- 30 Aug, 2009 10 commits
-
-
Dan Williams authored
ops_complete_compute5 can be reused in the raid6 path if it is updated to generically handle a second target. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Port drivers/md/raid6test/test.c to use the async raid6 recovery routines. This is meant as a unit test for raid6 acceleration drivers. In addition to the 16-drive test case this implements tests for the 4-disk and 5-disk special cases (dma devices can not generically handle less than 2 sources), and adds a test for the D+Q case. Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Test raid6 p+q operations with a simple "always multiply by 1" q calculation to fit into dmatest's current destination verification scheme. Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
async_raid6_2data_recov() recovers two data disk failures async_raid6_datap_recov() recovers a data disk and the P disk These routines are a port of the synchronous versions found in drivers/md/raid6recov.c. The primary difference is breaking out the xor operations into separate calls to async_xor. Two helper routines are introduced to perform scalar multiplication where needed. async_sum_product() multiplies two sources by scalar coefficients and then sums (xor) the result. async_mult() simply multiplies a single source by a scalar. This implemention also includes, in contrast to the original synchronous-only code, special case handling for the 4-disk and 5-disk array cases. In these situations the default N-disk algorithm will present 0-source or 1-source operations to dma devices. To cover for dma devices where the minimum source count is 2 we implement 4-disk and 5-disk handling in the recovery code. [ Impact: asynchronous raid6 recovery routines for 2data and datap cases ] Cc: Yuri Tikhonov <yur@emcraft.com> Cc: Ilya Yanok <yanok@emcraft.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
[ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
We currently walk the parent chain when waiting for a given tx to complete however this walk may race with the driver cleanup routine. The routines in async_raid6_recov.c may fall back to the synchronous path at any point so we need to be prepared to call async_tx_quiesce() (which calls dma_wait_for_async_tx). To remove the ->parent walk we guarantee that every time a dependency is attached ->issue_pending() is invoked, then we can simply poll the initial descriptor until completion. This also allows for a lighter weight 'issue pending' implementation as there is no longer a requirement to iterate through all the channels' ->issue_pending() routines as long as operations have been submitted in an ordered chain. async_tx_issue_pending() is added for this case. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
If module_init and module_exit are nops then neither need to be defined. [ Impact: pure cleanup ] Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Replace the flat zero_sum_result with a collection of flags to contain the P (xor) zero-sum result, and the soon to be utilized Q (raid6 reed solomon syndrome) zero-sum result. Use the SUM_CHECK_ namespace instead of DMA_ since these flags will be used on non-dma-zero-sum enabled platforms. Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Use percpu memory rather than stack for storing the buffer lists used in parity calculations. Include space for dma address conversions and pass that to async_tx via the async_submit_ctl.scribble pointer. [ Impact: move memory pressure from stack to heap ] Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
In preparation for asynchronous handling of raid6 operations move the spare page to a percpu allocation to allow multiple simultaneous synchronous raid6 recovery operations. Make this allocation cpu hotplug aware to maximize allocation efficiency. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
- 14 Jul, 2009 1 commit
-
-
Dan Williams authored
Add missing call to safe_put_page from stop() by unifying open coded raid5_conf_t de-allocation under free_conf(). Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
- 03 Jun, 2009 3 commits
-
-
Dan Williams authored
async_xor() needs space to perform dma and page address conversions. In most cases the code can simply reuse the struct page * array because the size of the native pointer matches the size of a dma/page address. In order to support archs where sizeof(dma_addr_t) is larger than sizeof(struct page *), or to preserve the input parameters, we utilize a memory region passed in by the caller. Since the code is now prepared to handle the case where it cannot perform address conversions on the stack, we no longer need the !HIGHMEM64G dependency in drivers/dma/Kconfig. [ Impact: don't clobber input buffers for address conversions ] Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Prepare the api for the arrival of a new parameter, 'scribble'. This will allow callers to identify scratchpad memory for dma address or page address conversions. As this adds yet another parameter, take this opportunity to convert the common submission parameters (flags, dependency, callback, and callback argument) into an object that is passed by reference. Also, take this opportunity to fix up the kerneldoc and add notes about the relevant ASYNC_TX_* flags for each routine. [ Impact: moves api pass-by-value parameters to a pass-by-reference struct ] Signed-off-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
In support of inter-channel chaining async_tx utilizes an ack flag to gate whether a dependent operation can be chained to another. While the flag is not set the chain can be considered open for appending. Setting the ack flag closes the chain and flags the descriptor for garbage collection. The ASYNC_TX_DEP_ACK flag essentially means "close the chain after adding this dependency". Since each operation can only have one child the api now implicitly sets the ack flag at dependency submission time. This removes an unnecessary management burden from clients of the api. [ Impact: clean up and enforce one dependency per operation ] Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
