- 12 Jul, 2016 40 commits
-
-
Florian Westphal authored
[ Upstream commit 13631bfc ] Validate that all matches (if any) add up to the beginning of the target and that each match covers at least the base structure size. The compat path should be able to safely re-use the function as the structures only differ in alignment; added a BUILD_BUG_ON just in case we have an arch that adds padding as well. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit ce683e5f ] We're currently asserting that targetoff + targetsize <= nextoff. Extend it to also check that targetoff is >= sizeof(xt_entry). Since this is generic code, add an argument pointing to the start of the match/target, we can then derive the base structure size from the delta. We also need the e->elems pointer in a followup change to validate matches. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit 7ed2abdd ] We have targets and standard targets -- the latter carries a verdict. The ip/ip6tables validation functions will access t->verdict for the standard targets to fetch the jump offset or verdict for chainloop detection, but this happens before the targets get checked/validated. Thus we also need to check for verdict presence here, else t->verdict can point right after a blob. Spotted with UBSAN while testing malformed blobs. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit fc1221b3 ] 32bit rulesets have different layout and alignment requirements, so once more integrity checks get added to xt_check_entry_offsets it will reject well-formed 32bit rulesets. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit a08e4e19 ] The target size includes the size of the xt_entry_target struct. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit aa412ba2 ] Once we add more sanity testing to xt_check_entry_offsets it becomes relvant if we're expecting a 32bit 'config_compat' blob or a normal one. Since we already have a lot of similar-named functions (check_entry, compat_check_entry, find_and_check_entry, etc.) and the current incarnation is short just fold its contents into the callers. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit 7d35812c ] Currently arp/ip and ip6tables each implement a short helper to check that the target offset is large enough to hold one xt_entry_target struct and that t->u.target_size fits within the current rule. Unfortunately these checks are not sufficient. To avoid adding new tests to all of ip/ip6/arptables move the current checks into a helper, then extend this helper in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit 36472341 ] When we see a jump also check that the offset gets us to beginning of a rule (an ipt_entry). The extra overhead is negible, even with absurd cases. 300k custom rules, 300k jumps to 'next' user chain: [ plus one jump from INPUT to first userchain ]: Before: real 0m24.874s user 0m7.532s sys 0m16.076s After: real 0m27.464s user 0m7.436s sys 0m18.840s Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit f24e230d ] Ben Hawkes says: In the mark_source_chains function (net/ipv4/netfilter/ip_tables.c) it is possible for a user-supplied ipt_entry structure to have a large next_offset field. This field is not bounds checked prior to writing a counter value at the supplied offset. Base chains enforce absolute verdict. User defined chains are supposed to end with an unconditional return, xtables userspace adds them automatically. But if such return is missing we will move to non-existent next rule. Reported-by: Ben Hawkes <hawkes@google.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit 54d83fc7 ] Ben Hawkes says: In the mark_source_chains function (net/ipv4/netfilter/ip_tables.c) it is possible for a user-supplied ipt_entry structure to have a large next_offset field. This field is not bounds checked prior to writing a counter value at the supplied offset. Problem is that mark_source_chains should not have been called -- the rule doesn't have a next entry, so its supposed to return an absolute verdict of either ACCEPT or DROP. However, the function conditional() doesn't work as the name implies. It only checks that the rule is using wildcard address matching. However, an unconditional rule must also not be using any matches (no -m args). The underflow validator only checked the addresses, therefore passing the 'unconditional absolute verdict' test, while mark_source_chains also tested for presence of matches, and thus proceeeded to the next (not-existent) rule. Unify this so that all the callers have same idea of 'unconditional rule'. Reported-by: Ben Hawkes <hawkes@google.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit 6e94e0cf ] Otherwise this function may read data beyond the ruleset blob. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Florian Westphal authored
[ Upstream commit bdf533de ] We should check that e->target_offset is sane before mark_source_chains gets called since it will fetch the target entry for loop detection. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ralf Baechle authored
