- 24 Aug, 2020 13 commits
-
-
Alexei Starovoitov authored
Martin KaFai Lau says: ==================== The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal traffic only. This patch set introduces the necessary BPF logic and API to allow bpf program to write and parse header options. There are also some changes to TCP and they are mostly to provide the needed sk and skb info to the bpf program to make decision. Patch 9 is the main patch and has more details on the API and design. The set includes an example which sends the max delay ack in the BPF TCP header option and the receiving side can then adjust its RTO accordingly. v5: - Move some of the comments from git commit message to the UAPI bpf.h in patch 9 - Some variable clean up in the tests (patch 11). v4: - Since bpf-next is currently closed, tag the set with RFC to keep the review cadence - Separate tcp changes in its own patches (5, 6, 7). It is a bit tricky since most of the tcp changes is to call out the bpf prog to write and parse the header. The write and parse callout has been modularized into a few bpf_skops_* function in v3. This revision (v4) tries to move those bpf_skops_* functions into separate TCP patches. However, they will be half implemented to highlight the changes to the TCP stack, mainly: - when the bpf prog will be called in the TCP stack and - what information needs to pump through the TCP stack to the actual bpf prog callsite. The bpf_skops_* functions will be fully implemented in patch 9 together with other bpf pieces. - Use struct_size() in patch 1 (Eric) - Add saw_unknown to struct tcp_options_received in patch 4 (Eric) v3: - Add kdoc for tcp_make_synack (Jakub Kicinski) - Add BPF_WRITE_HDR_TCP_CURRENT_MSS and BPF_WRITE_HDR_TCP_SYNACK_COOKIE in bpf.h to give a clearer meaning to sock_ops->args[0] when writing header option. - Rename BPF_SOCK_OPS_PARSE_UNKWN_HDR_OPT_CB_FLAG to BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG v2: - Instead of limiting the bpf prog to write experimental option (kind:254, magic:0xeB9F), this revision allows the bpf prog to write any TCP header option through the bpf_store_hdr_opt() helper. That will allow different bpf-progs to write its own option and the helper will guarantee there is no duplication. - Add bpf_load_hdr_opt() helper to search a particular option by kind. Some of the get_syn logic is refactored to bpf_sock_ops_get_syn(). - Since bpf prog is no longer limited to option (254, 0xeB9F), the TCP_SKB_CB(skb)->bpf_hdr_opt_off is no longer needed. Instead, when there is any option kernel cannot recognize, the bpf prog will be called if the BPF_SOCK_OPS_PARSE_UNKWN_HDR_OPT_CB_FLAG is set. [ The "unknown_opt" is learned in tcp_parse_options() in patch 4. ] - Add BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG. If this flag is set, the bpf-prog will be called on all tcp packet received at an established sk. It will be useful to ensure a previously written header option is received by the peer. e.g. The latter test is using this on the active-side during syncookie. - The test_tcp_hdr_options.c is adjusted accordingly to test writing both experimental and regular TCP header option. - The test_misc_tcp_hdr_options.c is added to mainly test different cases on the new helpers. - Break up the TCP_BPF_RTO_MIN and TCP_BPF_DELACK_MAX into two patches. - Directly store the tcp_hdrlen in "struct saved_syn" instead of going back to the tcp header to obtain it by "th->doff * 4" - Add a new optval(==2) for setsockopt(TCP_SAVE_SYN) such that it will also store the mac header (patch 9). ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-
Martin KaFai Lau authored
This patch is adapted from Eric's patch in an earlier discussion [1]. The TCP_SAVE_SYN currently only stores the network header and tcp header. This patch allows it to optionally store the mac header also if the setsockopt's optval is 2. It requires one more bit for the "save_syn" bit field in tcp_sock. This patch achieves this by moving the syn_smc bit next to the is_mptcp. The syn_smc is currently used with the TCP experimental option. Since syn_smc is only used when CONFIG_SMC is enabled, this patch also puts the "IS_ENABLED(CONFIG_SMC)" around it like the is_mptcp did with "IS_ENABLED(CONFIG_MPTCP)". The mac_hdrlen is also stored in the "struct saved_syn" to allow a quick offset from the bpf prog if it chooses to start getting from the network header or the tcp header. [1]: https://lore.kernel.org/netdev/CANn89iLJNWh6bkH7DNhy_kmcAexuUCccqERqe7z2QsvPhGrYPQ@mail.gmail.com/Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190123.2886935-1-kafai@fb.com
-
Martin KaFai Lau authored
