- 28 Jul, 2014 29 commits
-
-
Yuchung Cheng authored
[ Upstream commit 6e08d5e3 ] The undo code assumes that, upon entering loss recovery, TCP 1) always retransmit something 2) the retransmission never fails locally (e.g., qdisc drop) so undo_marker is set in tcp_enter_recovery() and undo_retrans is incremented only when tcp_retransmit_skb() is successful. When the assumption is broken because TCP's cwnd is too small to retransmit or the retransmit fails locally. The next (DUP)ACK would incorrectly revert the cwnd and the congestion state in tcp_try_undo_dsack() or tcp_may_undo(). Subsequent (DUP)ACKs may enter the recovery state. The sender repeatedly enter and (incorrectly) exit recovery states if the retransmits continue to fail locally while receiving (DUP)ACKs. The fix is to initialize undo_retrans to -1 and start counting on the first retransmission. Always increment undo_retrans even if the retransmissions fail locally because they couldn't cause DSACKs to undo the cwnd reduction. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
dingtianhong authored
[ Upstream commit 52ad353a ] The problem was triggered by these steps: 1) create socket, bind and then setsockopt for add mc group. mreq.imr_multiaddr.s_addr = inet_addr("255.0.0.37"); mreq.imr_interface.s_addr = inet_addr("192.168.1.2"); setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); 2) drop the mc group for this socket. mreq.imr_multiaddr.s_addr = inet_addr("255.0.0.37"); mreq.imr_interface.s_addr = inet_addr("0.0.0.0"); setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq)); 3) and then drop the socket, I found the mc group was still used by the dev: netstat -g Interface RefCnt Group --------------- ------ --------------------- eth2 1 255.0.0.37 Normally even though the IP_DROP_MEMBERSHIP return error, the mc group still need to be released for the netdev when drop the socket, but this process was broken when route default is NULL, the reason is that: The ip_mc_leave_group() will choose the in_dev by the imr_interface.s_addr, if input addr is NULL, the default route dev will be chosen, then the ifindex is got from the dev, then polling the inet->mc_list and return -ENODEV, but if the default route dev is NULL, the in_dev and ifIndex is both NULL, when polling the inet->mc_list, the mc group will be released from the mc_list, but the dev didn't dec the refcnt for this mc group, so when dropping the socket, the mc_list is NULL and the dev still keep this group. v1->v2: According Hideaki's suggestion, we should align with IPv6 (RFC3493) and BSDs, so I add the checking for the in_dev before polling the mc_list, make sure when we remove the mc group, dec the refcnt to the real dev which was using the mc address. The problem would never happened again. Signed-off-by: Ding Tianhong <dingtianhong@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Bjørn Mork authored
[ Upstream commit 53433300 ] Add two device IDs found in an out-of-tree driver downloadable from Netgear. Signed-off-by: Bjørn Mork <bjorn@mork.no> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Bernd Wachter authored
[ Upstream commit 8dcb4b15 ] There's a new version of the Telewell 4G modem working with, but not recognized by this driver. Signed-off-by: Bernd Wachter <bernd.wachter@jolla.com> Acked-by: Bjørn Mork <bjorn@mork.no> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Edward Allcutt authored
[ Upstream commit 68b7107b ] Some older router implementations still send Fragmentation Needed errors with the Next-Hop MTU field set to zero. This is explicitly described as an eventuality that hosts must deal with by the standard (RFC 1191) since older standards specified that those bits must be zero. Linux had a generic (for all of IPv4) implementation of the algorithm described in the RFC for searching a list of MTU plateaus for a good value. Commit 46517008 ("ipv4: Kill ip_rt_frag_needed().") removed this as part of the changes to remove the routing cache. Subsequently any Fragmentation Needed packet with a zero Next-Hop MTU has been discarded without being passed to the per-protocol handlers or notifying userspace for raw sockets. When there is a router which does not implement RFC 1191 on an MTU limited path then this results in stalled connections since large packets are discarded and the local protocols are