- 05 Mar, 2008 40 commits
-
-
Randy Dunlap authored
Add to help text that the Intel I2C ICH (i801) driver is also needed for this kernel. Add LEDS_CLASS to config since the driver makes les_classdev_*() calls: ERROR: "led_classdev_register" [drivers/input/misc/apanel.ko] undefined! ERROR: "__led_classdev_unregister" [drivers/input/misc/apanel.ko] undefined! Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Josef Bacik authored
The "resize" option won't be noticed as it comes after the NULL option, so if you try to mount (or in this case remount) with that option it won't be recognized. Signed-off-by: Josef Bacik <jbacik@redhat.com> Cc: <linux-ext4@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Nishanth Aravamudan authored
Adam Litke noticed that currently we grow the hugepage pool independent of any cpuset the running process may be in, but when shrinking the pool, the cpuset is checked. This leads to inconsistency when shrinking the pool in a restricted cpuset -- an administrator may have been able to grow the pool on a node restricted by a containing cpuset, but they cannot shrink it there. There are two options: either prevent growing of the pool outside of the cpuset or allow shrinking outside of the cpuset. >From previous discussions on linux-mm, /proc/sys/vm/nr_hugepages is an administrative interface that should not be restricted by cpusets. So allow shrinking the pool by removing pages from nodes outside of current's cpuset. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Irwin <wli@holomorphy.com> Cc: Lee Schermerhorn <Lee.Schermerhonr@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Paul Jackson <pj@sgi.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Adam Litke authored
A hugetlb reservation may be inadequately backed in the event of racing allocations and frees when utilizing surplus huge pages. Consider the following series of events in processes A and B: A) Allocates some surplus pages to satisfy a reservation B) Frees some huge pages A) A notices the extra free pages and drops hugetlb_lock to free some of its surplus pages back to the buddy allocator. B) Allocates some huge pages A) Reacquires hugetlb_lock and returns from gather_surplus_huge_pages() Avoid this by commiting the reservation after pages have been allocated but before dropping the lock to free excess pages. For parity, release the reservation in return_unused_surplus_pages(). This patch also corrects the cpuset_mems_nr() error path in hugetlb_acct_memory(). If the cpuset check fails, uncommit the reservation, but also be sure to return any surplus huge pages that may have been allocated to back the failed reservation. Thanks to Andy Whitcroft for discovering this. Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
K.Tanaka authored
This message describes another issue about md RAID10 found by testing the 2.6.24 md RAID10 using new scsi fault injection framework. Abstract: When a scsi error results in disabling a disk during RAID10 recovery, the resync threads of md RAID10 could stall. This case, the raid array has already been broken and it may not matter. But I think stall is not preferable. If it occurs, even shutdown or reboot will fail because of resource busy. The deadlock mechanism: The r10bio_s structure has a "remaining" member to keep track of BIOs yet to be handled when recovering. The "remaining" counter is incremented when building a BIO in sync_request() and is decremented when finish a BIO in end_sync_write(). If building a BIO fails for some reasons in sync_request(), the "remaining" should be decremented if it has already been incremented. I found a case where this decrement is forgotten. This causes a md_do_sync() deadlock because md_do_sync() waits for md_done_sync() called by end_sync_write(), but end_sync_write() never calls md_done_sync() because of the "remaining" counter mismatch. For example, this problem would be reproduced in the following case: Personalities : [raid10] md0 : active raid10 sdf1[4] sde1[5](F) sdd1[2] sdc1[1] sdb1[6](F) 3919616 blocks 64K chunks 2 near-copies [4/2] [_UU_] [>....................] recovery = 2.2% (45376/1959808) finish=0.7min speed=45376K/sec This case, sdf1 is recovering, sdb1 and sde1 are disabled. An additional error with detaching sdd will cause a deadlock. md0 : active raid10 sdf1[4] sde1[5](F) sdd1[6](F) sdc1[1] sdb1[7](F) 3919616 blocks 64K chunks 2 near-copies [4/1] [_U__] [=>...................] recovery = 5.0% (99520/1959808) finish=5.9min speed=5237K/sec 2739 ? S< 0:17 [md0_raid10] 28608 ? D< 0:00 [md0_resync] 28629 pts/1 Ss 0:00 bash 28830 pts/1 R+ 0:00 ps ax 31819 ? D< 0:00 [kjournald] The resync thread keeps working, but actually it is deadlocked. Patch: By this patch, the remaining counter will be decremented if needed. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