This patch adds tests for the new bpf tcp header option feature. test_tcp_hdr_options.c: - It tests header option writing and parsing in 3WHS: regular connection establishment, fastopen, and syncookie. - In syncookie, the passive side's bpf prog is asking the active side to resend its bpf header option by specifying a RESEND bit in the outgoing SYNACK. handle_active_estab() and write_nodata_opt() has some details. - handle_passive_estab() has comments on fastopen. - It also has test for header writing and parsing in FIN packet. - Most of the tests is writing an experimental option 254 with magic 0xeB9F. - The no_exprm_estab() also tests writing a regular TCP option without any magic. test_misc_tcp_options.c: - It is an one directional test. Active side writes option and passive side parses option. The focus is to exercise the new helpers and API. - Testing the new helper: bpf_load_hdr_opt() and bpf_store_hdr_opt(). - Testing the bpf_getsockopt(TCP_BPF_SYN). - Negative tests for the above helpers. - Testing the sock_ops->skb_data. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190117.2886749-1-kafai@fb.com
-
Martin KaFai Lau authored
This patch adds a fastopen_connect() helper which will be used in a later test. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190111.2886196-1-kafai@fb.com
-
Martin KaFai Lau authored
[ Note: The TCP changes here is mainly to implement the bpf pieces into the bpf_skops_*() functions introduced in the earlier patches. ] The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal only use. For example, we want to test the idea in putting maximum delay ACK in TCP header option which is similar to a draft RFC proposal [1]. This patch introduces the necessary BPF API and use them in the TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse and write TCP header options. It currently supports most of the TCP packet except RST. Supported TCP header option: ─────────────────────────── This patch allows the bpf-prog to write any option kind. Different bpf-progs can write its own option by calling the new helper bpf_store_hdr_opt(). The helper will ensure there is no duplicated option in the header. By allowing bpf-prog to write any option kind, this gives a lot of flexibility to the bpf-prog. Different bpf-prog can write its own option kind. It could also allow the bpf-prog to support a recently standardized option on an older kernel. Sockops Callback Flags: ────────────────────── The bpf program will only be called to parse/write tcp header option if the following newly added callback flags are enabled in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG A few words on the PARSE CB flags. When the above PARSE CB flags are turned on, the bpf-prog will be called on packets received at a sk that has at least reached the ESTABLISHED state. The parsing of the SYN-SYNACK-ACK will be discussed in the "3 Way HandShake" section. The default is off for all of the above new CB flags, i.e. the bpf prog will not be called to parse or write bpf hdr option. There are details comment on these new cb flags in the UAPI bpf.h. sock_ops->skb_data and bpf_load_hdr_opt() ───────────────────────────────────────── sock_ops->skb_data and sock_ops->skb_data_end covers the whole TCP header and its options. They are read only. The new bpf_load_hdr_opt() helps to read a particular option "kind" from the skb_data. Please refer to the comment in UAPI bpf.h. It has details on what skb_data contains under different sock_ops->op. 3 Way HandShake ─────────────── The bpf-prog can learn if it is sending SYN or SYNACK by reading the sock_ops->skb_tcp_flags. * Passive side When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB), the received SYN skb will be available to the bpf prog. The bpf prog can use the SYN skb (which may carry the header option sent from the remote bpf prog) to decide what bpf header option should be written to the outgoing SYNACK skb. The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*). More on this later. Also, the bpf prog can learn if it is in syncookie mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE). The bpf prog can store the received SYN pkt by using the existing bpf_setsockopt(TCP_SAVE_SYN). The example in a later patch does it. [ Note that the fullsock here is a listen sk, bpf_sk_storage is not very useful here since the listen sk will be shared by many concurrent connection requests. Extending bpf_sk_storage support to request_sock will add weight to the minisock and it is not necessary better than storing the whole ~100 bytes SYN pkt. ] When the connection is established, the bpf prog will be called in the existing PASSIVE_ESTABLISHED_CB callback. At that time, the bpf prog can get the header option from the saved syn and then apply the needed operation to the newly established socket. The later patch will use the max delay ack specified in the SYN header and set the RTO of this newly established connection as an example. The received ACK (that concludes the 3WHS) will also be available to the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data. It could be useful in syncookie scenario. More on this later. There is an existing getsockopt "TCP_SAVED_SYN" to return the whole saved syn pkt which includes the IP[46] header and the TCP header. A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to start getting from, e.g. starting from TCP header, or from IP[46] header. The new getsockopt(TCP_BPF_SYN*) will also know where it can get the SYN's packet from: - (a) the just received syn (available when the bpf prog is writing SYNACK) and it is the only way to get SYN during syncookie mode. or - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other existing CB). The bpf prog does not need to know where the SYN pkt is coming from. The getsockopt(TCP_BPF_SYN*) will hide this details. Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to bpf_load_hdr_opt() to read a particular header option from the SYN packet. * Fastopen Fastopen should work the same as the regular non fastopen case. This is a test in a later patch. * Syncookie For syncookie, the later example patch asks the active side's bpf prog to resend the header options in ACK. The server can use bpf_load_hdr_opt() to look at the options in this received ACK during PASSIVE_ESTABLISHED_CB. * Active side The bpf prog will get a chance to write the bpf header option in the SYN packet during WRITE_HDR_OPT_CB. The received SYNACK pkt will also be available to the bpf prog during the existing ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data and bpf_load_hdr_opt(). * Turn off header CB flags after 3WHS If the bpf prog does not need to write/parse header options beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags to avoid being called for header options. Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on so that the kernel will only call it when there is option that the kernel cannot handle. [1]: draft-wang-tcpm-low-latency-opt-00 https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
-
Martin KaFai Lau authored
A later patch needs to add a few pointers and a few u8 to sock_ops_kern. Hence, this patch saves some spaces by moving some of the existing members from u32 to u8 so that the later patch can still fit everything in a cacheline. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190058.2885640-1-kafai@fb.com
-
Martin KaFai Lau authored
The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
-
Martin KaFai Lau authored
The patch adds a function bpf_skops_parse_hdr(). It will call the bpf prog to parse the TCP header received at a tcp_sock that has at least reached the ESTABLISHED state. For the packets received during the 3WHS (SYN, SYNACK and ACK), the received skb will be available to the bpf prog during the callback in bpf_skops_established() introduced in the previous patch and in the bpf_skops_write_hdr_opt() that will be added in the next patch. Calling bpf prog to parse header is controlled by two new flags in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG and BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG. When BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG is set, the bpf prog will only be called when there is unknown option in the TCP header. When BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG is set, the bpf prog will be called on all received TCP header. This function is half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190046.2885054-1-kafai@fb.com
-
Martin KaFai Lau authored
In tcp_init_transfer(), it currently calls the bpf prog to give it a chance to handle the just "ESTABLISHED" event (e.g. do setsockopt on the newly established sk). Right now, it is done by calling the general purpose tcp_call_bpf(). In the later patch, it also needs to pass the just-received skb which concludes the 3 way handshake. E.g. the SYNACK received at the active side. The bpf prog can then learn some specific header options written by the peer's bpf-prog and potentially do setsockopt on the newly established sk. Thus, instead of reusing the general purpose tcp_call_bpf(), a new function bpf_skops_established() is added to allow passing the "skb" to the bpf prog. The actual skb passing from bpf_skops_established() to the bpf prog will happen together in a later patch which has the necessary bpf pieces. A "skb" arg is also added to tcp_init_transfer() such that it can then be passed to bpf_skops_established(). Calling the new bpf_skops_established() instead of tcp_call_bpf() should be a noop in this patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190039.2884750-1-kafai@fb.com
-
Martin KaFai Lau authored
In a later patch, the bpf prog only wants to be called to handle a header option if that particular header option cannot be handled by the kernel. This unknown option could be written by the peer's bpf-prog. It could also be a new standard option that the running kernel does not support it while a bpf-prog can handle it. This patch adds a "saw_unknown" bit to "struct tcp_options_received" and it uses an existing one byte hole to do that. "saw_unknown" will be set in tcp_parse_options() if it sees an option that the kernel cannot handle. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190033.2884430-1-kafai@fb.com
-
Martin KaFai Lau authored
This patch adds bpf_setsockopt(TCP_BPF_RTO_MIN) to allow bpf prog to set the min rto of a connection. It could be used together with the earlier patch which has added bpf_setsockopt(TCP_BPF_DELACK_MAX). A later selftest patch will communicate the max delay ack in a bpf tcp header option and then the receiving side can use bpf_setsockopt(TCP_BPF_RTO_MIN) to set a shorter rto. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190027.2884170-1-kafai@fb.com
-
Martin KaFai Lau authored
