- 20 Sep, 2017 40 commits
-
-
Brian Foster authored
commit a4c9b34d upstream. Torn write and tail overwrite detection both trigger only on -EFSBADCRC errors. While this is the most likely failure scenario for each condition, -EFSCORRUPTED is still possible in certain cases depending on what ends up on disk when a torn write or partial tail overwrite occurs. For example, an invalid log record h_len can lead to an -EFSCORRUPTED error when running the log recovery CRC pass. Therefore, update log head and tail verification to trigger the associated head/tail fixups in the event of -EFSCORRUPTED errors along with -EFSBADCRC. Also, -EFSCORRUPTED can currently be returned from xlog_do_recovery_pass() before rhead_blk is initialized if the first record encountered happens to be corrupted. This leads to an incorrect 'first_bad' return value. Initialize rhead_blk earlier in the function to address that problem as well. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 4a4f66ea upstream. If we consider the case where the tail (T) of the log is pinned long enough for the head (H) to push and block behind the tail, we can end up blocked in the following state without enough free space (f) in the log to satisfy a transaction reservation: 0 phys. log N [-------HffT---H'--T'---] The last good record in the log (before H) refers to T. The tail eventually pushes forward (T') leaving more free space in the log for writes to H. At this point, suppose space frees up in the log for the maximum of 8 in-core log buffers to start flushing out to the log. If this pushes the head from H to H', these next writes overwrite the previous tail T. This is safe because the items logged from T to T' have been written back and removed from the AIL. If the next log writes (H -> H') happen to fail and result in partial records in the log, the filesystem shuts down having overwritten T with invalid data. Log recovery correctly locates H on the subsequent mount, but H still refers to the now corrupted tail T. This results in log corruption errors and recovery failure. Since the tail overwrite results from otherwise correct runtime behavior, it is up to log recovery to try and deal with this situation. Update log recovery tail verification to run a CRC pass from the first record past the tail to the head. This facilitates error detection at T and moves the recovery tail to the first good record past H' (similar to truncating the head on torn write detection). If corruption is detected beyond the range possibly affected by the max number of iclogs, the log is legitimately corrupted and log recovery failure is expected. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 5297ac1f upstream. Log tail verification currently only occurs when torn writes are detected at the head of the log. This was introduced because a change in the head block due to torn writes can lead to a change in the tail block (each log record header references the current tail) and the tail block should be verified before log recovery proceeds. Tail corruption is possible outside of torn write scenarios, however. For example, partial log writes can be detected and cleared during the initial head/tail block discovery process. If the partial write coincides with a tail overwrite, the log tail is corrupted and recovery fails. To facilitate correct handling of log tail overwites, update log recovery to always perform tail verification. This is necessary to detect potential tail overwrite conditions when torn writes may not have occurred. This changes normal (i.e., no torn writes) recovery behavior slightly to detect and return CRC related errors near the tail before actual recovery starts. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 284f1c2c upstream. The high-level log recovery algorithm consists of two loops that walk the physical log and process log records from the tail to the head. The first loop handles the case where the tail is beyond the head and processes records up to the end of the physical log. The subsequent loop processes records from the beginning of the physical log to the head. Because log records can wrap around the end of the physical log, the first loop mentioned above must handle this case appropriately. Records are processed from in-core buffers, which means that this algorithm must split the reads of such records into two partial I/Os: 1.) from the beginning of the record to the end of the log and 2.) from the beginning of the log to the end of the record. This is further complicated by the fact that the log record header and log record data are read into independent buffers. The current handling of each buffer correctly splits the reads when either the header or data starts before the end of the log and wraps around the end. The data read does not correctly handle the case where the prior header read wrapped or ends on the physical log end boundary. blk_no is incremented to or beyond the log end after the header read to point to the record data, but the split data read logic triggers, attempts to read from an invalid log block and ultimately causes log recovery to fail. This can be reproduced fairly reliably via xfstests tests generic/047 and generic/388 with large iclog sizes (256k) and small (10M) logs. If the record header read has pushed beyond the end of the physical log, the subsequent data read is actually contiguous. Update the data read logic to detect the case where blk_no has wrapped, mod it against the log size to read from the correct address and issue one contiguous read for the log data buffer. The log record is processed as normal from the buffer(s), the loop exits after the current iteration and the subsequent loop picks up with the first new record after the start of the log. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Carlos Maiolino authored