Thanks to K.Tanaka and the scsi fault injection framework, here is a fix for another possible deadlock in raid1/raid10 error handing. If a read request returns an error while a resync is happening and a resync request is pending, the attempt to fix the error will block until the resync progresses, and the resync will block until the read request completes. Thus a deadlock. This patch fixes the problem. Cc: "K.Tanaka" <k-tanaka@ce.jp.nec.com> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Keld Simonsen authored
This patch changes the disk to be read for layout "far > 1" to always be the disk with the lowest block address. Thus the chunks to be read will always be (for a fully functioning array) from the first band of stripes, and the raid will then work as a raid0 consisting of the first band of stripes. Some advantages: The fastest part which is the outer sectors of the disks involved will be used. The outer blocks of a disk may be as much as 100 % faster than the inner blocks. Average seek time will be smaller, as seeks will always be confined to the first part of the disks. Mixed disks with different performance characteristics will work better, as they will work as raid0, the sequential read rate will be number of disks involved times the IO rate of the slowest disk. If a disk is malfunctioning, the first disk which is working, and has the lowest block address for the logical block will be used. Signed-off-by: Keld Simonsen <keld@dkuug.dk> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
When we access attributes of an rdev (component device on an md array) through sysfs, we really need to lock the array against concurrent changes. We currently do that when we change an attribute, but not when we read an attribute. We need to lock when reading as well else rdev->mddev could become NULL while we are accessing it. So add appropriate locking (mddev_lock) to rdev_attr_show. rdev_size_store requires some extra care as well as it needs to unlock the mddev while scanning other mddevs for overlapping regions. We currently assume that rdev->mddev will still be unchanged after the scan, but that cannot be certain. So take a copy of rdev->mddev for use at the end of the function. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
A resync/reshape/recovery thread will refuse to progress when the array is marked read-only. So whenever it mark it not read-only, it is important to wake up thread resync thread. There is one place we didn't do this. The problem manifests if the start_ro module parameters is set, and a raid5 array that is in the middle of a reshape (restripe) is started. The array will initially be semi-read-only (meaning it acts like it is readonly until the first write). So the reshape will not proceed. On the first write, the array will become read-write, but the reshape will not be started, and there is no event which will ever restart that thread. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
When a raid1 array is stopped, all components currently get added to the list for auto-detection. However we should really only add components that were found by autodetection in the first place. So add a flag to record that information, and use it. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
Make sure the data doesn't start before the end of the superblock when the superblock is at the start of the device. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
On an md array with a write-intent bitmap, a thread wakes up every few seconds and scans the bitmap looking for work to do. If the array is idle, there will be no work to do, but a lot of scanning is done to discover this. So cache the fact that the bitmap is completely clean, and avoid scanning the whole bitmap when the cache is known to be clean. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
NeilBrown authored
When handling a read error, we freeze the array to stop any other IO while attempting to over-write with correct data. This is done in the raid1d(raid10d) thread and must wait for all submitted IO to complete (except for requests that failed and are sitting in the retry queue - these are counted in ->nr_queue and will stay there during a freeze). However write requests need attention from raid1d as bitmap updates might be required. This can cause a deadlock as raid1 is waiting for requests to finish that themselves need attention from raid1d. So we create a new function 'flush_pending_writes' to give that attention, and call it in freeze_array to be sure that we aren't waiting on raid1d. Thanks to "K.Tanaka" <k-tanaka@ce.jp.nec.com> for finding and reporting this problem. Cc: "K.Tanaka" <k-tanaka@ce.jp.nec.com> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
FUJITA Tomonori authored
Make PARISC's two IOMMU implementations not allocate a memory area spanning LLD's segment boundary. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Kyle McMartin <kyle@parisc-linux.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
FUJITA Tomonori authored
This adds struct device argument to sba_alloc_range and ccio_alloc_range, a preparation for modifications to fix the IOMMU segment boundary problem. This change enables ccio_alloc_range to access to LLD's segment boundary limits. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Kyle McMartin <kyle@parisc-linux.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