This change is mostly from an internal patch and adapts it from sysctl config to the bpf_setsockopt setup. The bpf_prog can set the max delay ack by using bpf_setsockopt(TCP_BPF_DELACK_MAX). This max delay ack can be communicated to its peer through bpf header option. The receiving peer can then use this max delay ack and set a potentially lower rto by using bpf_setsockopt(TCP_BPF_RTO_MIN) which will be introduced in the next patch. Another later selftest patch will also use it like the above to show how to write and parse bpf tcp header option. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190021.2884000-1-kafai@fb.com
-
Martin KaFai Lau authored
The TCP_SAVE_SYN has both the network header and tcp header. The total length of the saved syn packet is currently stored in the first 4 bytes (u32) of an array and the actual packet data is stored after that. A later patch will add a bpf helper that allows to get the tcp header alone from the saved syn without the network header. It will be more convenient to have a direct offset to a specific header instead of re-parsing it. This requires to separately store the network hdrlen. The total header length (i.e. network + tcp) is still needed for the current usage in getsockopt. Although this total length can be obtained by looking into the tcphdr and then get the (th->doff << 2), this patch chooses to directly store the tcp hdrlen in the second four bytes of this newly created "struct saved_syn". By using a new struct, it can give a readable name to each individual header length. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190014.2883694-1-kafai@fb.com
-
- 21 Aug, 2020 17 commits
-
-
Andrii Nakryiko authored
Make libbpf logs follow similar pattern and provide more context like section name or program name, where appropriate. Also, add BPF_INSN_SZ constant and use it throughout to clean up code a little bit. This commit doesn't have any functional changes and just removes some code changes out of the way before bigger refactoring in libbpf internals. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820231250.1293069-6-andriin@fb.com
-
Andrii Nakryiko authored
Skip and don't log ELF sections that libbpf knows about and ignores during ELF processing. This allows to not unnecessarily log details about those ELF sections and cleans up libbpf debug log. Ignored sections include DWARF data, string table, empty .text section and few special (e.g., .llvm_addrsig) useless sections. With such ELF sections out of the way, log unrecognized ELF sections at pr_info level to increase visibility. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820231250.1293069-5-andriin@fb.com
-
Andrii Nakryiko authored
__noinline is pretty frequently used, especially with BPF subprograms, so add them along the __always_inline, for user convenience and completeness. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820231250.1293069-4-andriin@fb.com
-
Andrii Nakryiko authored
Factor out common ELF operations done throughout the libbpf. This simplifies usage across multiple places in libbpf, as well as hide error reporting from higher-level functions and make error logging more consistent. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820231250.1293069-3-andriin@fb.com
-
Andrii Nakryiko authored
There is no need to re-build BPF object files if any of the sources of libbpf change. So record more precise dependency only on libbpf/bpf_*.h headers. This eliminates unnecessary re-builds. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820231250.1293069-2-andriin@fb.com
-
Alexei Starovoitov authored
Lorenz Bauer says: ==================== We're currently building a control plane for our BPF socket dispatch work. As part of that, we have a need to create a copy of an existing sockhash, to allow us to change the keys. I previously proposed allowing privileged userspace to look up sockets, which doesn't work due to security concerns (see [1]). In follow up discussions during BPF office hours we identified bpf_iter as a possible solution: instead of accessing sockets from user space we can iterate the source sockhash, and insert the values into a new map. Enabling this requires two pieces: the ability to iterate sockmap and sockhash, as well as being able to call map_update_elem from BPF. This patch set implements the latter: it's now possible to update sockmap from BPF context. As a next step, we can implement bpf_iter for sockmap. === I've done some more fixups, and audited the safe contexts more thoroughly. As a result I'm removing CGROUP_SKB, SK_MSG and SK_SKB for now. Changes in v3: - Use CHECK as much as possible (Yonghong) - Reject ARG_PTR_TO_MAP_VALUE_OR_NULL for sockmap (Yonghong) - Remove CGROUP_SKB, SK_MSG, SK_SKB from safe contexts - Test that the verifier rejects update from unsafe context Changes in v2: - Fix warning in patch #2 (Jakub K) - Renamed override_map_arg_type (John) - Only allow updating sockmap from known safe contexts (John) - Use __s64 for sockmap updates from user space (Yonghong) - Various small test fixes around test macros and such (Yonghong) Thank your for your reviews! 1: https://lore.kernel.org/bpf/20200310174711.7490-1-lmb@cloudflare.com/ ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-
Lorenz Bauer authored