not notified so they never attempt to lower the pMTU. One example I have seen is an OpenBSD router terminating IPSec tunnels. It's worth pointing out that this case is distinct from the BSD 4.2 bug which incorrectly calculated the Next-Hop MTU since the commit in question dismissed that as a valid concern. All of the per-protocols handlers implement the simple approach from RFC 1191 of immediately falling back to the minimum value. Although this is sub-optimal it is vastly preferable to connections hanging indefinitely. Remove the Next-Hop MTU != 0 check and allow such packets to follow the normal path. Fixes: 46517008 ("ipv4: Kill ip_rt_frag_needed().") Signed-off-by: Edward Allcutt <edward.allcutt@openmarket.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Christoph Paasch authored
[ Upstream commit 5924f17a ] When in repair-mode and TCP_RECV_QUEUE is set, we end up calling tcp_push with mss_now being 0. If data is in the send-queue and tcp_set_skb_tso_segs gets called, we crash because it will divide by mss_now: [ 347.151939] divide error: 0000 [#1] SMP [ 347.152907] Modules linked in: [ 347.152907] CPU: 1 PID: 1123 Comm: packetdrill Not tainted 3.16.0-rc2 #4 [ 347.152907] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 347.152907] task: f5b88540 ti: f3c82000 task.ti: f3c82000 [ 347.152907] EIP: 0060:[<c1601359>] EFLAGS: 00210246 CPU: 1 [ 347.152907] EIP is at tcp_set_skb_tso_segs+0x49/0xa0 [ 347.152907] EAX: 00000b67 EBX: f5acd080 ECX: 00000000 EDX: 00000000 [ 347.152907] ESI: f5a28f40 EDI: f3c88f00 EBP: f3c83d10 ESP: f3c83d00 [ 347.152907] DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 [ 347.152907] CR0: 80050033 CR2: 083158b0 CR3: 35146000 CR4: 000006b0 [ 347.152907] Stack: [ 347.152907] c167f9d9 f5acd080 000005b4 00000002 f3c83d20 c16013e6 f3c88f00 f5acd080 [ 347.152907] f3c83da0 c1603b5a f3c83d38 c10a0188 00000000 00000000 f3c83d84 c10acc85 [ 347.152907] c1ad5ec0 00000000 00000000 c1ad679c 010003e0 00000000 00000000 f3c88fc8 [ 347.152907] Call Trace: [ 347.152907] [<c167f9d9>] ? apic_timer_interrupt+0x2d/0x34 [ 347.152907] [<c16013e6>] tcp_init_tso_segs+0x36/0x50 [ 347.152907] [<c1603b5a>] tcp_write_xmit+0x7a/0xbf0 [ 347.152907] [<c10a0188>] ? up+0x28/0x40 [ 347.152907] [<c10acc85>] ? console_unlock+0x295/0x480 [ 347.152907] [<c10ad24f>] ? vprintk_emit+0x1ef/0x4b0 [ 347.152907] [<c1605716>] __tcp_push_pending_frames+0x36/0xd0 [ 347.152907] [<c15f4860>] tcp_push+0xf0/0x120 [ 347.152907] [<c15f7641>] tcp_sendmsg+0xf1/0xbf0 [ 347.152907] [<c116d920>] ? kmem_cache_free+0xf0/0x120 [ 347.152907] [<c106a682>] ? __sigqueue_free+0x32/0x40 [ 347.152907] [<c106a682>] ? __sigqueue_free+0x32/0x40 [ 347.152907] [<c114f0f0>] ? do_wp_page+0x3e0/0x850 [ 347.152907] [<c161c36a>] inet_sendmsg+0x4a/0xb0 [ 347.152907] [<c1150269>] ? handle_mm_fault+0x709/0xfb0 [ 347.152907] [<c15a006b>] sock_aio_write+0xbb/0xd0 [ 347.152907] [<c1180b79>] do_sync_write+0x69/0xa0 [ 347.152907] [<c1181023>] vfs_write+0x123/0x160 [ 347.152907] [<c1181d55>] SyS_write+0x55/0xb0 [ 347.152907] [<c167f0d8>] sysenter_do_call+0x12/0x28 This can easily be reproduced with the following packetdrill-script (the "magic" with netem, sk_pacing and limit_output_bytes is done to prevent the kernel from pushing all segments, because hitting the limit without doing this is not so easy with packetdrill): 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1460> +0 > S. 0:0(0) ack 1 <mss 1460> +0.1 < . 1:1(0) ack 1 win 65000 +0 accept(3, ..., ...) = 4 // This forces that not all segments of the snd-queue will be pushed +0 `tc qdisc add dev tun0 root netem delay 10ms` +0 `sysctl -w net.ipv4.tcp_limit_output_bytes=2` +0 setsockopt(4, SOL_SOCKET, 47, [2], 4) = 0 +0 write(4,...,10000) = 10000 +0 write(4,...,10000) = 10000 // Set tcp-repair stuff, particularly TCP_RECV_QUEUE +0 setsockopt(4, SOL_TCP, 19, [1], 4) = 0 +0 setsockopt(4, SOL_TCP, 20, [1], 4) = 0 // This now will make the write push the remaining segments +0 setsockopt(4, SOL_SOCKET, 47, [20000], 4) = 0 +0 `sysctl -w net.ipv4.tcp_limit_output_bytes=130000` // Now we will crash +0 write(4,...,1000) = 1000 This happens since ec342325 (tcp: fix retransmission in repair mode). Prior to that, the call to tcp_push was prevented by a check for tp->repair. The patch fixes it, by adding the new goto-label out_nopush. When exiting tcp_sendmsg