- 22 Jul, 2016 5 commits
-
-
Eric Auger authored
This patch adds compilation and link against irqchip. Main motivation behind using irqchip code is to enable MSI routing code. In the future irqchip routing may also be useful when targeting multiple irqchips. Routing standard callbacks now are implemented in vgic-irqfd: - kvm_set_routing_entry - kvm_set_irq - kvm_set_msi They only are supported with new_vgic code. Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined. KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed. So from now on IRQCHIP routing is enabled and a routing table entry must exist for irqfd injection to succeed for a given SPI. This patch builds a default flat irqchip routing table (gsi=irqchip.pin) covering all the VGIC SPI indexes. This routing table is overwritten by the first first user-space call to KVM_SET_GSI_ROUTING ioctl. MSI routing setup is not yet allowed. Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Eric Auger authored
kvm_setup_default_irq_routing and kvm_setup_empty_irq_routing are not used by generic code. So let's move the declarations in x86 irq.h header instead of kvm_host.h. Signed-off-by: Eric Auger <eric.auger@redhat.com> Suggested-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Eric Auger authored
on ARM, a devid field is populated in kvm_msi struct in case the flag is set to KVM_MSI_VALID_DEVID. Let's propagate both flags and devid field in kvm_kernel_irq_routing_entry. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Eric Auger authored
Enhance kvm_kernel_irq_routing_entry to transport the device id field, devid. A new flags field makes possible to indicate the devid is valid. Those additions are used for ARM GICv3 ITS MSI injection. The original struct msi_msg msi field is replaced by a new custom structure that embeds the new fields. Signed-off-by: Eric Auger <eric.auger@redhat.com> Suggested-by: Radim Krčmář <rkrcmar@redhat.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Eric Auger authored
On ARM, the MSI msg (address and data) comes along with out-of-band device ID information. The device ID encodes the device that writes the MSI msg. Let's convey the device id in kvm_irq_routing_msi and use KVM_MSI_VALID_DEVID flag value in kvm_irq_routing_entry to indicate the msi devid is populated. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
- 18 Jul, 2016 30 commits
-
-
Marc Zyngier authored
If we care to move all the checks that do not involve any memory allocation, we can simplify the MAPI error handling. Let's do that, it cannot hurt. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
vgic_its_cmd_handle_mapi has an extra "subcmd" argument, which is already contained in the command buffer that all command handlers obtain from the command queue. Let's drop it, as it is not that useful. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
There is no need to have separate functions to validate devices and collections, as the architecture doesn't really distinguish the two, and they are supposed to be managed the same way. Let's turn the DevID checker into a generic one. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
Going from the ITS structure to the corresponding KVM structure would be quite handy at times. The kvm_device pointer that is passed at create time is quite convenient for this, so let's keep a copy of it in the vgic_its structure. This will be put to a good use in subsequent patches. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
Instead of spreading random allocations all over the place, consolidate allocation/init/freeing of collections in a pair of constructor/destructor. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
When checking that the storage address of a device entry is valid, it is critical to compute the actual address of the entry, rather than relying on the beginning of the page to match a CPU page of the same size: for example, if the guest places the table at the last 64kB boundary of RAM, but RAM size isn't a multiple of 64kB... Fix this by computing the actual offset of the device ID in the L2 page, and check the corresponding GFN. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
Checking that the device_id fits if the table, and we must make sure that the associated memory is also accessible. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
The nr_entries variable in vgic_its_check_device_id actually describe the size of the L1 table, and not the number of entries in this table. Rename it to l1_tbl_size, so that we can now change the code with a better understanding of what is what. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
The ITS tables are stored in LE format. If the host is reading a L1 table entry to check its validity, it must convert it to the CPU endianness. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
The current code will fail on valid indirect tables, and happily use the ones that are pointing out of the guest RAM. Funny what a small "!" can do for you... Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
Instead of sprinkling raw kref_get() calls everytime we cannot do a normal vgic_get_irq(), use the existing vgic_get_irq_kref(), which does the same thing and is paired with a vgic_put_irq(). vgic_get_irq_kref is moved to vgic.h in order to be easily shared. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Marc Zyngier authored