Add a test which copies a socket from a sockmap into another sockmap or sockhash. This excercises bpf_map_update_elem support from BPF context. Compare the socket cookies from source and destination to ensure that the copy succeeded. Also check that the verifier rejects map_update from unsafe contexts. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-7-lmb@cloudflare.com
-
Lorenz Bauer authored
Allow calling bpf_map_update_elem on sockmap and sockhash from a BPF context. The synchronization required for this is a bit fiddly: we need to prevent the socket from changing its state while we add it to the sockmap, since we rely on getting a callback via sk_prot->unhash. However, we can't just lock_sock like in sock_map_sk_acquire because that might sleep. So instead we disable softirq processing and use bh_lock_sock to prevent further modification. Yet, this is still not enough. BPF can be called in contexts where the current CPU might have locked a socket. If the BPF can get a hold of such a socket, inserting it into a sockmap would lead to a deadlock. One straight forward example are sock_ops programs that have ctx->sk, but the same problem exists for kprobes, etc. We deal with this by allowing sockmap updates only from known safe contexts. Improper usage is rejected by the verifier. I've audited the enabled contexts to make sure they can't run in a locked context. It's possible that CGROUP_SKB and others are safe as well, but the auditing here is much more difficult. In any case, we can extend the safe contexts when the need arises. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-6-lmb@cloudflare.com
-
Lorenz Bauer authored
The verifier assumes that map values are simple blobs of memory, and therefore treats ARG_PTR_TO_MAP_VALUE, etc. as such. However, there are map types where this isn't true. For example, sockmap and sockhash store sockets. In general this isn't a big problem: we can just write helpers that explicitly requests PTR_TO_SOCKET instead of ARG_PTR_TO_MAP_VALUE. The one exception are the standard map helpers like map_update_elem, map_lookup_elem, etc. Here it would be nice we could overload the function prototype for different kinds of maps. Unfortunately, this isn't entirely straight forward: We only know the type of the map once we have resolved meta->map_ptr in check_func_arg. This means we can't swap out the prototype in check_helper_call until we're half way through the function. Instead, modify check_func_arg to treat ARG_PTR_TO_MAP_VALUE to mean "the native type for the map" instead of "pointer to memory" for sockmap and sockhash. This means we don't have to modify the function prototype at all Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-5-lmb@cloudflare.com
-
Lorenz Bauer authored
Don't go via map->ops to call sock_map_update_elem, since we know what function to call in bpf_map_update_value. Since we currently don't allow calling map_update_elem from BPF context, we can remove ops->map_update_elem and rename the function to sock_map_update_elem_sys. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-4-lmb@cloudflare.com
-
Lorenz Bauer authored
Merge the two very similar functions sock_map_update_elem and sock_hash_update_elem into one. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-3-lmb@cloudflare.com
-
Lorenz Bauer authored
Initializing psock->sk_proto and other saved callbacks is only done in sk_psock_update_proto, after sk_psock_init has returned. The logic for this is difficult to follow, and needlessly complex. Instead, initialize psock->sk_proto whenever we allocate a new psock. Additionally, assert the following invariants: * The SK has no ULP: ULP does it's own finagling of sk->sk_prot * sk_user_data is unused: we need it to store sk_psock Protect our access to sk_user_data with sk_callback_lock, which is what other users like reuseport arrays, etc. do. The result is that an sk_psock is always fully initialized, and that psock->sk_proto is always the "original" struct proto. The latter allows us to use psock->sk_proto when initializing IPv6 TCP / UDP callbacks for sockmap. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200821102948.21918-2-lmb@cloudflare.com
-
Andrii Nakryiko authored
Add a set of APIs to perf_buffer manage to allow applications to integrate perf buffer polling into existing epoll-based infrastructure. One example is applications using libevent already and wanting to plug perf_buffer polling, instead of relying on perf_buffer__poll() and waste an extra thread to do it. But perf_buffer is still extremely useful to set up and consume perf buffer rings even for such use cases. So to accomodate such new use cases, add three new APIs: - perf_buffer__buffer_cnt() returns number of per-CPU buffers maintained by given instance of perf_buffer manager; - perf_buffer__buffer_fd() returns FD of perf_event corresponding to a specified per-CPU buffer; this FD is then polled independently; - perf_buffer__consume_buffer() consumes data from single per-CPU buffer, identified by its slot index. To support a simpler, but less efficient, way to integrate perf_buffer into external polling logic, also expose underlying epoll FD through perf_buffer__epoll_fd() API. It will need to be followed by perf_buffer__poll(), wasting extra syscall, or perf_buffer__consume(), wasting CPU to iterate buffers with no data. But could be simpler and more convenient for some cases. These APIs allow for great flexiblity, but do not sacrifice general usability of perf_buffer. Also exercise and check new APIs in perf_buffer selftest. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Link: https://lore.kernel.org/bpf/20200821165927.849538-1-andriin@fb.com