and a push is not required, which is the case for tp->repair, we go to this label. When repairing and calling send() with TCP_RECV_QUEUE, the data is actually put in the receive-queue. So, no push is required because no data has been added to the send-queue. Cc: Andrew Vagin <avagin@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Fixes: ec342325 (tcp: fix retransmission in repair mode) Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Acked-by: Andrew Vagin <avagin@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 07b0f009 ] While it is legal to kfree(NULL), it is not wise to use : put_page(virt_to_head_page(NULL)) BUG: unable to handle kernel paging request at ffffeba400000000 IP: [<ffffffffc01f5928>] virt_to_head_page+0x36/0x44 [bnx2x] Reported-by: Michel Lespinasse <walken@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ariel Elior <ariel.elior@qlogic.com> Fixes: d46d132c ("bnx2x: use netdev_alloc_frag()") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 5925a055 ] sk_dst_cache has __rcu annotation, so we need a cast to avoid following sparse error : include/net/sock.h:1774:19: warning: incorrect type in initializer (different address spaces) include/net/sock.h:1774:19: expected struct dst_entry [noderef] <asn:4>*__ret include/net/sock.h:1774:19: got struct dst_entry *dst Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: kbuild test robot <fengguang.wu@intel.com> Fixes: 7f502361 ("ipv4: irq safe sk_dst_[re]set() and ipv4_sk_update_pmtu() fix") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 7f502361 ] We have two different ways to handle changes to sk->sk_dst First way (used by TCP) assumes socket lock is owned by caller, and use no extra lock : __sk_dst_set() & __sk_dst_reset() Another way (used by UDP) uses sk_dst_lock because socket lock is not always taken. Note that sk_dst_lock is not softirq safe. These ways are not inter changeable for a given socket type. ipv4_sk_update_pmtu(), added in linux-3.8, added a race, as it used the socket lock as synchronization, but users might be UDP sockets. Instead of converting sk_dst_lock to a softirq safe version, use xchg() as we did for sk_rx_dst in commit e47eb5df ("udp: ipv4: do not use sk_dst_lock from softirq context") In a follow up patch, we probably can remove sk_dst_lock, as it is only used in IPv6. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Fixes: 9cb3a50c ("ipv4: Invalidate the socket cached route on pmtu events if possible") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit f8864972 ] When IP route cache had been removed in linux-3.6, we broke assumption that dst entries were all freed after rcu grace period. DST_NOCACHE dst were supposed to be freed from dst_release(). But it appears we want to keep such dst around, either in UDP sockets or tunnels. In sk_dst_get() we need to make sure dst refcount is not 0 before incrementing it, or else we might end up freeing a dst twice. DST_NOCACHE set on a dst does not mean this dst can not be attached to a socket or a tunnel. Then, before actual freeing, we need to observe a rcu grace period to make sure all other cpus can catch the fact the dst is no longer usable. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dormando <dormando@rydia.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Li RongQing authored
[ Upstream commit 916c1689 ] skb_cow called in vlan_reorder_header does not free the skb when it failed, and vlan_reorder_header returns NULL to reset original skb when it is called in vlan_untag, lead to a memory leak. Signed-off-by: Li RongQing <roy.qing.li@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 24599e61 ] When writing to the sysctl field net.sctp.auth_enable, it can well be that the user buffer we handed over to proc_dointvec() via proc_sctp_do_auth() handler contains something other than integers. In that case, we would set an uninitialized 4-byte value from the stack to net->sctp.auth_enable that can be leaked back when reading the sysctl variable, and it can unintentionally turn auth_enable on/off based on the stack content since auth_enable is interpreted as a boolean. Fix it up by making sure proc_dointvec() returned sucessfully. Fixes: b14878cc ("net: sctp: cache auth_enable per endpoint") Reported-by: Florian Westphal <fwestpha@redhat.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Neal Cardwell authored
