- 13 Dec, 2012 40 commits
-
-
Kirill A. Shutemov authored
We have two different implementation of is_zero_pfn() and my_zero_pfn() helpers: for architectures with and without zero page coloring. Let's consolidate them in <asm-generic/pgtable.h>. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Fix the warning from __list_del_entry() which is triggered when a process tries to do free_huge_page() for a hwpoisoned hugepage. free_huge_page() can be called for hwpoisoned hugepage from unpoison_memory(). This function gets refcount once and clears PageHWPoison, and then puts refcount twice to return the hugepage back to free pool. The second put_page() finally reaches free_huge_page(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Memory error handling on hugepages can break a RSS counter, which emits a message like "Bad rss-counter state mm:ffff88040abecac0 idx:1 val:-1". This is because PageAnon returns true for hugepage (this behavior is necessary for reverse mapping to work on hugetlbfs). [akpm@linux-foundation.org: clean up code layout] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
When a process which used a hwpoisoned hugepage tries to exit() or munmap(), the kernel can print out "bad pmd" message because page table walker in free_pgtables() encounters 'hwpoisoned entry' on pmd. This is because currently we fail to clear the hwpoisoned entry in __unmap_hugepage_range(), so this patch simply does it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michel Lespinasse authored
expand_stack() runs with a shared mmap_sem lock. Because of this, there could be multiple concurrent stack expansions in the same mm, which may cause problems in the vma gap update code. I propose to solve this by taking the mm->page_table_lock around such vma expansions, in order to avoid the concurrency issue. We only have to worry about concurrent expand_stack() calls here, since we hold a shared mmap_sem lock and all vma modificaitons other than expand_stack() are done under an exclusive mmap_sem lock. I previously tried to achieve the same effect by making sure all growable vmas in a given mm would share the same anon_vma, which we already lock here. However this turned out to be difficult - all of the schemes I tried for refcounting the growable anon_vma and clearing turned out ugly. So, I'm now proposing only the minimal fix. The overhead of taking the page table lock during stack expansion is expected to be small: glibc doesn't use expandable stacks for the threads it creates, so having multiple growable stacks is actually uncommon and we don't expect the page table lock to get bounced between threads. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
The mm given to __mem_cgroup_count_vm_event() cannot be NULL because the function is either called from the page fault path or vma->vm_mm is used. So the check can be dropped. The check was introduced by commit 456f998e ("memcg: add the pagefault count into memcg stats") because the originally proposed patch used current->mm for shmem but this has been changed to vma->vm_mm later on without the check being removed (thanks to Hugh for this recollection). Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Ying Han <yinghan@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Revert 3.5's commit f21f8062 ("tmpfs: revert SEEK_DATA and SEEK_HOLE") to reinstate 4fb5ef08 ("tmpfs: support SEEK_DATA and SEEK_HOLE"), with the intervening additional arg to generic_file_llseek_size(). In 3.8, ext4 is expected to join btrfs, ocfs2 and xfs with proper SEEK_DATA and SEEK_HOLE support; and a good case has now been made for it on tmpfs, so let's join the party. It's quite easy for tmpfs to scan the radix_tree to support llseek's new SEEK_DATA and SEEK_HOLE options: so add them while the minutiae are still on my mind (in particular, the !PageUptodate-ness of pages fallocated but still unwritten). [akpm@linux-foundation.org: fix warning with CONFIG_TMPFS=n] Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jaegeuk Hanse <jaegeuk.hanse@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Zheng Liu <wenqing.lz@taobao.com> Cc: Jeff liu <jeff.liu@oracle.com> Cc: Paul Eggert <eggert@cs.ucla.edu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Josef Bacik <josef@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andreas Dilger <adilger@dilger.ca> Cc: Marco Stornelli <marco.stornelli@gmail.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: Sunil Mushran <sunil.mushran@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jiang Liu authored
If SPARSEMEM is enabled, it won't build page structures for non-existing pages (holes) within a zone, so provide a more accurate estimation of pages occupied by memmap if there are bigger holes within the zone. And pages for highmem zones' memmap will be allocated from lowmem, so charge nr_kernel_pages for that. [akpm@linux-foundation.org: mark calc_memmap_size __paging_init] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Cc: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Tested-by: Jianguo Wu <wujianguo@huawei.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yan Hong authored