-
Alexei Starovoitov authored
Yonghong Song says: ==================== "link" has been an important concept for bpf ecosystem to connect bpf program with other properties. Currently, the information related information can be queried from userspace through bpf command BPF_LINK_GET_NEXT_ID, BPF_LINK_GET_FD_BY_ID and BPF_OBJ_GET_INFO_BY_FD. The information is also available by "cating" /proc/<pid>/fdinfo/<link_fd>. Raw_tracepoint, tracing, cgroup, netns and xdp links are already supported in the kernel and bpftool. This patch added support for bpf iterator. Patch #1 added generic support for link querying interface. Patch #2 implemented callback functions for map element bpf iterators. Patch #3 added bpftool support. Changelogs: v3 -> v4: . return target specific link_info even if target_name buffer is empty. (Andrii) v2 -> v3: . remove extra '\t' when fdinfo prints map_id to make parsing consistent. (Andrii) v1 -> v2: . fix checkpatch.pl warnings. (Jakub) ==================== Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-
Yonghong Song authored
The link query for bpf iterators is implemented. Besides being shown to the user what bpf iterator the link represents, the target_name is also used to filter out what additional information should be printed out, e.g., whether map_id should be shown or not. The following is an example of bpf_iter link dump, plain output or pretty output. $ bpftool link show 11: iter prog 59 target_name task pids test_progs(1749) 34: iter prog 173 target_name bpf_map_elem map_id 127 pids test_progs_1(1753) $ bpftool -p link show [{ "id": 11, "type": "iter", "prog_id": 59, "target_name": "task", "pids": [{ "pid": 1749, "comm": "test_progs" } ] },{ "id": 34, "type": "iter", "prog_id": 173, "target_name": "bpf_map_elem", "map_id": 127, "pids": [{ "pid": 1753, "comm": "test_progs_1" } ] } ] Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200821184420.574430-1-yhs@fb.com
-
Yonghong Song authored
For bpf_map_elem and bpf_sk_local_storage bpf iterators, additional map_id should be shown for fdinfo and userspace query. For example, the following is for a bpf_map_elem iterator. $ cat /proc/1753/fdinfo/9 pos: 0 flags: 02000000 mnt_id: 14 link_type: iter link_id: 34 prog_tag: 104be6d3fe45e6aa prog_id: 173 target_name: bpf_map_elem map_id: 127 Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200821184419.574240-1-yhs@fb.com
-
Yonghong Song authored
This patch implemented bpf_link callback functions show_fdinfo and fill_link_info to support link_query interface. The general interface for show_fdinfo and fill_link_info will print/fill the target_name. Each targets can register show_fdinfo and fill_link_info callbacks to print/fill more target specific information. For example, the below is a fdinfo result for a bpf task iterator. $ cat /proc/1749/fdinfo/7 pos: 0 flags: 02000000 mnt_id: 14 link_type: iter link_id: 11 prog_tag: 990e1f8152f7e54f prog_id: 59 target_name: task Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200821184418.574122-1-yhs@fb.com
-
- 20 Aug, 2020 10 commits
-
-
Andrii Nakryiko authored
Record which built-ins are optional and needed for some of recent BPF CO-RE subtests. Document Clang diff that fixed corner-case issue with __builtin_btf_type_id(). Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200820061411.1755905-4-andriin@fb.com
-
Andrii Nakryiko authored
GCC 4.9 seems to be more strict in some regards. Fix two minor issue it reported. Fixes: 1c1052e0 ("tools/testing/selftests/bpf: Add self-tests for new helper bpf_get_ns_current_pid_tgid.") Fixes: 2d7824ff ("selftests: bpf: Add test for sk_assign") Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200820061411.1755905-3-andriin@fb.com
-
Andrii Nakryiko authored
GCC compilers older than version 5 don't support __builtin_mul_overflow yet. Given GCC 4.9 is the minimal supported compiler for building kernel and the fact that libbpf is a dependency of resolve_btfids, which is dependency of CONFIG_DEBUG_INFO_BTF=y, this needs to be handled. This patch fixes the issue by falling back to slower detection of integer overflow in such cases. Fixes: 029258d7 ("libbpf: Remove any use of reallocarray() in libbpf") Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200820061411.1755905-2-andriin@fb.com
-
Andrii Nakryiko authored
BPF_CALL | BPF_JMP32 is explicitly not allowed by verifier for BPF helper calls, so don't detect it as a valid call. Also drop the check on func_id pointer, as it's currently always non-null. Fixes: 109cea5a ("libbpf: Sanitize BPF program code for bpf_probe_read_{kernel, user}[_str]") Reported-by: Yonghong Song <yhs@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200820061411.1755905-1-andriin@fb.com