[ Upstream commit 2cd0d743 ] If there is an MSS change (or misbehaving receiver) that causes a SACK to arrive that covers the end of an skb but is less than one MSS, then tcp_match_skb_to_sack() was rounding up pkt_len to the full length of the skb ("Round if necessary..."), then chopping all bytes off the skb and creating a zero-byte skb in the write queue. This was visible now because the recently simplified TLP logic in bef1909e ("tcp: fixing TLP's FIN recovery") could find that 0-byte skb at the end of the write queue, and now that we do not check that skb's length we could send it as a TLP probe. Consider the following example scenario: mss: 1000 skb: seq: 0 end_seq: 4000 len: 4000 SACK: start_seq: 3999 end_seq: 4000 The tcp_match_skb_to_sack() code will compute: in_sack = false pkt_len = start_seq - TCP_SKB_CB(skb)->seq = 3999 - 0 = 3999 new_len = (pkt_len / mss) * mss = (3999/1000)*1000 = 3000 new_len += mss = 4000 Previously we would find the new_len > skb->len check failing, so we would fall through and set pkt_len = new_len = 4000 and chop off pkt_len of 4000 from the 4000-byte skb, leaving a 0-byte segment afterward in the write queue. With this new commit, we notice that the new new_len >= skb->len check succeeds, so that we return without trying to fragment. Fixes: adb92db8 ("tcp: Make SACK code to split only at mss boundaries") Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Ilpo Jarvinen <ilpo.jarvinen@helsinki.fi> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dmitry Popov authored
[ Upstream commit e0056593 ] This patch fixes 3 similar bugs where incoming packets might be routed into wrong non-wildcard tunnels: 1) Consider the following setup: ip address add 1.1.1.1/24 dev eth0 ip address add 1.1.1.2/24 dev eth0 ip tunnel add ipip1 remote 2.2.2.2 local 1.1.1.1 mode ipip dev eth0 ip link set ipip1 up Incoming ipip packets from 2.2.2.2 were routed into ipip1 even if it has dst = 1.1.1.2. Moreover even if there was wildcard tunnel like ip tunnel add ipip0 remote 2.2.2.2 local any mode ipip dev eth0 but it was created before explicit one (with local 1.1.1.1), incoming ipip packets with src = 2.2.2.2 and dst = 1.1.1.2 were still routed into ipip1. Same issue existed with all tunnels that use ip_tunnel_lookup (gre, vti) 2) ip address add 1.1.1.1/24 dev eth0 ip tunnel add ipip1 remote 2.2.146.85 local 1.1.1.1 mode ipip dev eth0 ip link set ipip1 up Incoming ipip packets with dst = 1.1.1.1 were routed into ipip1, no matter what src address is. Any remote ip address which has ip_tunnel_hash = 0 raised this issue, 2.2.146.85 is just an example, there are more than 4 million of them. And again, wildcard tunnel like ip tunnel add ipip0 remote any local 1.1.1.1 mode ipip dev eth0 wouldn't be ever matched if it was created before explicit tunnel like above. Gre & vti tunnels had the same issue. 3) ip address add 1.1.1.1/24 dev eth0 ip tunnel add gre1 remote 2.2.146.84 local 1.1.1.1 key 1 mode gre dev eth0 ip link set gre1 up Any incoming gre packet with key = 1 were routed into gre1, no matter what src/dst addresses are. Any remote ip address which has ip_tunnel_hash = 0 raised the issue, 2.2.146.84 is just an example, there are more than 4 million of them. Wildcard tunnel like ip tunnel add gre2 remote any local any key 1 mode gre dev eth0 wouldn't be ever matched if it was created before explicit tunnel like above. All this stuff happened because while looking for a wildcard tunnel we didn't check that matched tunnel is a wildcard one. Fixed. Signed-off-by: Dmitry Popov <ixaphire@qrator.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hugh Dickins authored
commit b1a36650 upstream. shmem_fault() is the actual culprit in trinity's hole-punch starvation, and the most significant cause of such problems: since a page faulted is one that then appears page_mapped(), needing unmap_mapping_range() and i_mmap_mutex to be unmapped again. But it is not the only way in which a page can be brought into a hole in the radix_tree while that hole is being punched; and Vlastimil's testing implies that if enough other processors are busy filling in the hole, then shmem_undo_range() can be kept from completing indefinitely. shmem_file_splice_read() is the main other user of SGP_CACHE, which can instantiate shmem pagecache pages