Let's restore some of the #defines that have been savagely dropped by the introduction of the KVM ITS code, as pointlessly break other users (including series that are already in -next). Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Eric Auger authored
For VGICv2 save and restore the CPU interface registers are accessed. Restore the modality which has been altered. Also explicitly set the iodev_type for both the DIST and CPU interface. Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
Now that all ITS emulation functionality is in place, we advertise MSI functionality to userland and also the ITS device to the guest - if userland has configured that. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
When userland wants to inject an MSI into the guest, it uses the KVM_SIGNAL_MSI ioctl, which carries the doorbell address along with the payload and the device ID. With the help of the KVM IO bus framework we learn the corresponding ITS from the doorbell address. We then use our wrapper functions to iterate the linked lists and find the proper Interrupt Translation Table Entry (ITTE) and thus the corresponding struct vgic_irq to finally set the pending bit. We also provide the handler for the ITS "INT" command, which allows a guest to trigger an MSI via the ITS command queue. Since this one knows about the right ITS already, we directly call the MMIO handler function without using the kvm_io_bus framework. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The connection between a device, an event ID, the LPI number and the associated CPU is stored in in-memory tables in a GICv3, but their format is not specified by the spec. Instead software uses a command queue in a ring buffer to let an ITS implementation use its own format. Implement handlers for the various ITS commands and let them store the requested relation into our own data structures. Those data structures are protected by the its_lock mutex. Our internal ring buffer read and write pointers are protected by the its_cmd mutex, so that only one VCPU per ITS can handle commands at any given time. Error handling is very basic at the moment, as we don't have a good way of communicating errors to the guest (usually an SError). The INT command handler is missing from this patch, as we gain the capability of actually injecting MSIs into the guest only later on. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The (system-wide) LPI configuration table is held in a table in (guest) memory. To achieve reasonable performance, we cache this data in our struct vgic_irq. If the guest updates the configuration data (which consists of the enable bit and the priority value), it issues an INV or INVALL command to allow us to update our information. Provide functions that update that information for one LPI or all LPIs mapped to a specific collection. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The LPI pending status for a GICv3 redistributor is held in a table in (guest) memory. To achieve reasonable performance, we cache the pending bit in our struct vgic_irq. The initial pending state must be read from guest memory upon enabling LPIs for this redistributor. As we can't access the guest memory while we hold the lpi_list spinlock, we create a snapshot of the LPI list and iterate over that. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
LPIs are dynamically created (mapped) at guest runtime and their actual number can be quite high, but is mostly assigned using a very sparse allocation scheme. So arrays are not an ideal data structure to hold the information. We use a spin-lock protected linked list to hold all mapped LPIs, represented by their struct vgic_irq. This lock is grouped between the ap_list_lock and the vgic_irq lock in our locking order. Also we store a pointer to that struct vgic_irq in our struct its_itte, so we can easily access it. Eventually we call our new vgic_get_lpi() from vgic_get_irq(), so the VGIC code gets transparently access to LPIs. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
Add emulation for some basic MMIO registers used in the ITS emulation. This includes: - GITS_{CTLR,TYPER,IIDR} - ID registers - GITS_{CBASER,CREADR,CWRITER} (which implement the ITS command buffer handling) - GITS_BASER<n> Most of the handlers are pretty straight forward, only the CWRITER handler is a bit more involved by taking the new its_cmd mutex and then iterating over the command buffer. The registers holding base addresses and attributes are sanitised before storing them. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
Introduce a new KVM device that represents an ARM Interrupt Translation Service (ITS) controller. Since there can be multiple of this per guest, we can't piggy back on the existing GICv3 distributor device, but create a new type of KVM device. On the KVM_CREATE_DEVICE ioctl we allocate and initialize the ITS data structure and store the pointer in the kvm_device data. Upon an explicit init ioctl from userland (after having setup the MMIO address) we register the handlers with the kvm_io_bus framework. Any reference to an ITS thus has to go via this interface. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The ARM GICv3 ITS emulation code goes into a separate file, but needs to be connected to the GICv3 emulation, of which it is an option. The ITS MMIO handlers require the respective ITS pointer to be passed in, so we amend the existing VGIC MMIO framework to let it cope with that. Also we introduce the basic ITS data structure and initialize it, but don't return any success yet, as we are not yet ready for the show. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
