIT, synchronous reclaim is skipped. If a process performs only speculative allocations, it can blow way past the high limit. This is actually easily reproducible by simply doing "find /". slab/slub allocator tries speculative allocations first, so as long as there's memory which can be consumed without blocking, it can keep allocating memory regardless of the high limit. This patch makes try_charge() always punt the over-high reclaim to the return-to-userland path. If try_charge() detects that high limit is breached, it adds the overage to current->memcg_nr_pages_over_high and schedules execution of mem_cgroup_handle_over_high() which performs synchronous reclaim from the return-to-userland path. As long as kernel doesn't have a run-away allocation spree, this should provide enough protection while making kmemcg behave more consistently. It also has the following benefits. - All over-high reclaims can use GFP_KERNEL regardless of the specific gfp mask in use, e.g. GFP_NOFS, when the limit was breached. - It copes with prio inversion. Previously, a low-prio task with small memory.high might perform over-high reclaim with a bunch of locks held. If a higher prio task needed any of these locks, it would have to wait until the low prio task finished reclaim and released the locks. By handing over-high reclaim to the task exit path this issue can be avoided. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@kernel.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
task_struct->memcg_oom is a sub-struct containing fields which are used for async memcg oom handling. Most task_struct fields aren't packaged this way and it can lead to unnecessary alignment paddings. This patch flattens it. * task.memcg_oom.memcg -> task.memcg_in_oom * task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask * task.memcg_oom.order -> task.memcg_oom_order * task.memcg_oom.may_oom -> task.memcg_may_oom In addition, task.memcg_may_oom is relocated to where other bitfields are which reduces the size of task_struct. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
Before the main loop, vma is already is NULL. There is no need to set it to NULL again. Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
probe_kernel_address() is basically the same as the (later added) probe_kernel_read(). The return value on EFAULT is a bit different: probe_kernel_address() returns number-of-bytes-not-copied whereas probe_kernel_read() returns -EFAULT. All callers have been checked, none cared. probe_kernel_read() can be overridden by the architecture whereas probe_kernel_address() cannot. parisc, blackfin and um do this, to insert additional checking. Hence this patch possibly fixes obscure bugs, although there are only two probe_kernel_address() callsites outside arch/. My first attempt involved removing probe_kernel_address() entirely and converting all callsites to use probe_kernel_read() directly, but that got tiresome. This patch shrinks mm/slab_common.o by 218 bytes. For a single probe_kernel_address() callsite. Cc: Steven Miao <realmz6@gmail.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexey Klimov authored
In mlockall syscall wrapper after out-label for goto code just doing return. Remove goto out statements and return error values directly. Also instead of rewriting ret variable before every if-check move returns to 'error'-like path under if-check. Objdump asm listing showed me reducing by few asm lines. Object file size descreased from 220592 bytes to 220528 bytes for me (for aarch64). Signed-off-by: Alexey Klimov <klimov.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-