commit d3a304b6 upstream. When a buffer has been failed during writeback, the inode items into it are kept flush locked, and are never resubmitted due the flush lock, so, if any buffer fails to be written, the items in AIL are never written to disk and never unlocked. This causes unmount operation to hang due these items flush locked in AIL, but this also causes the items in AIL to never be written back, even when the IO device comes back to normal. I've been testing this patch with a DM-thin device, creating a filesystem larger than the real device. When writing enough data to fill the DM-thin device, XFS receives ENOSPC errors from the device, and keep spinning on xfsaild (when 'retry forever' configuration is set). At this point, the filesystem can not be unmounted because of the flush locked items in AIL, but worse, the items in AIL are never retried at all (once xfs_inode_item_push() will skip the items that are flush locked), even if the underlying DM-thin device is expanded to the proper size. This patch fixes both cases, retrying any item that has been failed previously, using the infra-structure provided by the previous patch. Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Carlos Maiolino authored
commit 0b80ae6e upstream. With the current code, XFS never re-submit a failed buffer for IO, because the failed item in the buffer is kept in the flush locked state forever. To be able to resubmit an log item for IO, we need a way to mark an item as failed, if, for any reason the buffer which the item belonged to failed during writeback. Add a new log item callback to be used after an IO completion failure and make the needed clean ups. Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Christoph Hellwig authored
commit 27af1bbf upstream. xfs_iflush_done uses an on-stack variable length array to pass the log items to be deleted to xfs_trans_ail_delete_bulk. On-stack VLAs are a nasty gcc extension that can lead to unbounded stack allocations, but fortunately we can easily avoid them by simply open coding xfs_trans_ail_delete_bulk in xfs_iflush_done, which is the only caller of it except for the single-item xfs_trans_ail_delete. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Sandeen authored
commit 6f4a1eef upstream. When we do log recovery on a readonly mount, unlinked inode processing does not happen due to the readonly checks in xfs_inactive(), which are trying to prevent any I/O on a readonly mount. This is misguided - we do I/O on readonly mounts all the time, for consistency; for example, log recovery. So do the same RDONLY flag twiddling around xfs_log_mount_finish() as we do around xfs_log_mount(), for the same reason. This all cries out for a big rework but for now this is a simple fix to an obvious problem. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Sandeen authored
commit 757a69ef upstream. There are dueling comments in the xfs code about intent for log writes when unmounting a readonly filesystem. In xfs_mountfs, we see the intent: /* * Now the log is fully replayed, we can transition to full read-only * mode for read-only mounts. This will sync all the metadata and clean * the log so that the recovery we just performed does not have to be * replayed again on the next mount. */ and it calls xfs_quiesce_attr(), but by the time we get to xfs_log_unmount_write(), it returns early for a RDONLY mount: * Don't write out unmount record on read-only mounts. Because of this, sequential ro mounts of a filesystem with a dirty log will replay the log each time, which seems odd. Fix this by writing an unmount record even for RO mounts, as long as norecovery wasn't specified (don't write a clean log record if a dirty log may still be there!) and the log device is writable. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Christoph Hellwig authored