in the read-only case (without holding i_mutex, so perhaps concurrently with a hole-punch). Probably it's silly not to use SGP_READ already (using the ZERO_PAGE for holes): which ought to be safe, but might bring surprises - not a change to be rushed. shmem_read_mapping_page_gfp() is an internal interface used by drivers/gpu/drm GEM (and next by uprobes): it should be okay. And shmem_file_read_iter() uses the SGP_DIRTY variant of SGP_CACHE, when called internally by the kernel (perhaps for a stacking filesystem, which might rely on holes to be reserved): it's unclear whether it could be provoked to keep hole-punch busy or not. We could apply the same umbrella as now used in shmem_fault() to shmem_file_splice_read() and the others; but it looks ugly, and use over a range raises questions - should it actually be per page? can these get starved themselves? The origin of this part of the problem is my v3.1 commit d0823576 ("mm: pincer in truncate_inode_pages_range"), once it was duplicated into shmem.c. It seemed like a nice idea at the time, to ensure (barring RCU lookup fuzziness) that there's an instant when the entire hole is empty; but the indefinitely repeated scans to ensure that make it vulnerable. Revert that "enhancement" to hole-punch from shmem_undo_range(), but retain the unproblematic rescanning when it's truncating; add a couple of comments there. Remove the "indices[0] >= end" test: that is now handled satisfactorily by the inner loop, and mem_cgroup_uncharge_start()/end() are too light to be worth avoiding here. But if we do not always loop indefinitely, we do need to handle the case of swap swizzled back to page before shmem_free_swap() gets it: add a retry for that case, as suggested by Konstantin Khlebnikov; and for the case of page swizzled back to swap, as suggested by Johannes Weiner. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lukas Czerner <lczerner@redhat.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hugh Dickins authored
commit 8e205f77 upstream. Commit f00cdc6d ("shmem: fix faulting into a hole while it's punched") was buggy: Sasha sent a lockdep report to remind us that grabbing i_mutex in the fault path is a no-no (write syscall may already hold i_mutex while faulting user buffer). We tried a completely different approach (see following patch) but that proved inadequate: good enough for a rational workload, but not good enough against trinity - which forks off so many mappings of the object that contention on i_mmap_mutex while hole-puncher holds i_mutex builds into serious starvation when concurrent faults force the puncher to fall back to single-page unmap_mapping_range() searches of the i_mmap tree. So return to the original umbrella approach, but keep away from i_mutex this time. We really don't want to bloat every shmem inode with a new mutex or completion, just to protect this unlikely case from trinity. So extend the original with wait_queue_head on stack at the hole-punch end, and wait_queue item on the stack at the fault end. This involves further use of i_lock to guard against the races: lockdep has been happy so far, and I see fs/inode.c:unlock_new_inode() holds i_lock around wake_up_bit(), which is comparable to what we do here. i_lock is more convenient, but we could switch to shmem's info->lock. This issue has been tagged with CVE-2014-4171, which will require commit f00cdc6d and this and the following patch to be backported: we suggest to 3.1+, though in fact the trinity forkbomb effect might go back as far as 2.6.16, when madvise(,,MADV_REMOVE) came in - or might not, since much has changed, with i_mmap_mutex a spinlock before 3.0. Anyone running trinity on 3.0 and earlier? I don't think we need care. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lukas Czerner <lczerner@redhat.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hugh Dickins authored
commit f00cdc6d upstream. Trinity finds that mmap access to a hole while it's punched from shmem can prevent the madvise(MADV_REMOVE) or fallocate(FALLOC_FL_PUNCH_HOLE) from completing, until the reader chooses to stop; with the puncher's hold on i_mutex locking out all other writers until it can complete. It appears that the tmpfs fault path is too light in comparison with its hole-punching path, lacking an i_data_sem to obstruct it; but we don't want to slow down the common case. Extend shmem_fallocate()'s existing range notification mechanism, so shmem_fault() can refrain from faulting pages into the hole while it's punched, waiting instead on i_mutex (when safe to sleep; or repeatedly faulting when not). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Emmanuel Grumbach authored
