- 21 Aug, 2012 11 commits
-
-
Tejun Heo authored
cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org>
-
Tejun Heo authored
Now that mod_delayed_work() is safe to call from IRQ handlers, __cancel_delayed_work() followed by queue_delayed_work() can be replaced with mod_delayed_work(). Most conversions are straight-forward except for the following. * net/core/link_watch.c: linkwatch_schedule_work() was doing a quite elaborate dancing around its delayed_work. Collapse it such that linkwatch_work is queued for immediate execution if LW_URGENT and existing timer is kept otherwise. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
-
Tejun Heo authored
Up to now, for delayed_works, try_to_grab_pending() couldn't be used from IRQ handlers because IRQs may happen while delayed_work_timer_fn() is in progress leading to indefinite -EAGAIN. This patch makes delayed_work use the new TIMER_IRQSAFE flag for delayed_work->timer. This makes try_to_grab_pending() and thus mod_delayed_work_on() safe to call from IRQ handlers. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Reimplement delayed_work initializers using new timer initializers which take timer flags. This reduces code duplications and will ease further initializer changes. This patch also adds a missing initializer - INIT_DEFERRABLE_WORK_ONSTACK(). Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Initalizers for deferrable delayed_work are confused. * __DEFERRED_WORK_INITIALIZER() * DECLARE_DEFERRED_WORK() * INIT_DELAYED_WORK_DEFERRABLE() Rename them to * __DEFERRABLE_WORK_INITIALIZER() * DECLARE_DEFERRABLE_WORK() * INIT_DEFERRABLE_WORK() This patch doesn't cause any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <tj@kernel.org>
-
-
Tejun Heo authored
Timer internals are protected with irq-safe locks but timer execution isn't, so a timer being dequeued for execution and its execution aren't atomic against IRQs. This makes it impossible to wait for its completion from IRQ handlers and difficult to shoot down a timer from IRQ handlers. This issue caused some issues for delayed_work interface. Because there's no way to reliably shoot down delayed_work->timer from IRQ handlers, __cancel_delayed_work() can't share the logic to steal the target delayed_work with cancel_delayed_work_sync(), and can only steal delayed_works which are on queued on timer. Similarly, the pending mod_delayed_work() can't be used from IRQ handlers. This patch adds a new timer flag TIMER_IRQSAFE, which makes the timer to be executed without enabling IRQ after dequeueing such that its dequeueing and execution are atomic against IRQ handlers. This makes it safe to wait for the timer's completion from IRQ handlers, for example, using del_timer_sync(). It can never be executing on the local CPU and if executing on other CPUs it won't be interrupted until done. This will enable simplifying delayed_work cancel/mod interface. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-5-git-send-email-tj@kernel.orgSigned-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Tejun Heo authored
Over time, timer initializers became messy with unnecessarily duplicated code which are inconsistently spread across timer.h and timer.c. This patch cleans up timer initializers. * timer.c::__init_timer() is renamed to do_init_timer(). * __TIMER_INITIALIZER() added. It takes @flags and all initializers are wrappers around it. * init_timer[_on_stack]_key() now take @flags. * __init_timer[_on_stack]() added. They take @flags and all init macros are wrappers around them. * __setup_timer[_on_stack]() added. It uses __init_timer() and takes @flags. All setup macros are wrappers around the two. Note that this patch doesn't add missing init/setup combinations - e.g. init_timer_deferrable_on_stack(). Adding missing ones is trivial. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-4-git-send-email-tj@kernel.orgSigned-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Tejun Heo authored
init_timer_on_stack_key() is used by init macro definitions. Move init_timer_on_stack_key() and destroy_timer_on_stack() declarations above init macro defs. This will make the next init cleanup patch easier to read. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-3-git-send-email-tj@kernel.orgSigned-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Tejun Heo authored
To prepare for addition of another flag, generalize timer->base flags handling. * Rename from TBASE_*_FLAG to TIMER_* and make them LU constants. * Define and use TIMER_FLAG_MASK for flags masking so that multiple flags can be handled correctly. * Don't dereference timer->base directly even if !tbase_get_deferrable(). All two such places are already passed in @base, so use it instead. * Make sure tvec_base's alignment is large enough for timer->base flags using BUILD_BUG_ON(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-2-git-send-email-tj@kernel.orgSigned-off-by: Thomas Gleixner <tglx@linutronix.de>
-
- 20 Aug, 2012 6 commits
-
-
Tejun Heo authored
system_nrt[_freezable]_wq are now spurious. Mark them deprecated and convert all users to system[_freezable]_wq. If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant, so there's no reason to use system_nrt[_freezable]_wq. Please use system[_freezable]_wq instead. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-By: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: "David S. Miller" <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com>
-
Tejun Heo authored
flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
-
Tejun Heo authored
Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Valentin Ilie authored
Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>
-
- 16 Aug, 2012 6 commits
-
-
Joonsoo Kim authored
To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
Joonsoo Kim authored
In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
Joonsoo Kim authored
Commit 3270476a ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
Joonsoo Kim authored
We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
Joonsoo Kim authored
When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
Joonsoo Kim authored
Commit 3270476a ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
-
- 14 Aug, 2012 1 commit
-
-
Tejun Heo authored
Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
-
- 13 Aug, 2012 2 commits
-
-
Tejun Heo authored
delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org>
-
Tejun Heo authored
Convert delayed_work users doing cancel_delayed_work() followed by queue_delayed_work() to mod_delayed_work(). Most conversions are straight-forward. Ones worth mentioning are, * drivers/edac/edac_mc.c: edac_mc_workq_setup() converted to always use mod_delayed_work() and cancel loop in edac_mc_reset_delay_period() is dropped. * drivers/platform/x86/thinkpad_acpi.c: No need to remember whether watchdog is active or not. @fan_watchdog_active and related code dropped. * drivers/power/charger-manager.c: Seemingly a lot of delayed_work_pending() abuse going on here. [delayed_]work_pending() are unsynchronized and racy when used like this. I converted one instance in fullbatt_handler(). Please conver the rest so that it invokes workqueue APIs for the intended target state rather than trying to game work item pending state transitions. e.g. if timer should be modified - call mod_delayed_work(), canceled - call cancel_delayed_work[_sync](). * drivers/thermal/thermal_sys.c: thermal_zone_device_set_polling() simplified. Note that round_jiffies() calls in this function are meaningless. round_jiffies() work on absolute jiffies not delta delay used by delayed_work. v2: Tomi pointed out that __cancel_delayed_work() users can't be safely converted to mod_delayed_work(). They could be calling it from irq context and if that happens while delayed_work_timer_fn() is running, it could deadlock. __cancel_delayed_work() users are dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Anton Vorontsov <cbouatmailru@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Doug Thompson <dougthompson@xmission.com> Cc: David Airlie <airlied@linux.ie> Cc: Roland Dreier <roland@kernel.org> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Len Brown <len.brown@intel.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Johannes Berg <johannes@sipsolutions.net>
-
- 03 Aug, 2012 13 commits
-
-
Tejun Heo authored
Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com>
-
Tejun Heo authored
There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Fengguang Wu <fengguang.wu@intel.com>
-
Tejun Heo authored
* Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com>
-
Tejun Heo authored
WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: stable@vger.kernel.org
-
Tejun Heo authored
All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <tj@kernel.org>
-
Tejun Heo authored
Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
-
- 02 Aug, 2012 1 commit
-
-
Linus Torvalds authored
-