[ Upstream commit d7de4134 ] TASK_SIZE was defined as 0x7fff8000UL which for 64k pages is not a multiple of the page size. Somewhere further down the math fails such that executing an ELF binary fails. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Joshua Henderson <joshua.henderson@microchip.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit 7cafc0b8 ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit d11c2a0d ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit 9ea46abe ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Babu Moger authored
[ Upstream commit d0c31e02 ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit 397d1533 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nitin Gupta authored
[ Upstream commit 36beca65 ] Orabug: 22495713 Currently, NUMA node distance matrix is initialized only when a machine descriptor (MD) exists. However, sun4u machines (e.g. Sun Blade 2500) do not have an MD and thus distance values were left uninitialized. The initialization is now moved such that it happens on both sun4u and sun4v. Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit 49fa5230 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b953 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Mike Frysinger authored
[ Upstream commit 1a40b953 ] A system call trace trigger on entry allows the tracing process to inspect and potentially change the traced process's registers. Account for that by reloading the %g1 (syscall number) and %i0-%i5 (syscall argument) values. We need to be careful to revalidate the range of %g1, and reload the system call table entry it corresponds to into %l7. Reported-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net> Tested-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Yuchung Cheng authored
[ Upstream commit ce3cf4ec ] The v6 tcp stats scan do not provide TLP and ER timer information correctly like the v4 version . This patch fixes that. Fixes: 6ba8a3b1 ("tcp: Tail loss probe (TLP)") Fixes: eed530b6 ("tcp: early retransmit") Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Edward Cree authored
[ Upstream commit c0795bf6 ] Otherwise, if we fail to allocate new PIO buffers, our TXQs will try to use the old ones, which aren't there any more. Fixes: 183233be "sfc: Allocate and link PIO buffers; map them with write-combining" Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jason Wang authored
[ Upstream commit addf8fc4 ] We used to check dev->reg_state against NETREG_REGISTERED after each time we are woke up. But after commit 9e641bdc ("net-tun: restructure tun_do_read for better sleep/wakeup efficiency"), it uses skb_recv_datagram() which does not check dev->reg_state. This will result if we delete a tun/tap device after a process is blocked in the reading. The device will wait for the reference count which was held by that process for ever. Fixes this by using RCV_SHUTDOWN which will be checked during sk_recv_datagram() before trying to wake up the process during uninit. Fixes: 9e641bdc ("net-tun: restructure tun_do_read for better sleep/wakeup efficiency") Cc: Eric Dumazet <edumazet@google.com> Cc: Xi Wang <xii@google.com> Cc: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Herbert Xu authored
[ Upstream commit 92964c79 ] When we free cb->skb after a dump, we do it after releasing the lock. This means that a new dump could have started in the time being and we'll end up freeing their skb instead of ours. This patch saves the skb and module before we unlock so we free the right memory. Fixes: 16b304f3 ("netlink: Eliminate kmalloc in netlink dump operation.") Reported-by: Baozeng Ding <sploving1@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Sandeen authored
[ Upstream commit 233135b7 ] This adds a name to each buf_ops structure, so that if a verifier fails we can print the type of verifier that failed it. Should be a slight debugging aid, I hope. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Willy Tarreau authored
[ Upstream commit 759c0114 ] On no-so-small systems, it is possible for a single process to cause an OOM condition by filling large pipes with data that are never read. A typical process filling 4000 pipes with 1 MB of data will use 4 GB of memory. On small systems it may be tricky to set the pipe max size to prevent this from happening. This patch makes it possible to enforce a per-user soft limit above which new pipes will be limited to a single page, effectively limiting them to 4 kB each, as well as a hard limit above which no new pipes may be created for this user. This has the effect of protecting the system against memory abuse without hurting other users, and still allowing pipes to work correctly though with less data at once. The limit are controlled by two new sysctls : pipe-user-pages-soft, and pipe-user-pages-hard. Both may be disabled by setting them to zero. The default soft limit allows the default number of FDs per process (1024) to create pipes of the default size (64kB), thus reaching a limit of 64MB before starting to create only smaller pipes. With 256 processes limited to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB = 1084 MB of memory allocated for a user. The hard limit is disabled by default to avoid breaking existing applications that make intensive use of pipes (eg: for splicing). Reported-by: socketpair@gmail.com Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Mitigates: CVE-2013-4312 (Linux 2.0+) Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Huacai Chen authored