commit 43d826ca upstream. We should always prefer to use full RTS protection. Using CTS to self gives a meaningless improvement, but this flow is much harder for the firmware which is likely to have issues with it. Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Stefan Assmann authored
commit 76252723 upstream. To properly re-initialize SR-IOV it is necessary to reset the device even if it is already down. Not doing this may result in Tx unit hangs. Signed-off-by: Stefan Assmann <sassmann@kpanic.de> Tested-by: Aaron Brown <aaron.f.brown@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Guenter Roeck authored
commit de12d6f4 upstream. Temperature limit registers are signed. Limits therefore need to be clamped to (-128, 127) degrees C and not to (0, 255) degrees C. Without this fix, writing a limit of 128 degrees C sets the actual limit to -128 degrees C. Signed-off-by: Guenter Roeck <linux@roeck-us.net> Reviewed-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Axel Lin authored
commit ee14b644 upstream. Dashes are not allowed in hwmon name attributes. Use "da9052" instead of "da9052-hwmon". Signed-off-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Axel Lin authored
commit 6b00f440 upstream. Dashes are not allowed in hwmon name attributes. Use "da9055" instead of "da9055-hwmon". Signed-off-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
zhangwei(Jovi) authored
commit 8abfb872 upstream. Currently trace option stacktrace is not applicable for trace_printk with constant string argument, the reason is in __trace_puts/__trace_bputs ftrace_trace_stack is missing. In contrast, when using trace_printk with non constant string argument(will call into __trace_printk/__trace_bprintk), then trace option stacktrace is workable, this inconstant result will confuses users a lot. Link: http://lkml.kernel.org/p/51E7A7C9.9040401@huawei.comSigned-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Steven Rostedt (Red Hat) authored
commit 5f8bf2d2 upstream. Running my ftrace tests on PowerPC, it failed the test that checks if function_graph tracer is affected by the stack tracer. It was. Looking into this, I found that the update_function_graph_func() must be called even if the trampoline function is not changed. This is because archs like PowerPC do not support ftrace_ops being passed by assembly and instead uses a helper function (what the trampoline function points to). Since this function is not changed even when multiple ftrace_ops are added to the code, the test that falls out before calling update_function_graph_func() will miss that the update must still be done. Call update_function_graph_function() for all calls to update_ftrace_function() Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Miklos Szeredi authored
commit 233a01fa upstream. If the number in "user_id=N" or "group_id=N" mount options was larger than INT_MAX then fuse returned EINVAL. Fix this to handle all valid uid/gid values. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Loic Poulain authored
commit 48439d50 upstream. When detecting a non-link packet, h5_reset_rx() frees the Rx skb. Not returning after that will cause the upcoming h5_rx_payload() call to dereference a now NULL Rx skb and trigger a kernel oops. Signed-off-by: Loic Poulain <loic.poulain@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
K. Y. Srinivasan authored
commit 9bd2d0df upstream. Add code to poll the channel since we process only one message at a time and the host may not interrupt us. Also increase the receive buffer size since some KVP messages are close to 8K bytes in size. Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hans de Goede authored
commit 242841d3 upstream. Tested-and-reported-by: yullaw <yullaw@mageia.cz> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Gavin Guo authored