- 08 Apr, 2009 2 commits
-
-
Dan Williams authored
'zero_sum' does not properly describe the operation of generating parity and checking that it validates against an existing buffer. Change the name of the operation to 'val' (for 'validate'). This is in anticipation of the p+q case where it is a requirement to identify the target parity buffers separately from the source buffers, because the target parity buffers will not have corresponding pq coefficients. Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
-
- 02 Apr, 2009 1 commit
-
-
Guennadi Liakhovetski authored
Add Start-of-Frame and End-of-Frame debugging to ipu_idmac.c, in the future it might also be needed for the actual video processing in mx3-camera, at which point, the ISRs will have to be transferred to mx3_camera.c, for which ipu_irq_map() and ipu_irq_unmap() functions will have to be exported. Also simplify a couple of pointer-dereferences. Signed-off-by: Guennadi Liakhovetski <lg@denx.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
- 01 Apr, 2009 1 commit
-
-
Hans-Christian Egtvedt authored
This patch adds a cyclic DMA interface to the DW DMA driver. This is very useful if you want to use the DMA controller in combination with a sound device which uses cyclic buffers. Using a DMA channel for cyclic DMA will disable the possibility to use it as a normal DMA engine until the user calls the cyclic free function on the DMA channel. Also a cyclic DMA list can not be prepared if the channel is already active. Signed-off-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Acked-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
- 31 Mar, 2009 22 commits
-
-
NeilBrown authored
We currently update the metadata : 1/ every 3Megabytes 2/ When the place we will write new-layout data to is recorded in the metadata as still containing old-layout data. Rule one exists to avoid having to re-do too much reshaping in the face of a crash/restart. So it should really be time based rather than size based. So change it to "every 10 seconds". Rule two turns out to be too harsh when restriping an array 'in-place', as in that case the metadata much be updates for every stripe. For the in-place update, it can only possibly be safe from a crash if some user-space program data a backup of every e.g. few hundred stripes before allowing them to be reshaped. In that case, the constant metadata update is pointless. So only update the metadata if the new metadata will report that the end of the 'old-layout' data is beyond where we are currently writing 'new-layout' data. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
... and to be certain the that make_request doesn't wait forever, add a 'wake_up' when ->reshape_progress has been set to MaxSector Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
This was only needed when the code was experimental. Most of it is well tested now, so the option is no longer useful. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
When we are reshaping an array, it is very important that we read the data from a particular sector offset before writing new data at that offset. In most cases when growing or shrinking an array we read long before we even consider writing. But when restriping an array without changing it size, there is a small possibility that we might have some data to available write before the read has happened at the same location. This would require some stripes to be in cache already. To guard against this small possibility, we check, before writing, that the 'old' stripe at the same location is not in the process of being read. And we ensure that we mark all 'source' stripes as such before allowing new 'destination' stripes to proceed. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
When no resync if happening, both of these files currently have meaningless values (is slightly different ways). Change them to "none" in that case. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
If an array has 3 or more devices, we allow the chunksize or layout to be changed and when a reshape starts, we use these as the 'new' values. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
This ensures that even when old and new stripes are overlapping, we will try to read all of the old before having to write any of the new. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
Add prev_algo to raid5_conf_t along the same lines as prev_chunk and previous_raid_disks. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
Add "prev_chunk" to raid5_conf_t, similar to "previous_raid_disks", to remember what the chunk size was before the reshape that is currently underway. This seems like duplication with "chunk_size" and "new_chunk" in mddev_t, and to some extent it is, but there are differences. The values in mddev_t are always defined and often the same. The prev* values are only defined if a reshape is underway. Also (and more significantly) the raid5_conf_t values will be changed at the same time (inside an appropriate lock) that the reshape is started by setting reshape_position. In contrast, the new_chunk value is set when the sysfs file is written which could be well before the reshape starts. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
During a raid5 reshape, we have some stripes in the cache that are 'before' the reshape (and are still to be processed) and some that are 'after'. They are currently differentiated by having different ->disks values as the only reshape current supported involves changing the number of disks. However we will soon support reshapes that do not change the number of disks (chunk parity or chunk size). So make the difference more explicit with a 'generation' number. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