commit e28ae8e4 upstream. Fix the min_t calls in the zeroing and dirtying helpers to perform the comparisms on 64-bit types, which prevents them from incorrectly being truncated, and larger zeroing operations being stuck in a never ending loop. Special thanks to Markus Stockhausen for spotting the bug. Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Tested-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 77aff8c7 upstream. If we fail a mount on account of cow recovery errors, it's possible that a previous quotacheck left some dquots in memory. The bailout clause of xfs_mountfs forgets to purge these, and so we leak them. Fix that. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 8204f8dd upstream. Way back when we established inode block-map redo log items, it was discovered that we needed to prevent the VFS from evicting inodes during log recovery because any given inode might be have bmap redo items to replay even if the inode has no link count and is ultimately deleted, and any eviction of an unlinked inode causes the inode to be truncated and freed too early. To make this possible, we set MS_ACTIVE so that inodes would not be torn down immediately upon release. Unfortunately, this also results in the quota inodes not being released at all if a later part of the mount process should fail, because we never reclaim the inodes. So, set MS_ACTIVE right before we do the last part of log recovery and clear it immediately after we finish the log recovery so that everything will be torn down properly if we abort the mount. Fixes: 17c12bcd ("xfs: when replaying bmap operations, don't let unlinked inodes get reaped") Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Omar Sandoval authored
commit c44245b3 upstream. When we try to allocate a free inode by searching the inobt, we try to find the inode nearest the parent inode by searching chunks both left and right of the chunk containing the parent. As an optimization, we cache the leftmost and rightmost records that we previously searched; if we do another allocation with the same parent inode, we'll pick up the search where it last left off. There's a bug in the case where we found a free inode to the left of the parent's chunk: we need to update the cached left and right records, but because we already reassigned the right record to point to the left, we end up assigning the left record to both the cached left and right records. This isn't a correctness problem strictly, but it can result in the next allocation rechecking chunks unnecessarily or allocating inodes further away from the parent than it needs to. Fix it by swapping the record pointer after we update the cached left and right records. Fixes: bd169565 ("xfs: speed up free inode search") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lukas Czerner authored
commit 56bdf855 upstream. According to the commit that implemented per-inode DAX flag: commit 58f88ca2 ("xfs: introduce per-inode DAX enablement") the flag is supposed to act as "inherit flag". Currently this only works in the situations where parent directory already has a flag in di_flags set, otherwise inheritance does not work. This is because setting the XFS_DIFLAG2_DAX flag is done in a wrong branch designated for di_flags, not di_flags2. Fix this by moving the code to branch designated for setting di_flags2, which does test for flags in di_flags2. Fixes: 58f88ca2 ("xfs: introduce per-inode DAX enablement") Signed-off-by: Lukas Czerner <lczerner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Christoph Hellwig authored
commit 5b094d6d upstream. Just like in the allocator we must avoid touching multiple AGs out of order when freeing blocks, as freeing still locks the AGF and can cause the same AB-BA deadlocks as in the allocation path. Signed-off-by: Christoph Hellwig <hch@lst.de> Reported-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit cfaf2d03 upstream. If a dquot has an id of U32_MAX, the next lookup index increment overflows the uint32_t back to 0. This starts the lookup sequence over from the beginning, repeats indefinitely and results in a livelock. Update xfs_qm_dquot_walk() to explicitly check for the lookup overflow and exit the loop. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 10479e2d upstream. In some circumstances, _alloc_read_agf can return an error code of zero but also a null AGF buffer pointer. Check for this and jump out. Fixes-coverity-id: 1415250 Fixes-coverity-id: 1415320 Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 4c1a67bd upstream. We must initialize the firstfsb parameter to _bmapi_write so that it doesn't incorrectly treat stack garbage as a restriction on which AGs it can search for free space. Fixes-coverity-id: 1402025 Fixes-coverity-id: 1415167 Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 1e86eabe upstream. Check the _btree_check_block return value for the firstrec and lastrec functions, since we have the ability to signal that the repositioning did not succeed. Fixes-coverity-id: 114067 Fixes-coverity-id: 114068 Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit cd87d867 upstream. In quite a few places we call xfs_da_read_buf with a mappedbno that we don't control, then assume that the function passes back either an error code or a buffer pointer. Unfortunately, if mappedbno == -2 and bno maps to a hole, we get a return code of zero and a NULL buffer, which means that we crash if we actually try to use that buffer pointer. This happens immediately when we set the buffer type for transaction context. Therefore, check that we have no error code and a non-NULL bp before trying to use bp. This patch is a follow-up to an incomplete fix in 96a3aefb ("xfs: don't crash if reading a directory results in an unexpected hole"). Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit cf2cb784 upstream. XFS runs an eofblocks reclaim scan before returning an ENOSPC error to userspace for buffered writes. This facilitates aggressive speculative preallocation without causing user visible side effects such as premature ENOSPC. Run a cowblocks scan in the same situation to reclaim lingering COW fork preallocation throughout the filesystem. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 39775431 upstream. Log recovery allocates in-core transaction and member item data structures on-demand as it processes the on-disk log. Transactions are allocated on first encounter on-disk and stored in a hash table structure where they are easily accessible for subsequent lookups. Transaction items are also allocated on demand and are attached to the associated transactions. When a commit record is encountered in the log, the transaction is committed to the fs and the in-core structures are freed. If a filesystem crashes or shuts down before all in-core log buffers are flushed to the log, however, not all transactions may have commit records in the log. As expected, the modifications in such an incomplete transaction are not replayed to the fs. The in-core data structures for the partial transaction are never freed, however, resulting in a memory leak. Update xlog_do_recovery_pass() to first correctly initialize the hash table array so empty lists can be distinguished from populated lists on function exit. Update xlog_recover_free_trans() to always remove the transaction from the list prior to freeing the associated memory. Finally, walk the hash table of transaction lists as the last step before it goes out of scope and free any transactions that may remain on the lists. This prevents a memory leak of partial transactions in the log. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 61d819e7 upstream. bmap returns a dumb LBA address but not the block device that goes with that LBA. Swapfiles don't care about this and will blindly assume that the data volume is the correct blockdev, which is totally bogus for files on the rt subvolume. This results in the swap code doing IOs to arbitrary locations on the data device(!) if the passed in mapping is a realtime file, so just turn off bmap for rt files. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 3d4b4a3e upstream. When a buffer is modified, logged and committed, it ultimately ends up sitting on the AIL with a dirty bli waiting for metadata writeback. If another transaction locks and invalidates the buffer (freeing an inode chunk, for example) in the meantime, the bli is flagged as stale, the dirty state is cleared and the bli remains in the AIL. If a shutdown occurs before the transaction that has invalidated the buffer is committed, the transaction is ultimately aborted. The log items are flagged as such and ->iop_unlock() handles the aborted items. Because the bli is clean (due to the invalidation), ->iop_unlock() unconditionally releases it. The log item may still reside in the AIL, however, which means the I/O completion handler may still run and attempt to access it. This results in assert failure due to the release of the bli while still present in the AIL and a subsequent NULL dereference and panic in the buffer I/O completion handling. This can be reproduced by running generic/388 in repetition. To avoid this problem, update xfs_buf_item_unlock() to first check whether the bli is aborted and if so, remove it from the AIL before it is released. This ensures that the bli is no longer accessed during the shutdown sequence after it has been freed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 79e641ce upstream. If a filesystem shutdown occurs with a buffer log item in the CIL and a log force occurs, the ->iop_unpin() handler is generally expected to tear down the bli properly. This entails freeing the bli memory and releasing the associated hold on the buffer so it can be released and the filesystem unmounted. If this sequence occurs while ->bli_refcount is elevated (i.e., another transaction is open and attempting to modify the buffer), however, ->iop_unpin() may not be responsible for releasing the bli. Instead, the transaction may release the final ->bli_refcount reference and thus xfs_trans_brelse() is responsible for tearing down the bli. While xfs_trans_brelse() does drop the reference count, it only attempts to release the bli if it is clean (i.e., not in the CIL/AIL). If the filesystem is shutdown and the bli is sitting dirty in the CIL as noted above, this ends up skipping the last opportunity to release the bli. In turn, this leaves the hold on the buffer and causes an unmount hang. This can be reproduced by running generic/388 in repetition. Update xfs_trans_brelse() to handle this shutdown corner case correctly. If the final bli reference is dropped and the filesystem is shutdown, remove the bli from the AIL (if necessary) and release the bli to drop the buffer hold and ensure an unmount does not hang. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit e1a4e37c upstream. In a pathological scenario where we are trying to bunmapi a single extent in which every other block is shared, it's possible that trying to unmap the entire large extent in a single transaction can generate so many EFIs that we overflow the transaction reservation. Therefore, use a heuristic to guess at the number of blocks we can safely unmap from a reflink file's data fork in an single transaction. This should prevent problems such as the log head slamming into the tail and ASSERTs that trigger because we've exceeded the transaction reservation. Note that since bunmapi can fail to unmap the entire range, we must also teach the deferred unmap code to roll into a new transaction whenever we get low on reservation. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> [hch: random edits, all bugs are my fault] Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 7912e7fe upstream. Reclaim during quotacheck can lead to deadlocks on the dquot flush lock: - Quotacheck populates a local delwri queue with the physical dquot buffers. - Quotacheck performs the xfs_qm_dqusage_adjust() bulkstat and dirties all of the dquots. - Reclaim kicks in and attempts to flush a dquot whose buffer is already queud on the quotacheck queue. The flush succeeds but queueing to the reclaim delwri queue fails as the backing buffer is already queued. The flush unlock is now deferred to I/O completion of the buffer from the quotacheck queue. - The dqadjust bulkstat continues and dirties the recently flushed dquot once again. - Quotacheck proceeds to the xfs_qm_flush_one() walk which requires the flush lock to update the backing buffers with the in-core recalculated values. It deadlocks on the redirtied dquot as the flush lock was already acquired by reclaim, but the buffer resides on the local delwri queue which isn't submitted until the end of quotacheck. This is reproduced by running quotacheck on a filesystem with a couple million inodes in low memory (512MB-1GB) situations. This is a regression as of commit 43ff2122 ("xfs: on-stack delayed write buffer lists"), which removed a trylock and buffer I/O submission from the quotacheck dquot flush sequence. Quotacheck first resets and collects the physical dquot buffers in a delwri queue. Then, it traverses the filesystem inodes via bulkstat, updates the in-core dquots, flushes the corrected dquots to the backing buffers and finally submits the delwri queue for I/O. Since the backing buffers are queued across the entire quotacheck operation, dquot reclaim cannot possibly complete a dquot flush before quotacheck completes. Therefore, quotacheck must submit the buffer for I/O in order to cycle the flush lock and flush the dirty in-core dquot to the buffer. Add a delwri queue buffer push mechanism to submit an individual buffer for I/O without losing the delwri queue status and use it from quotacheck to avoid the deadlock. This restores quotacheck behavior to as before the regression was introduced. Reported-by: Martin Svec <martin.svec@zoner.cz> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit 95989c46 upstream. The 0-day kernel test robot reports assertion failures on !CONFIG_SMP kernels due to failed spin_is_locked() checks. As it turns out, spin_is_locked() is hardcoded to return zero on !CONFIG_SMP kernels and so this function cannot be relied on to verify spinlock state in this configuration. To avoid this problem, replace the associated asserts with lockdep variants that do the right thing regardless of kernel configuration. Drop the one assert that checks for an unlocked lock as there is no suitable lockdep variant for that case. This moves the spinlock checks from XFS debug code to lockdep, but generally provides the same level of protection. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jan Kara authored
commit a54fba8f upstream. Currently several places in xfs_find_get_desired_pgoff() handle the case of a missing page. Make them all handled in one place after the loop has terminated. Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit e137a4d8 upstream. Switching FS and GS is a mess, and the current code is still subtly wrong: it assumes that "Loading a nonzero value into FS sets the index and base", which is false on AMD CPUs if the value being loaded is 1, 2, or 3. (The current code came from commit 3e2b68d7 ("x86/asm, sched/x86: Rewrite the FS and GS context switch code"), which made it better but didn't fully fix it.) Rewrite it to be much simpler and more obviously correct. This should fix it fully on AMD CPUs and shouldn't adversely affect performance. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chang Seok <chang.seok.bae@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit 9584d98b upstream. In ELF_COPY_CORE_REGS, we're copying from the current task, so accessing thread.fsbase and thread.gsbase makes no sense. Just read the values from the CPU registers. In practice, the old code would have been correct most of the time simply because thread.fsbase and thread.gsbase usually matched the CPU registers. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chang Seok <chang.seok.bae@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit 767d035d upstream. execve used to leak FSBASE and GSBASE on AMD CPUs. Fix it. The security impact of this bug is small but not quite zero -- it could weaken ASLR when a privileged task execs a less privileged program, but only if program changed bitness across the exec, or the child binary was highly unusual or actively malicious. A child program that was compromised after the exec would not have access to the leaked base. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chang Seok <chang.seok.bae@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jaegeuk Kim authored