FUJITA Tomonori authored
iommu_is_span_boundary is used internally in the IOMMU helper (lib/iommu-helper.c), a primitive function that judges whether a memory area spans LLD's segment boundary or not. It's difficult to convert some IOMMUs to use the IOMMU helper but iommu_is_span_boundary is still useful for them. So this patch exports it. This is needed for the parisc iommu fixes. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Kyle McMartin <kyle@parisc-linux.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kyle McMartin authored
After a quick glance at the code, we're getting the DEBUG_SHIRQ spurious interrupt before we have the adapter template filled in. Real interrupts appear to be turned on by fcpci*_init(), so move request_irq until just before that. Signed-off-by: Kyle McMartin <kmcmartin@redhat.com> Cc: Karsten Keil <kkeil@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Halcrow authored
When the page is not up to date, ecryptfs_prepare_write() should be acting much like ecryptfs_readpage(). This includes the painfully obvious step of actually decrypting the page contents read from the lower encrypted file. Note that this patch resolves a bug in eCryptfs in 2.6.24 that one can produce with these steps: # mount -t ecryptfs /secret /secret # echo "abc" > /secret/file.txt # umount /secret # mount -t ecryptfs /secret /secret # echo "def" >> /secret/file.txt # cat /secret/file.txt Without this patch, the resulting data returned from cat is likely to be something other than "abc\ndef\n". (Thanks to Benedikt Driessen for reporting this.) Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Benedikt Driessen <bdriessen@escrypt.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Nilsson authored
Last commit for unistd was not correct, it only had a partial update of syscall numbers for __NR_timerfd_settime and __NR_timerfd_gettime. Also, NR_syscalls was not incremented for the new syscalls. Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Mikael Starvik <mikael.starvik@axis.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Nilsson authored
Function __copy_user_zeroing in arch/lib/usercopy.c had the wrong parameter set as __user, and in include/asm-cris/uaccess.h, it was not set at all for some of the calling functions. This will cut the number of warnings quite dramatically when using sparse. While we're here, remove useless CVS log and correct confusing typo. Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Mikael Starvik <mikael.starvik@axis.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Henrique de Moraes Holschuh authored
I used the wrong return convention on hotkey_get_tablet_mode(), breaking a lot of stuff. Bad Henrique! Fix it to return the status in the parameter-by-reference, and IO status on the function return value. Duh. Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: Zdenek Kabelac <zdenek.kabelac@gmail.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Lukas Hejtmanek <xhejtman@ics.muni.cz> Cc: Len Brown <lenb@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Julia Lawall authored
In commit e6bafba5 ("wmi: (!x & y) strikes again"), a bug was fixed that involved converting !x & y to !(x & y). The code below shows the same pattern, and thus should perhaps be fixed in the same way. This is not tested and clearly changes the semantics, so it is only something to consider. The semantic patch that makes this change is as follows: (http://www.emn.fr/x-info/coccinelle/) // <smpl> @@ expression E1,E2; @@ ( !E1 & !E2 | - !E1 & E2 + !(E1 & E2) ) // </smpl> Signed-off-by: Julia Lawall <julia@diku.dk> Cc: Chris Mason <chris.mason@oracle.com> Cc: Jeff Mahoney <jeffm@suse.com> Cc: Jan Kara <jack@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Julia Lawall authored
In commit e6bafba5 ("wmi: (!x & y) strikes again"), a bug was fixed that involved converting !x & y to !(x & y). The code below shows the same pattern, and thus should perhaps be fixed in the same way. This is not tested and clearly changes the semantics, so it is only something to consider. The semantic patch that makes this change is as follows: (http://www.emn.fr/x-info/coccinelle/) // <smpl> @@ expression E1,E2; @@ ( !E1 & !E2 | - !E1 & E2 + !(E1 & E2) ) // </smpl> Signed-off-by: Julia Lawall <julia@diku.dk> Cc: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Julia Lawall authored
In commit e6bafba5 ("wmi: (!x & y) strikes again"), a bug was fixed that involved converting !x & y to !(x & y). The code below shows the same pattern, and thus should perhaps be fixed in the same way. This is not tested and clearly changes the semantics, so it is only something to consider. The semantic patch that makes this change is as follows: (http://www.emn.fr/x-info/coccinelle/) // <smpl> @@ expression E1,E2; @@ ( !E1 & !E2 | - !E1 & E2 + !(E1 & E2) ) // </smpl> Signed-off-by: Julia Lawall <julia@diku.dk> Cc: Karsten Keil <kkeil@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Julia Lawall authored