In the GICv3 redistributor there are the PENDBASER and PROPBASER registers which we did not emulate so far, as they only make sense when having an ITS. In preparation for that emulate those MMIO accesses by storing the 64-bit data written into it into a variable which we later read in the ITS emulation. We also sanitise the registers, making sure RES0 regions are respected and checking for valid memory attributes. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
arm-gic-v3.h contains bit and register definitions for the GICv3 and ITS, at least for the bits the we currently care about. The ITS emulation needs more definitions, so add them and refactor the memory attribute #defines to be more universally usable. To avoid changing all users, we still provide some of the old definitons defined with the help of the new macros. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
In the moment our struct vgic_irq's are statically allocated at guest creation time. So getting a pointer to an IRQ structure is trivial and safe. LPIs are more dynamic, they can be mapped and unmapped at any time during the guest's _runtime_. In preparation for supporting LPIs we introduce reference counting for those structures using the kernel's kref infrastructure. Since private IRQs and SPIs are statically allocated, we avoid actually refcounting them, since they would never be released anyway. But we take provisions to increase the refcount when an IRQ gets onto a VCPU list and decrease it when it gets removed. Also this introduces vgic_put_irq(), which wraps kref_put and hides the release function from the callers. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The kvm_io_bus framework is a nice place of holding information about various MMIO regions for kernel emulated devices. Add a call to retrieve the kvm_io_device structure which is associated with a certain MMIO address. This avoids to duplicate kvm_io_bus' knowledge of MMIO regions without having to fake MMIO calls if a user needs the device a certain MMIO address belongs to. This will be used by the ITS emulation to get the associated ITS device when someone triggers an MSI via an ioctl from userspace. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
KVM capabilities can be a per-VM property, though ARM/ARM64 currently does not pass on the VM pointer to the architecture specific capability handlers. Add a "struct kvm*" parameter to those function to later allow proper per-VM capability reporting. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
The ARM GICv3 ITS MSI controller requires a device ID to be able to assign the proper interrupt vector. On real hardware, this ID is sampled from the bus. To be able to emulate an ITS controller, extend the KVM MSI interface to let userspace provide such a device ID. For PCI devices, the device ID is simply the 16-bit bus-device-function triplet, which should be easily available to the userland tool. Also there is a new KVM capability which advertises whether the current VM requires a device ID to be set along with the MSI data. This flag is still reported as not available everywhere, later we will enable it when ITS emulation is used. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
kvm_register_device_ops() can return an error, so lets check its return value and propagate this up the call chain. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
Andre Przywara authored
Logically a GICv3 redistributor is assigned to a (v)CPU, so we should aim to keep redistributor related variables out of our struct vgic_dist. Let's start by replacing the redistributor related kvm_io_device array with two members in our existing struct vgic_cpu, which are naturally per-VCPU and thus don't require any allocation / freeing. So apart from the better fit with the redistributor design this saves some code as well. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
- 14 Jul, 2016 1 commit
-
-
Dan Carpenter authored
My static checker complains that this condition looks like it should be == instead of =. This isn't a fast path, so we don't need to be fancy. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
-
- 03 Jul, 2016 4 commits
-
-
Marc Zyngier authored
We have both KERN_TO_HYP and kern_hyp_va, which do the exact same thing. Let's standardize on the latter. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Marc Zyngier authored
This is more of a safety measure than anything else: If we end-up with an idmap page that intersect with the range picked for the the HYP VA space, abort the KVM setup, as it is unsafe to go further. I cannot imagine it happening on 64bit (we have a mechanism to work around it), but could potentially occur on a 32bit system with the kernel loaded high enough in memory so that in conflicts with the kernel VA. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Marc Zyngier authored
We can now remove a number of dead #defines, thanks to the trampoline code being gone. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Marc Zyngier authored
So far, KVM was getting in the way of kexec on 32bit (and the arm64 kexec hackers couldn't be bothered to fix it on 32bit...). With simpler page tables, tearing KVM down becomes very easy, so let's just do it. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-