buffer_head comes from kmem_cache_zalloc(), no need to zero its fields. Signed-off-by: Yan Hong <clouds.yan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yan Hong authored
It makes no sense to inline an exported function. Signed-off-by: Yan Hong <clouds.yan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yan Hong authored
Signed-off-by: Yan Hong <clouds.yan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jiang Liu authored
Currently a zone's present_pages is calcuated as below, which is inaccurate and may cause trouble to memory hotplug. spanned_pages - absent_pages - memmap_pages - dma_reserve. During fixing bugs caused by inaccurate zone->present_pages, we found zone->present_pages has been abused. The field zone->present_pages may have different meanings in different contexts: 1) pages existing in a zone. 2) pages managed by the buddy system. For more discussions about the issue, please refer to: http://lkml.org/lkml/2012/11/5/866 https://patchwork.kernel.org/patch/1346751/ This patchset tries to introduce a new field named "managed_pages" to struct zone, which counts "pages managed by the buddy system". And revert zone->present_pages to count "physical pages existing in a zone", which also keep in consistence with pgdat->node_present_pages. We will set an initial value for zone->managed_pages in function free_area_init_core() and will adjust it later if the initial value is inaccurate. For DMA/normal zones, the initial value is set to: (spanned_pages - absent_pages - memmap_pages - dma_reserve) Later zone->managed_pages will be adjusted to the accurate value when the bootmem allocator frees all free pages to the buddy system in function free_all_bootmem_node() and free_all_bootmem(). The bootmem allocator doesn't touch highmem pages, so highmem zones' managed_pages is set to the accurate value "spanned_pages - absent_pages" in function free_area_init_core() and won't be updated anymore. This patch also adds a new field "managed_pages" to /proc/zoneinfo and sysrq showmem. [akpm@linux-foundation.org: small comment tweaks] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Tested-by: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
out_of_memory() is a globally defined function to call the oom killer. x86, sh, and powerpc all use a function of the same name within file scope in their respective fault.c unnecessarily. Inline the functions into the pagefault handlers to clean the code up. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
out_of_memory() will already cause current to schedule if it has not been killed, so doing it again in pagefault_out_of_memory() is redundant. Remove it. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
To lock the entire system from parallel oom killing, it's possible to pass in a zonelist with all zones rather than using for_each_populated_zone() for the iteration. This obsoletes try_set_system_oom() and clear_system_oom() so that they can be removed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
Now, memory management can handle movable node or nodes which don't have any normal memory, so we can dynamic configure and add movable node by: online a ZONE_MOVABLE memory from a previous offline node offline the last normal memory which result a non-normal-memory-node movable-node is very important for power-saving, hardware partitioning and high-available-system(hardware fault management). Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
We need a node which only contains movable memory. This feature is very important for node hotplug. If a node has normal/highmem, the memory may be used by the kernel and can't be offlined. If the node only contains movable memory, we can offline the memory and the node. All are prepared, we can actually introduce N_MEMORY. add CONFIG_MOVABLE_NODE make we can use it for movable-dedicated node [akpm@linux-foundation.org: fix Kconfig text] Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
While profiling numa/core v16 with cgroup_disable=memory on the command line, I noticed mem_cgroup_count_vm_event() still showed up as high as 0.60% in perftop. This occurs because the function is called extremely often even when memcg is disabled. To fix this, inline the check for mem_cgroup_disabled() so we avoid the unnecessary function call if memcg is disabled. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
Cc: Glauber Costa <glommer@parallels.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