Update md.txt to reflect recent changes in a number of sysfs attributes. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
When reshaping a raid5 to have fewer devices, we work from the end of the array to the beginning. md_do_sync gives addresses to sync_request that go from the beginning to the end. So largely ignore them use the internal state variable "reshape_progress" to keep track of what to do next. Never allow the size to be reduced below the minimum (4 for raid6, 3 otherwise). We require that the size of the array has already been reduced before the array is reshaped to a smaller size. This is because simply reducing the size is an easily reversible operation, while the reshape is immediately destructive and so is not reversible for the blocks at the ends of the devices. Thus to reshape an array to have fewer devices, you must first write an appropriately small size to md/array_size. When reshape finished, we remove any drives that are no longer needed and fix up ->degraded. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
When reducing the number of devices in a raid4/5/6, the reshape process has to start at the end of the array and work down to the beginning. So we need to handle expand_progress and expand_lo differently. This patch renames "expand_progress" and "expand_lo" to avoid the implication that anything is getting bigger (expand->reshape) and every place they are used, we make sure that they are used the right way depending on whether delta_disks is positive or negative. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
Currently raid5 (the only module that supports restriping) notices that the reshape has finished be sync_request being given a large value, and handles any cleanup them. This patch changes it so md_check_recovery calls into an explicit finish_reshape method as well. The clean-up from sync_request can do things that need to be done promptly, typically things local to the raid5_conf_t structure. The "finish_reshape" method is called under the mddev_lock so it can do things involving reconfiguring the device. This allows us to get rid of md_set_array_sectors_locked, which would have caused a deadlock if you tried to stop and array while a reshape was happening. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
This is the first of four patches which combine to allow md/raid5 to reduce the number of devices in the array by restriping the data over a subset of the devices. If the number of disks in a raid4/5/6 is being reduced, then the default size must be based on the new number, not the old number of devices. In general, it should be based on the smaller of new and old. Signed-off-by: NeilBrown <neilb@suse.de>
-
NeilBrown authored
We now have this value in stripe_head so we don't need to duplicate it. Signed-off-by: NeilBrown <neilb@suse.de>
-
Dan Williams authored
Move the raid6 data processing routines into a standalone module (raid6_pq) to prepare them to be called from async_tx wrappers and other non-md drivers/modules. This precludes a circular dependency of raid456 needing the async modules for data processing while those modules in turn depend on raid456 for the base level synchronous raid6 routines. To support this move: 1/ The exportable definitions in raid6.h move to include/linux/raid/pq.h 2/ The raid6_call, recovery calls, and table symbols are exported 3/ Extra #ifdef __KERNEL__ statements to enable the userspace raid6test to compile Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NeilBrown <neilb@suse.de>
-
Andre Noll authored
raid4 allows only one failed disk. Signed-off-by: Andre Noll <maan@systemlinux.org> Signed-off-by: NeilBrown <neilb@suse.de>
-
Dan Williams authored
Allow userspace to set the size of the array according to the following semantics: 1/ size must be <= to the size returned by mddev->pers->size(mddev, 0, 0) a) If size is set before the array is running, do_md_run will fail if size is greater than the default size b) A reshape attempt that reduces the default size to less than the set array size should be blocked 2/ once userspace sets the size the kernel will not change it 3/ writing 'default' to this attribute returns control of the size to the kernel and reverts to the size reported by the personality Also, convert locations that need to know the default size from directly reading ->array_sectors to <pers>_size. Resync/reshape operations always follow the default size. Finally, fixup other locations that read a number of 1k-blocks from userspace to use strict_blocks_to_sectors() which checks for unsigned long long to sector_t overflow and blocks to sectors overflow. Reviewed-by: Andre Noll <maan@systemlinux.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
Get personalities out of the business of directly modifying ->array_sectors. Lays groundwork to introduce policy on when ->array_sectors can be modified. Reviewed-by: Andre Noll <maan@systemlinux.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
In preparation for giving userspace control over ->array_sectors we need to be able to retrieve the 'default' size, and the 'anticipated' size when a reshape is requested. For personalities that do not reshape emit a warning if anything but the default size is requested. In the raid5 case we need to update ->previous_raid_disks to make the new 'default' size available. Reviewed-by: Andre Noll <maan@systemlinux.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-
Atsushi SAKAI authored
Hello, I found a typo Bosto"m" in FSF address. And I am checking around linux source code. Here is the only place which uses Bosto"m" (not Boston). Signed-off-by: Atsushi SAKAI <sakaia@jp.fujitsu.com> Signed-off-by: NeilBrown <neilb@suse.de>
-