In commit e6bafba5 ("wmi: (!x & y) strikes again"), a bug was fixed that involved converting !x & y to !(x & y). The code below shows the same pattern, and thus should perhaps be fixed in the same way. This is not tested and clearly changes the semantics, so it is only something to consider. The semantic patch that makes this change is as follows: (http://www.emn.fr/x-info/coccinelle/) // <smpl> @@ expression E1,E2; @@ ( !E1 & !E2 | - !E1 & E2 + !(E1 & E2) ) // </smpl> Signed-off-by: Julia Lawall <julia@diku.dk> Cc: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
While testing force_empty, during an exit_mmap, __mem_cgroup_remove_list called from mem_cgroup_uncharge_page oopsed on a NULL pointer in the lru list. I couldn't see what racing tasks on other cpus were doing, but surmise that another must have been in mem_cgroup_charge_common on the same page, between its unlock_page_cgroup and spin_lock_irqsave near done (thanks to that kzalloc which I'd almost changed to a kmalloc). Normally such a race cannot happen, the ref_cnt prevents it, the final uncharge cannot race with the initial charge. But force_empty buggers the ref_cnt, that's what it's all about; and thereafter forced pages are vulnerable to races such as this (just think of a shared page also mapped into an mm of another mem_cgroup than that just emptied). And remain vulnerable until they're freed indefinitely later. This patch just fixes the oops by moving the unlock_page_cgroups down below adding to and removing from the list (only possible given the previous patch); and while we're at it, we might as well make it an invariant that page->page_cgroup is always set while pc is on lru. But this behaviour of force_empty seems highly unsatisfactory to me: why have a ref_cnt if we always have to cope with it being violated (as in the earlier page migration patch). We may prefer force_empty to move pages to an orphan mem_cgroup (could be the root, but better not), from which other cgroups could recover them; we might need to reverse the locking again; but no time now for such concerns. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hirokazu Takahashi authored
As for force_empty, though this may not be the main topic here, mem_cgroup_force_empty_list() can be implemented simpler. It is possible to make the function just call mem_cgroup_uncharge_page() instead of releasing page_cgroups by itself. The tip is to call get_page() before invoking mem_cgroup_uncharge_page(), so the page won't be released during this function. Kamezawa-san points out that by the time mem_cgroup_uncharge_page() uncharges, the page might have been reassigned to an lru of a different mem_cgroup, and now be emptied from that; but Hugh claims that's okay, the end state is the same as when it hasn't gone to another list. And once force_empty stops taking lock_page_cgroup within mz->lru_lock, mem_cgroup_move_lists() can be simplified to take mz->lru_lock directly while holding page_cgroup lock (but still has to use try_lock_page_cgroup). Signed-off-by: Hirokazu Takahashi <taka@valinux.co.jp> Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Ever since the VM_BUG_ON(page_get_page_cgroup(page)) (now Bad page state) went into page freeing, I've hit it from time to time in testing on some machines, sometimes only after many days. Recently found a machine which could usually produce it within a few hours, which got me there at last. The culprit is mem_cgroup_move_lists, whose locking is inadequate; and the arrangement of structures was such that you got page_cgroups from the lru list neatly put on to SLUB's freelist. Kamezawa-san identified the same hole independently. The main problem was that it was missing the lock_page_cgroup it needs to safely page_get_page_cgroup; but it's tricky to go beyond that too, and I couldn't do it with SLAB_DESTROY_BY_RCU as I'd expected. See the code for comments on the constraints. This patch immediately gets replaced by a simpler one from Hirokazu-san; but is it just foolish pride that tells me to put this one on record, in case we need to come back to it later? Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
mem_cgroup_uncharge_page does css_put on the mem_cgroup before uncharging from it, and before removing page_cgroup from one of its lru lists: isn't there a danger that struct mem_cgroup memory could be freed and reused before completing that, so corrupting something? Never seen it, and for all I know there may be other constraints which make it impossible; but let's be defensive and reverse the ordering there. mem_cgroup_force_empty_list is safe because there's an extra css_get around all its works; but even so, change its ordering the same way round, to help get in the habit of doing it like this. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Remove clear_page_cgroup: it's an unhelpful helper, see for example how mem_cgroup_uncharge_page had to unlock_page_cgroup just in order to call it (serious races from that? I'm not sure). Once that's gone, you can see it's pointless for page_cgroup's ref_cnt to be atomic: it's always manipulated under lock_page_cgroup, except where force_empty unilaterally reset it to 0 (and how does uncharge's atomic_dec_and_test protect against that?). Simplify this page_cgroup locking: if you've got the lock and the pc is attached, then the ref_cnt must be positive: VM_BUG_ONs to check that, and to check that pc->page matches page (we're on the way to finding why sometimes it doesn't, but this patch doesn't fix that). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