During reviewing the source code, I found a comment which mention that after f_op->mmap(), vma's start address can be changed. I didn't verify that it is really possible, because there are so many f_op->mmap() implementation. But if there are some mmap() which change vma's start address, it is possible error situation, because we already prepare prev vma, rb_link and rb_parent and these are related to original address. So add WARN_ON_ONCE for finding that this situtation really happens. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Greg Thelen authored
Since commit 628f4235 ("memcg: limit change shrink usage") both res_counter_write() and write_strategy_fn have been unused. This patch deletes them both. Signed-off-by: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
Update nodemasks management for N_MEMORY. [lliubbo@gmail.com: fix build] Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Bob Liu <lliubbo@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Since we introduced N_MEMORY, we update the initialization of node_states. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lai Jiangshan authored
We have N_NORMAL_MEMORY for standing for the nodes that have normal memory with zone_type <= ZONE_NORMAL. And we have N_HIGH_MEMORY for standing for the nodes that have normal or high memory. But we don't have any word to stand for the nodes that have *any* memory. And we have N_CPU but without N_MEMORY. Current code reuse the N_HIGH_MEMORY for this purpose because any node which has memory must have high memory or normal memory currently. A) But this reusing is bad for *readability*. Because the name N_HIGH_MEMORY just stands for high or normal: A.example 1) mem_cgroup_nr_lru_pages(): for_each_node_state(nid, N_HIGH_MEMORY) The user will be confused(why this function just counts for high or normal memory node? does it counts for ZONE_MOVABLE's lru pages?) until someone else tell them N_HIGH_MEMORY is reused to stand for nodes that have any memory. A.cont) If we introduce N_MEMORY, we can reduce this confusing AND make the code more clearly: A.example 2) mm/page_cgroup.c use N_HIGH_MEMORY twice: One is in page_cgroup_init(void): for_each_node_state(nid, N_HIGH_MEMORY) { It means if the node have memory, we will allocate page_cgroup map for the node. We should use N_MEMORY instead here to gaim more clearly. The second using is in alloc_page_cgroup(): if (node_state(nid, N_HIGH_MEMORY)) addr = vzalloc_node(size, nid); It means if the node has high or normal memory that can be allocated from kernel. We should keep N_HIGH_MEMORY here, and it will be better if the "any memory" semantic of N_HIGH_MEMORY is removed. B) This reusing is out-dated if we introduce MOVABLE-dedicated node. The MOVABLE-dedicated node should not appear in node_stats[N_HIGH_MEMORY] nor node_stats[N_NORMAL_MEMORY], because MOVABLE-dedicated node has no high or normal memory. In x86_64, N_HIGH_MEMORY=N_NORMAL_MEMORY, if a MOVABLE-dedicated node is in node_stats[N_HIGH_MEMORY], it is also means it is in node_stats[N_NORMAL_MEMORY], it causes SLUB wrong. The slub uses for_each_node_state(nid, N_NORMAL_MEMORY) and creates kmem_cache_node for MOVABLE-dedicated node and cause problem. In one word, we need a N_MEMORY. We just intrude it as an alias to N_HIGH_MEMORY and fix all im-proper usages of N_HIGH_MEMORY in late patches. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Marek Szyprowski authored
__alloc_contig_migrate_range() should use all possible ways to get all the pages migrated from the given memory range, so pruning per-cpu lru lists for all CPUs is required, regadless the cost of such operation. Otherwise some pages which got stuck at per-cpu lru list might get missed by migration procedure causing the contiguous allocation to fail. Reported-by: SeongHwan Yoon <sunghwan.yun@samsung.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Thierry Reding authored
compact_capture_page() is only used if compaction is enabled so it should be moved into the corresponding #ifdef. Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kirill A. Shutemov authored
pmd value is stable only with mm->page_table_lock taken. After taking the lock we need to check that nobody modified the pmd before changing it. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: David Rientjes <rientjes@google.com> Reviewed-by: Bob Liu <lliubbo@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kirill A. Shutemov authored
By default kernel tries to use huge zero page on read page fault. It's possible to disable huge zero page by writing 0 or enable it back by writing 1: echo 0 >/sys/kernel/mm/transparent_hugepage/khugepaged/use_zero_page echo 1 >/sys/kernel/mm/transparent_hugepage/khugepaged/use_zero_page Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kirill A. Shutemov authored
hzp_alloc is incremented every time a huge zero page is successfully allocated. It includes allocations which where dropped due race with other allocation. Note, it doesn't count every map of the huge zero page, only its allocation. hzp_alloc_failed is incremented if kernel fails to allocate huge zero page and falls back to using small pages. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-