[ Upstream commit a95d0692 ] After commit 92923ca3 ("mm: meminit: only set page reserved in the memblock region"), the MIPS hibernation is broken. Because pages in nosave data section should be "reserved", but currently they aren't set to "reserved" at initialization. This patch makes hibernation work again. Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Steven J . Hill <sjhill@realitydiluted.com> Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Cc: linux-mips@linux-mips.org Cc: stable@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/12888/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Chanwoo Choi authored
[ Upstream commit b8995f52 ] This patch fixes the broken serial log when changing the clock source of uart device. Before disabling the original clock source, this patch enables the new clock source to protect the clock off state for a split second. Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jiri Slaby authored
[ Upstream commit 6798df4c ] When csw->con_startup() fails in do_register_con_driver, we return no error (i.e. 0). This was changed back in 2006 by commit 3e795de7. Before that we used to return -ENODEV. So fix the return value to be -ENODEV in that case again. Fixes: 3e795de7 ("VT binding: Add binding/unbinding support for the VT console") Signed-off-by: Jiri Slaby <jslaby@suse.cz> Reported-by: "Dan Carpenter" <dan.carpenter@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Josef Bacik authored
[ Upstream commit c79b4713 ] The fd we pass in may not be on a btrfs file system, so don't try to do BTRFS_I() on it. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lucas Stach authored
[ Upstream commit e3c00d87 ] On DCE6.1 PPLL2 is exclusively available to UNIPHYA, so it should not be taken into consideration when looking for an already enabled PLL to be shared with other outputs. This fixes the broken VGA port (TRAVIS DP->VGA bridge) on my Richland based laptop, where the internal display is connected to UNIPHYA through a TRAVIS DP->LVDS bridge. Bug: https://bugs.freedesktop.org/show_bug.cgi?id=78987 v2: agd: add check in radeon_get_shared_nondp_ppll as well, drop extra parameter. Signed-off-by: Lucas Stach <dev@lynxeye.de> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Dumazet authored
[ Upstream commit 10a81980 ] In the very unlikely case __tcp_retransmit_skb() can not use the cloning done in tcp_transmit_skb(), we need to refresh skb_mstamp before doing the copy and transmit, otherwise TCP TS val will be an exact copy of original transmit. Fixes: 7faee5c0 ("tcp: remove TCP_SKB_CB(skb)->when") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kangjie Lu authored
[ Upstream commit 79e48650 ] Stack object "dte_facilities" is allocated in x25_rx_call_request(), which is supposed to be initialized in x25_negotiate_facilities. However, 5 fields (8 bytes in total) are not initialized. This object is then copied to userland via copy_to_user, thus infoleak occurs. Signed-off-by: Kangjie Lu <kjlu@gatech.edu> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nikolay Aleksandrov authored
[ Upstream commit 31ca0458 ] get_bridge_ifindices() is used from the old "deviceless" bridge ioctl calls which aren't called with rtnl held. The comment above says that it is called with rtnl but that is not really the case. Here's a sample output from a test ASSERT_RTNL() which I put in get_bridge_ifindices and executed "brctl show": [ 957.422726] RTNL: assertion failed at net/bridge//br_ioctl.c (30) [ 957.422925] CPU: 0 PID: 1862 Comm: brctl Tainted: G W O 4.6.0-rc4+ #157 [ 957.423009] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.8.1-20150318_183358- 04/01/2014 [ 957.423009] 0000000000000000 ffff880058adfdf0 ffffffff8138dec5 0000000000000400 [ 957.423009] ffffffff81ce8380 ffff880058adfe58 ffffffffa05ead32 0000000000000001 [ 957.423009] 00007ffec1a444b0 0000000000000400 ffff880053c19130 0000000000008940 [ 957.423009] Call Trace: [ 957.423009] [<ffffffff8138dec5>] dump_stack+0x85/0xc0 [ 957.423009] [<ffffffffa05ead32>] br_ioctl_deviceless_stub+0x212/0x2e0 [bridge] [ 957.423009] [<ffffffff81515beb>] sock_ioctl+0x22b/0x290 [ 957.423009] [<ffffffff8126ba75>] do_vfs_ioctl+0x95/0x700 [ 957.423009] [<ffffffff8126c159>] SyS_ioctl+0x79/0x90 [ 957.423009] [<ffffffff8163a4c0>] entry_SYSCALL_64_fastpath+0x23/0xc1 Since it only reads bridge ifindices, we can use rcu to safely walk the net device list. Also remove the wrong rtnl comment above. Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ian Campbell authored