commit 125c9fb1 upstream. We need to check HOT_DATA to truncate any previous data block when doing roll-forward recovery. Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jaegeuk Kim authored
commit afd2b4da upstream. If we set CP_ERROR_FLAG in roll-forward error, f2fs is no longer to proceed any IOs due to f2fs_cp_error(). But, for example, if some stale data is involved on roll-forward process, we're able to get -ENOENT, getting fs stuck. If we get any error, let fill_super set SBI_NEED_FSCK and try to recover back to stable point. Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Haishuang Yan authored
[ Upstream commit 0f693f19 ] ttl and tos variables are declared and assigned, but are not used in iptunnel_xmit() function. Fixes: cfc7381b ("ip_tunnel: add collect_md mode to IPIP tunnel") Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Haishuang Yan <yanhaishuang@cmss.chinamobile.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marcelo Ricardo Leitner authored
[ Upstream commit 7906b00f ] Commit fb586f25 ("sctp: delay calls to sk_data_ready() as much as possible") minimized the number of wake ups that are triggered in case the association receives a packet with multiple data chunks on it and/or when io_events are enabled and then commit 0970f5b3 ("sctp: signal sk_data_ready earlier on data chunks reception") moved the wake up to as soon as possible. It thus relies on the state machine running later to clean the flag that the event was already generated. The issue is that there are 2 call paths that calls sctp_ulpq_tail_event() outside of the state machine, causing the flag to linger and possibly omitting a needed wake up in the sequence. One of the call paths is when enabling SCTP_SENDER_DRY_EVENTS via setsockopt(SCTP_EVENTS), as noticed by Harald Welte. The other is when partial reliability triggers removal of chunks from the send queue when the application calls sendmsg(). This commit fixes it by not setting the flag in case the socket is not owned by the user, as it won't be cleaned later. This works for user-initiated calls and also for rx path processing. Fixes: fb586f25 ("sctp: delay calls to sk_data_ready() as much as possible") Reported-by: Harald Welte <laforge@gnumonks.org> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 32a805ba ] IPv6 FIB should use FIB6_TABLE_HASHSZ, not FIB_TABLE_HASHSZ. Fixes: ba1cc08d ("ipv6: fix memory leak with multiple tables during netns destruction") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sabrina Dubroca authored
[ Upstream commit ba1cc08d ] fib6_net_exit only frees the main and local tables. If another table was created with fib6_alloc_table, we leak it when the netns is destroyed. Fix this in the same way ip_fib_net_exit cleans up tables, by walking through the whole hashtable of fib6_table's. We can get rid of the special cases for local and main, since they're also part of the hashtable. Reproducer: ip netns add x ip -net x -6 rule add from 6003:1::/64 table 100 ip netns del x Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 58f09b78 ("[NETNS][IPV6] ip6_fib - make it per network namespace") Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Xin Long authored
[ Upstream commit 5c25f30c ] Now when probessing ICMPV6_PKT_TOOBIG, ip6gre_err only subtracts the offset of gre header from mtu info. The expected mtu of gre device should also subtract gre header. Otherwise, the next packets still can't be sent out. Jianlin found this issue when using the topo: client(ip6gre)<---->(nic1)route(nic2)<----->(ip6gre)server and reducing nic2's mtu, then both tcp and sctp's performance with big size data became 0. This patch is to fix it by also subtracting grehdr (tun->tun_hlen) from mtu info when updating gre device's mtu in ip6gre_err(). It also needs to subtract ETH_HLEN if gre dev'type is ARPHRD_ETHER. Reported-by: Jianlin Shi <jishi@redhat.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jason Wang authored
[ Upstream commit 8b949bef ] We check tx avail through vhost_enable_notify() in the past which is wrong since it only checks whether or not guest has filled more available buffer since last avail idx synchronization which was just done by vhost_vq_avail_empty() before. What we really want is checking pending buffers in the avail ring. Fix this by calling vhost_vq_avail_empty() instead. This issue could be noticed by doing netperf TCP_RR benchmark as client from guest (but not host). With this fix, TCP_RR from guest to localhost restores from 1375.91 trans per sec to 55235.28 trans per sec on my laptop (Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz). Fixes: 03088137 ("vhost_net: basic polling support") Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-