commit bb86cf56 upstream. When using USB 3.0 pen drive with the [AMD] FCH USB XHCI Controller [1022:7814], the second hotplugging will experience the USB 3.0 pen drive is recognized as high-speed device. After bisecting the kernel, I found the commit number 41e7e056 (USB: Allow USB 3.0 ports to be disabled.) causes the bug. After doing some experiments, the bug can be fixed by avoiding executing the function hub_usb3_port_disable(). Because the port status with [AMD] FCH USB XHCI Controlleris [1022:7814] is already in RxDetect (I tried printing out the port status before setting to Disabled state), it's reasonable to check the port status before really executing hub_usb3_port_disable(). Fixes: 41e7e056 (USB: Allow USB 3.0 ports to be disabled.) Signed-off-by: Gavin Guo <gavin.guo@canonical.com> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 Jul, 2014 11 commits
-
-
Greg Kroah-Hartman authored
-
Lan Tianyu authored
commit 75646e75 upstream. Some machines (eg. Lenovo Z480) ECs are not stable during boot up and causes battery driver fails to be loaded due to failure of getting battery information from EC sometimes. After several retries, the operation will work. This patch is to retry to get battery information 5 times if the first try fails. [ backport to 3.14.5: removed second parameter in acpi_battery_update(), introduced by the commit 9e50bc14 (ACPI / battery: Accelerate battery resume callback)] [naszar <naszar@ya.ru>: backport to 3.14.5] Link: https://bugzilla.kernel.org/show_bug.cgi?id=75581Reported-and-tested-by: naszar <naszar@ya.ru> Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Roland Dreier authored
commit c81c8a1e upstream. In __ioremap_caller() (the guts of ioremap), we loop over the range of pfns being remapped and checks each one individually with page_is_ram(). For large ioremaps, this can be very slow. For example, we have a device with a 256 GiB PCI BAR, and ioremapping this BAR can take 20+ seconds -- sometimes long enough to trigger the soft lockup detector! Internally, page_is_ram() calls walk_system_ram_range() on a single page. Instead, we can make a single call to walk_system_ram_range() from __ioremap_caller(), and do our further checks only for any RAM pages that we find. For the common case of MMIO, this saves an enormous amount of work, since the range being ioremapped doesn't intersect system RAM at all. With this change, ioremap on our 256 GiB BAR takes less than 1 second. Signed-off-by: Roland Dreier <roland@purestorage.com> Link: http://lkml.kernel.org/r/1399054721-1331-1-git-send-email-roland@kernel.orgSigned-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lennox Wu authored
commit df9e4d1c upstream. Signed-off-by: Lennox Wu <lennox.wu@gmail.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lennox Wu authored
commit 5fbbf8a1 upstream. The modifications include: 1. Kconfig of Score: we don't support ioremap 2. Missed headfile including 3. There are some errors in other people's commit not checked by us, we fix it now 3.1 arch/score/kernel/entry.S: wrong instructions 3.2 arch/score/kernel/process.c : just some typos Signed-off-by: Lennox Wu <lennox.wu@gmail.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lennox Wu authored
commit 1ed62ca6 upstream. Signed-off-by: Lennox Wu <lennox.wu@gmail.com> Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jiang Liu authored
commit ae49b83d upstream. Generate mandatory global variables _sdata in file vmlinux.lds. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Chen Liqin <liqin.chen@sunplusct.com> Cc: Lennox Wu <lennox.wu@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit 27e35715 upstream. When the rtmutex fast path is enabled the slow unlock function can create the following situation: spin_lock(foo->m->wait_lock); foo->m->owner = NULL; rt_mutex_lock(foo->m); <-- fast path free = atomic_dec_and_test(foo->refcnt); rt_mutex_unlock(foo->m); <-- fast path if (free) kfree(foo); spin_unlock(foo->m->wait_lock); <--- Use after free. Plug the race by changing the slow unlock to the following scheme: while (!rt_mutex_has_waiters(m)) { /* Clear the waiters bit in m->owner */ clear_rt_mutex_waiters(m); owner = rt_mutex_owner(m); spin_unlock(m->wait_lock); if (cmpxchg(m->owner, owner, 0) == owner) return; spin_lock(m->wait_lock); } So in case of a new waiter incoming while the owner tries the slow path unlock we have two situations: unlock(wait_lock); lock(wait_lock); cmpxchg(p, owner, 0) == owner mark_rt_mutex_waiters(lock); acquire(lock); Or: unlock(wait_lock); lock(wait_lock); mark_rt_mutex_waiters(lock); cmpxchg(p, owner, 0) != owner enqueue_waiter(); unlock(wait_lock); lock(wait_lock); wakeup_next waiter(); unlock(wait_lock); lock(wait_lock); acquire(lock); If the fast path is disabled, then the simple m->owner = NULL; unlock(m->wait_lock); is sufficient as all access to m->owner is serialized via m->wait_lock; Also document and clarify the wakeup_next_waiter function as suggested by Oleg Nesterov. Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140611183852.937945560@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit 3d5c9340 upstream. Even in the case when deadlock detection is not requested by the caller, we can detect deadlocks. Right now the code stops the lock chain walk and keeps the waiter enqueued, even on itself. Silly not to yell when such a scenario is detected and to keep the waiter enqueued. Return -EDEADLK unconditionally and handle it at the call sites. The futex calls return -EDEADLK. The non futex ones dequeue the waiter, throw a warning and put the task into a schedule loop. Tagged for stable as it makes the code more robust. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brad Mouring <bmouring@ni.com> Link: http://lkml.kernel.org/r/20140605152801.836501969@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit 82084984 upstream. When we walk the lock chain, we drop all locks after each step. So the lock chain can change under us before we reacquire the locks. That's harmless in principle as we just follow the wrong lock path. But it can lead to a false positive in the dead lock detection logic: T0 holds L0 T0 blocks on L1 held by T1 T1 blocks on L2 held by T2 T2 blocks on L3 held by T3 T4 blocks on L4 held by T4 Now we walk the chain lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> drop locks T2 times out and blocks on L0 Now we continue: lock T2 -> lock L0 -> deadlock detected, but it's not a deadlock at all. Brad tried to work around that in the deadlock detection logic itself, but the more I looked at it the less I liked it, because it's crystal ball magic after the fact. We actually can detect a chain change very simple: lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> next_lock = T2->pi_blocked_on->lock; drop locks T2 times out and blocks on L0 Now we continue: lock T2 -> if (next_lock != T2->pi_blocked_on->lock) return; So if we detect that T2 is now blocked on a different lock we stop the chain walk. That's also correct in the following scenario: lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> next_lock = T2->pi_blocked_on->lock; drop locks T3 times out and drops L3 T2 acquires L3 and blocks on L4 now Now we continue: lock T2 -> if (next_lock != T2->pi_blocked_on->lock) return; We don't have to follow up the chain at that point, because T2 propagated our priority up to T4 already. [ Folded a cleanup patch from peterz ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Brad Mouring <bmouring@ni.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140605152801.930031935@linutronix.deSigned-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit 397335f0 upstream. The current deadlock detection logic does not work reliably due to the following early exit path: /* * Drop out, when the task has no waiters. Note, * top_waiter can be NULL, when we are in the deboosting * mode! */ if (top_waiter && (!task_has_pi_waiters(task) || top_waiter != task_top_pi_waiter(task))) goto out_unlock_pi; So this not only exits when the task has no waiters, it also exits unconditionally when the current waiter is not the top priority waiter of the task. So in a nested locking scenario, it might abort the lock chain walk and therefor miss a potential deadlock. Simple fix: Continue the chain walk, when deadlock detection is enabled. We also avoid the whole enqueue, if we detect the deadlock right away (A-A). It's an optimization, but also prevents that another waiter who comes in after the detection and before the task has undone the damage observes the situation and detects the deadlock and returns -EDEADLOCK, which is wrong as the other task is not in a deadlock situation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Link: http://lkml.kernel.org/r/20140522031949.725272460@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-