[ Upstream commit dedc58e0 ] The peer may be expecting a reply having sent a request and then done a shutdown(SHUT_WR), so tearing down the whole socket at this point seems wrong and breaks for me with a client which does a SHUT_WR. Looking at other socket family's stream_recvmsg callbacks doing a shutdown here does not seem to be the norm and removing it does not seem to have had any adverse effects that I can see. I'm using Stefan's RFC virtio transport patches, I'm unsure of the impact on the vmci transport. Signed-off-by: Ian Campbell <ian.campbell@docker.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Stefan Hajnoczi <stefanha@redhat.com> Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com> Cc: Andy King <acking@vmware.com> Cc: Dmitry Torokhov <dtor@vmware.com> Cc: Jorgen Hansen <jhansen@vmware.com> Cc: Adit Ranadive <aditr@vmware.com> Cc: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kangjie Lu authored
[ Upstream commit 5f8e4474 ] The stack object “map” has a total size of 32 bytes. Its last 4 bytes are padding generated by compiler. These padding bytes are not initialized and sent out via “nla_put”. Signed-off-by: Kangjie Lu <kjlu@gatech.edu> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kangjie Lu authored
[ Upstream commit b8670c09 ] The stack object “info” has a total size of 12 bytes. Its last byte is padding which is not initialized and leaked via “put_cmsg”. Signed-off-by: Kangjie Lu <kjlu@gatech.edu> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Uwe Kleine-König authored
[ Upstream commit 1c021bb7 ] In the receive path a queue's work bit was cleared unconditionally even if fec_enet_rx_queue only read out a part of the available packets from the hardware. This resulted in not reading any packets in the next napi turn and so packets were delayed or lost. The obvious fix is to only clear a queue's bit when the queue was emptied. Fixes: 4d494cdc ("net: fec: change data structure to support multiqueue") Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Reviewed-by: Lucas Stach <l.stach@pengutronix.de> Tested-by: Fugang Duan <fugang.duan@nxp.com> Acked-by: Fugang Duan <fugang.duan@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Neil Horman authored
[ Upstream commit 6071bd1a ] This was recently reported to me, and reproduced on the latest net kernel, when attempting to run netperf from a host that had a netem qdisc attached to the egress interface: [ 788.073771] ---------------------[ cut here ]--------------------------- [ 788.096716] WARNING: at net/core/dev.c:2253 skb_warn_bad_offload+0xcd/0xda() [ 788.129521] bnx2: caps=(0x00000001801949b3, 0x0000000000000000) len=2962 data_len=0 gso_size=1448 gso_type=1 ip_summed=3 [ 788.182150] Modules linked in: sch_netem kvm_amd kvm crc32_pclmul ipmi_ssif ghash_clmulni_intel sp5100_tco amd64_edac_mod aesni_intel lrw gf128mul glue_helper ablk_helper edac_mce_amd cryptd pcspkr sg edac_core hpilo ipmi_si i2c_piix4 k10temp fam15h_power hpwdt ipmi_msghandler shpchp acpi_power_meter pcc_cpufreq nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c sd_mod crc_t10dif crct10dif_generic mgag200 syscopyarea sysfillrect sysimgblt i2c_algo_bit drm_kms_helper ahci ata_generic pata_acpi ttm libahci crct10dif_pclmul pata_atiixp tg3 libata crct10dif_common drm crc32c_intel ptp serio_raw bnx2 r8169 hpsa pps_core i2c_core mii dm_mirror dm_region_hash dm_log dm_mod [ 788.465294] CPU: 16 PID: 0 Comm: swapper/16 Tainted: G W ------------ 3.10.0-327.el7.x86_64 #1 [ 788.511521] Hardware name: HP ProLiant DL385p Gen8, BIOS A28 12/17/2012 [ 788.542260] ffff880437c036b8 f7afc56532a53db9 ffff880437c03670 ffffffff816351f1 [ 788.576332] ffff880437c036a8 ffffffff8107b200 ffff880633e74200 ffff880231674000 [ 788.611943] 0000000000000001 0000000000000003 0000000000000000 ffff880437c03710 [ 788.647241] Call Trace: [ 788.658817] <IRQ> [<ffffffff816351f1>] dump_stack+0x19/0x1b [ 788.686193] [<ffffffff8107b200>] warn_slowpath_common+0x70/0xb0 [ 788.713803] [<ffffffff8107b29c>] warn_slowpath_fmt+0x5c/0x80 [ 788.741314] [<ffffffff812f92f3>] ? ___ratelimit+0x93/0x100 [ 788.767018] [<ffffffff81637f49>] skb_warn_bad_offload+0xcd/0xda [ 788.796117] [<ffffffff8152950c>] skb_checksum_help+0x17c/0x190 [ 788.823392] [<ffffffffa01463a1>] netem_enqueue+0x741/0x7c0 [sch_netem] [ 788.854487] [<ffffffff8152cb58>] dev_queue_xmit+0x2a8/0x570 [ 788.880870] [<ffffffff8156ae1d>] ip_finish_output+0x53d/0x7d0 ... The problem occurs because netem is not prepared to handle GSO packets (as it uses skb_checksum_help in its enqueue path, which cannot manipulate these frames). The solution I think is to simply segment the skb in a simmilar fashion to the way we do in __dev_queue_xmit (via validate_xmit_skb), with some minor changes. When we decide to corrupt an skb, if the frame is GSO, we segment it, corrupt the first segment, and enqueue the remaining ones. tested successfully by myself on the latest net kernel, to which this applies Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Jamal Hadi Salim <jhs@mojatatu.com> CC: "David S. Miller" <davem@davemloft.net> CC: netem@lists.linux-foundation.org CC: eric.dumazet@gmail.com CC: stephen@networkplumber.org Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-