-
Daniel Borkmann authored
Alexei Starovoitov says: ==================== This patch set is the first real user of user mode driver facility. The general use case for user mode driver is to ship vmlinux with preloaded BPF programs. In this particular case the user mode driver populates bpffs instance with two BPF iterators. In several months BPF_LSM project would need to preload the kernel with its own set of BPF programs and attach to LSM hooks instead of bpffs. BPF iterators and BPF_LSM are unstable from uapi perspective. They are tracing based and peek into arbitrary kernel data structures. One can question why a kernel module cannot embed BPF programs inside. The reason is that libbpf is necessary to load them. First libbpf loads BPF Type Format, then creates BPF maps, populates them. Then it relocates code sections inside BPF programs, loads BPF programs, and finally attaches them to events. Theoretically libbpf can be rewritten to work in the kernel, but that is massive undertaking. The maintenance of in-kernel libbpf and user space libbpf would be another challenge. Another obstacle to embedding BPF programs into kernel module is sys_bpf api. Loading of programs, BTF, maps goes through the verifier. It validates and optimizes the code. It's possible to provide in-kernel api to all of sys_bpf commands (load progs, create maps, update maps, load BTF, etc), but that is huge amount of work and forever maintenance headache. Hence the decision is to ship vmlinux with user mode drivers that load BPF programs. Just like kernel modules extend vmlinux BPF programs are safe extensions of the kernel and some of them need to ship with vmlinux. This patch set adds a kernel module with user mode driver that populates bpffs with two BPF iterators. $ mount bpffs /my/bpffs/ -t bpf $ ls -la /my/bpffs/ total 4 drwxrwxrwt 2 root root 0 Jul 2 00:27 . drwxr-xr-x 19 root root 4096 Jul 2 00:09 .. -rw------- 1 root root 0 Jul 2 00:27 maps.debug -rw------- 1 root root 0 Jul 2 00:27 progs.debug The user mode driver will load BPF Type Formats, create BPF maps, populate BPF maps, load two BPF programs, attach them to BPF iterators, and finally send two bpf_link IDs back to the kernel. The kernel will pin two bpf_links into newly mounted bpffs instance under names "progs.debug" and "maps.debug". These two files become human readable. $ cat /my/bpffs/progs.debug id name attached 11 dump_bpf_map bpf_iter_bpf_map 12 dump_bpf_prog bpf_iter_bpf_prog 27 test_pkt_access 32 test_main test_pkt_access test_pkt_access 33 test_subprog1 test_pkt_access_subprog1 test_pkt_access 34 test_subprog2 test_pkt_access_subprog2 test_pkt_access 35 test_subprog3 test_pkt_access_subprog3 test_pkt_access 36 new_get_skb_len get_skb_len test_pkt_access 37 new_get_skb_ifindex get_skb_ifindex test_pkt_access 38 new_get_constant get_constant test_pkt_access The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about all BPF programs currently loaded in the system. This information is unstable and will change from kernel to kernel. In some sence this output is similar to 'bpftool prog show' that is using stable api to retreive information about BPF programs. The BPF subsytems grows quickly and there is always demand to show as much info about BPF things as possible. But we cannot expose all that info via stable uapi of bpf syscall, since the details change so much. Right now a BPF program can be attached to only one other BPF program. Folks are working on patches to enable multi-attach, but for debugging it's necessary to see the current state. There is no uapi for that, but above output shows it: 37 new_get_skb_ifindex get_skb_ifindex test_pkt_access 38 new_get_constant get_constant test_pkt_access [1] [2] [3] [1] is the full name of BPF prog from BTF. [2] is the name of function inside target BPF prog. [3] is the name of target BPF prog. [2] and [3] are not exposed via uapi, since they will change from single to multi soon. There are many other cases where bpf internals are useful for debugging, but shouldn't be exposed via uapi due to high rate of changes. systemd mounts /sys/fs/bpf at the start, so this kernel module with user mode driver needs to be available early. BPF_LSM most likely would need to preload BPF programs even earlier. Few interesting observations: - though bpffs comes with two human readble files "progs.debug" and "maps.debug" they can be removed. 'rm -f /sys/fs/bpf/progs.debug' will remove bpf_link and kernel will automatically unload corresponding BPF progs, maps, BTFs. In the future '-o remount' will be able to restore them. This is not implemented yet. - 'ps aux|grep bpf_preload' shows nothing. User mode driver loaded BPF iterators and exited. Nothing is lingering in user space at this point. - We can consider giving 0644 permissions to "progs.debug" and "maps.debug" to allow unprivileged users see BPF things loaded in the system. We cannot do so with "bpftool prog show", since it's using cap_sys_admin parts of bpf syscall. - The functionality split between core kernel, bpf_preload kernel module and user mode driver is very similar to bpfilter style of interaction. - Similar BPF iterators can be used as unstable