More cleanup to memcontrol.c, this time changing some of the code generated. Let the compiler decide what to inline (except for page_cgroup_locked which is only used when CONFIG_DEBUG_VM): the __always_inline on lock_page_cgroup etc. was quite a waste since bit_spin_lock etc. are inlines in a header file; made mem_cgroup_force_empty and mem_cgroup_write_strategy static. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Sorry, before getting down to more important changes, I'd like to do some cleanup in memcontrol.c. This patch doesn't change the code generated, but cleans up whitespace, moves up a double declaration, removes an unused enum, removes void returns, removes misleading comments, that kind of thing. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Nothing uses mem_cgroup_uncharge apart from mem_cgroup_uncharge_page, (a trivial wrapper around it) and mem_cgroup_end_migration (which does the same as mem_cgroup_uncharge_page). And it often ends up having to lock just to let its caller unlock. Remove it (but leave the silly locking until a later patch). Moved mem_cgroup_cache_charge next to mem_cgroup_charge in memcontrol.h. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
My memcgroup patch to fix hang with shmem/tmpfs added NULL page handling to mem_cgroup_charge_common. It seemed convenient at the time, but hard to justify now: there's a perfectly appropriate swappage to charge and uncharge instead, this is not on any hot path through shmem_getpage, and no performance hit was observed from the slight extra overhead. So revert that NULL page handling from mem_cgroup_charge_common; and make it clearer by bringing page_cgroup_assign_new_page_cgroup into its body - that was a helper I found more of a hindrance to understanding. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Replace free_hot_cold_page's VM_BUG_ON(page_get_page_cgroup(page)) by a "Bad page state" and clear: most users don't have CONFIG_DEBUG_VM on, and if it were set here, it'd likely cause corruption when the page is reused. Don't use page_assign_page_cgroup to clear it: that should be private to memcontrol.c, and always called with the lock taken; and memmap_init_zone doesn't need it either - like page->mapping and other pointers throughout the kernel, Linux assumes pointers in zeroed structures are NULL pointers. Instead use page_reset_bad_cgroup, added to memcontrol.h for this only. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Page migration gave me free_hot_cold_page's VM_BUG_ON page->page_cgroup. remove_migration_pte was calling mem_cgroup_charge on the new page whenever it found a swap pte, before it had determined it to be a migration entry. That left a surplus reference count on the page_cgroup, so it was still attached when the page was later freed. Move that mem_cgroup_charge down to where we're sure it's a migration entry. We were already under i_mmap_lock or anon_vma->lock, so its GFP_KERNEL was already inappropriate: change that to GFP_ATOMIC. It's essential that remove_migration_pte removes all the migration entries, other crashes follow if not. So proceed even when the charge fails: normally it cannot, but after a mem_cgroup_force_empty it might - comment in the code. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Don't uncharge when do_swap_page's call to do_wp_page fails: the page which was charged for is there in the pagetable, and will be correctly uncharged when that area is unmapped - it was only its COWing which failed. And while we're here, remove earlier XXX comment: yes, OR in do_wp_page's return value (maybe VM_FAULT_WRITE) with do_swap_page's there; but if it fails, mask out success bits, which might confuse some arches e.g. sparc. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
There's nothing wrong with mem_cgroup_charge failure in do_wp_page and do_anonymous page using __free_page, but it does look odd when nearby code uses page_cache_release: use that instead (while turning a blind eye to ancient inconsistencies of page_cache_release versus put_page). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Each caller of mem_cgroup_move_lists is having to use page_get_page_cgroup: it's more convenient if it acts upon the page itself not the page_cgroup; and in a later patch this becomes important to handle within memcontrol.c. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
vm_match_cgroup is a perverse name for a macro to match mm with cgroup: rename it mm_match_cgroup, matching mm_init_cgroup and mm_free_cgroup. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-