extensions to /proc. Like mounting /proc can prepopolate some subdirectory in there with a BPF iterator that will print QUIC sockets instead of tcp and udp. Changelog: v5->v6: - refactored Makefiles with Andrii's help - switched to explicit $(MAKE) style - switched to userldlibs instead of userldflags - fixed build issue with libbpf Makefile due to invocation from kbuild - fixed menuconfig order as spotted by Daniel - introduced CONFIG_USERMODE_DRIVER bool that is selected by bpfilter and bpf_preload v4->v5: - addressed Song and Andrii feedback. s/pages/max_entries/ v3->v4: - took THIS_MODULE in patch 3 as suggested by Daniel to simplify the code. - converted BPF iterator to use BTF (when available) to print full BPF program name instead of 16-byte truncated version. This is something I've been using drgn scripts for. Take a look at get_name() in iterators.bpf.c to see how short it is comparing to what user space bpftool would have to do to print the same full name: . get prog info via obj_info_by_fd . do get_fd_by_id from info->btf_id . fetch potentially large BTF of the program from the kernel . parse that BTF in user space to figure out all type boundaries and string section . read info->func_info to get btf_id of func_proto from there . find that btf_id in the parsed BTF That's quite a bit work for bpftool comparing to few lines in get_name(). I guess would be good to make bpftool do this info extraction anyway. While doing this BTF reading in the kernel realized that the verifier is not smart enough to follow double pointers (added to my todo list), otherwise get_name() would have been even shorter. v2->v3: - fixed module unload race (Daniel) - added selftest (Daniel) - fixed build bot warning v1->v2: - changed names to 'progs.debug' and 'maps.debug' to hopefully better indicate instability of the text output. Having dot in the name also guarantees that these special files will not conflict with normal bpf objects pinned in bpffs, since dot is disallowed for normal pins. - instead of hard coding link_name in the core bpf moved into UMD. - cleanedup error handling. - addressed review comments from Yonghong and Andrii. ==================== Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
-
Alexei Starovoitov authored
Add a test that mounts two bpffs instances and checks progs.debug and maps.debug for sanity data. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200819042759.51280-5-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
Add kernel module with user mode driver that populates bpffs with BPF iterators. $ mount bpffs /my/bpffs/ -t bpf $ ls -la /my/bpffs/ total 4 drwxrwxrwt 2 root root 0 Jul 2 00:27 . drwxr-xr-x 19 root root 4096 Jul 2 00:09 .. -rw------- 1 root root 0 Jul 2 00:27 maps.debug -rw------- 1 root root 0 Jul 2 00:27 progs.debug The user mode driver will load BPF Type Formats, create BPF maps, populate BPF maps, load two BPF programs, attach them to BPF iterators, and finally send two bpf_link IDs back to the kernel. The kernel will pin two bpf_links into newly mounted bpffs instance under names "progs.debug" and "maps.debug". These two files become human readable. $ cat /my/bpffs/progs.debug id name attached 11 dump_bpf_map bpf_iter_bpf_map 12 dump_bpf_prog bpf_iter_bpf_prog 27 test_pkt_access 32 test_main test_pkt_access test_pkt_access 33 test_subprog1 test_pkt_access_subprog1 test_pkt_access 34 test_subprog2 test_pkt_access_subprog2 test_pkt_access 35 test_subprog3 test_pkt_access_subprog3 test_pkt_access 36 new_get_skb_len get_skb_len test_pkt_access 37 new_get_skb_ifindex get_skb_ifindex test_pkt_access 38 new_get_constant get_constant test_pkt_access The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about all BPF programs currently loaded in the system. This information is unstable and will change from kernel to kernel as ".debug" suffix conveys. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200819042759.51280-4-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
The program and map iterators work similar to seq_file-s. Once the program is pinned in bpffs it can be read with "cat" tool to print human readable output. In this case about BPF programs and maps. For example: $ cat /sys/fs/bpf/progs.debug id name attached 5 dump_bpf_map bpf_iter_bpf_map 6 dump_bpf_prog bpf_iter_bpf_prog $ cat /sys/fs/bpf/maps.debug id name max_entries 3 iterator.rodata 1 To avoid kernel build dependency on clang 10 separate bpf skeleton generation into manual "make" step and instead check-in generated .skel.h into git. Unlike 'bpftool prog show' in-kernel BTF name is used (when available) to print full name of BPF program instead of 16-byte truncated name. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200819042759.51280-3-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
Refactor the code a bit to extract bpf_link_by_id() helper. It's similar to existing bpf_prog_by_id(). Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200819042759.51280-2-alexei.starovoitov@gmail.com
-
Xu Wang authored
Simplify the return expression. Signed-off-by: Xu Wang <vulab@iscas.ac.cn> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200819025324.14680-1-vulab@iscas.ac.cn
-