- 30 May, 2018 40 commits
-
-
Monk Liu authored
[ Upstream commit dbf79765 ] issue: sometime GFX/MM ib test hit timeout under SRIOV env, root cause is that engine doesn't come back soon enough so the current IB test considered as timed out. fix: for SRIOV GFX IB test wait time need to be expanded a lot during SRIOV runtimei mode since it couldn't really begin before GFX engine come back. for SRIOV MM IB test it always need more time since MM scheduling is not go together with GFX engine, it is controled by h/w MM scheduler so no matter runtime or exclusive mode MM IB test always need more time. v2: use ring type instead of idx to judge Signed-off-by: Monk Liu <Monk.Liu@amd.com> Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Monk Liu authored
[ Upstream commit 9f0178fb ] otherwise there will be DMAR reading error comes out from CP since GFX is still alive and CPC's WPTR_POLL is still enabled, which would lead to DMAR read error. fix: we can hault CPG after hw_fini, but cannot halt CPC becaues KIQ stil need to be alive to let RLCV invoke, but its WPTR_POLL could be disabled. Signed-off-by: Monk Liu <Monk.Liu@amd.com> Acked-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ravikumar Kattekola authored
[ Upstream commit f4aa1bd5 ] Correct vpo_sd_1v8_3v3 regulator max voltage to 3.3V Fixes: 9868bc585ae2 ("ARM: dts: Add support for dra718-evm") Signed-off-by: Ravikumar Kattekola <rk@ti.com> Signed-off-by: Sekhar Nori <nsekhar@ti.com> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Laurent Pinchart authored
[ Upstream commit 215003b4 ] There's no reason to delay initialization of most of the driver (such as mapping memory I/O, getting clocks or enabling runtime PM) to the component master bind handler. This additionally fixes a real PM issue caused enabling runtime PM in the bind handler. The bind handler performs the following sequence of PM operations: pm_runtime_enable(dev); pm_runtime_get_sync(dev); ... (access the hardware to read the device revision) ... pm_runtime_put_sync(dev); If a failure occurs at this point, the error path calls pm_runtime_disable() to balance the pm_runtime_enable() call. To understand the problem, it should be noted that the bind handler is called when one of the component registers itself, which happens in the component's probe handler. Furthermore, as the components are children of the DSS, the device core calls pm_runtime_get_sync() on the DSS platform device before calling the component's probe handler. This increases the DSS power usage count but doesn't runtime resume the device, as runtime PM is disabled at that point. The bind handler is thus called with runtime PM disabled, with the device runtime suspended, but with the power usage count larger than 0. The pm_runtime_get_sync() call will thus further increase the power usage count and runtime resume the device. The pm_runtime_put_sync() handler will decrease the power usage count to a non-zero value and will thus not suspend the device. Finally, the pm_runtime_disable() call will disable runtime PM, preventing the pm_runtime_put() call in the device core from runtime suspending the device. The DSS device is thus left powered on. To fix this, move the initialization code from the bind handler to the probe handler. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk> Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Srinivas Kandagatla authored
[ Upstream commit 48d163b1 ] When Linux is master of BAM, it can directly read registers to know number of supported channels, however when its remotely controlled reading these registers would trigger a crash if the BAM is not yet initialized or powered up on the remote side. This patch allows driver to read num-channels and num-ees from Device Tree for remotely controlled BAM. Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Vinod Koul <vinod.koul@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Cornelia Huck authored
[ Upstream commit 9851bc77 ] vfio-ccw only supports command mode for channel programs, not transport mode. User space is supposed to already take care of that and pass us command-mode ORBs only, but better make sure and return an error to the caller instead of trying to process tcws as ccws. Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Acked-by: Halil Pasic <pasic@linux.vnet.ibm.com> Signed-off-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Niklas Cassel authored
[ Upstream commit 7e065fb9 ] Add missing pin group uart5nocts (all pins except cts), which has been supported by the artpec6 pinctrl driver since its initial submission. Fixes: 00df0582 ("pinctrl: Add pincontrol driver for ARTPEC-6 SoC") Signed-off-by: Niklas Cassel <niklas.cassel@axis.com> Reviewed-by: Rob Herring <robh@kernel.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Richard Fitzgerald authored
[ Upstream commit b89405b6 ] When dt_to_map_one_config() is called with a pinctrl_dev passed in, it should only be using this if the node being looked up is a hog. The code was always using the passed pinctrl_dev without checking whether the dt node referred to it. A pin controller can have pinctrl-n dependencies on other pin controllers in these cases: - the pin controller hardware is external, for example I2C, so needs other pin controller(s) to be setup to communicate with the hardware device. - it is a child of a composite MFD so its of_node is shared with the parent MFD and other children of that MFD. Any part of that MFD could have dependencies on other pin controllers. Because of this, dt_to_map_one_config() can't assume that if it has a pinctrl_dev passed in then the node it looks up must be a hog. It could be a reference to some other pin controller. Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
lionel.debieve@st.com authored
[ Upstream commit 326ed382 ] Avoid issue when probing the RNG without reset if bad status has been detected previously Signed-off-by: Lionel Debieve <lionel.debieve@st.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexey Khoroshilov authored
[ Upstream commit 3c829f47 ] If devm_reset_control_get_exclusive() fails, asm9260_wdt_probe() returns immediately. But clks has been already enabled at that point, so it is required to disable them or to move the code around. Found by Linux Driver Verification project (linuxtesting.org). Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Wim Van Sebroeck <wim@iguana.be> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Govindarajulu Varadarajan authored
[ Upstream commit e8588e26 ] rq should be enabled before posting the buffers to rq desc. If not hw sees stale value and casuses DMAR errors. Signed-off-by: Govindarajulu Varadarajan <gvaradar@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Yoshihiro Shimoda authored
[ Upstream commit 3e081628 ] This patch fixes an issue that a race condition happens between a client driver and the rcar-dmac driver: - The rcar_dmac_isr_transfer_end() is called. - The done list appears, and desc.running is the next active list. - rcar_dmac_chan_get_residue() is called by a client driver before rcar_dmac_isr_channel_thread() is called. - The rcar_dmac_chan_get_residue() will not find any descriptors. - And, the following WARNING happens: WARN(1, "No descriptor for cookie!"); The sh-sci driver with HSCIF (921,600bps) on R-Car H3 can cause this situation. So, this patch checks the done lists in rcar_dmac_chan_get_residue() and returns zero if the done lists has the argument cookie. Tested-by: Nguyen Viet Dung <dung.nguyen.aj@renesas.com> Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Qi Hou authored
[ Upstream commit a3ca8312 ] When booting up with "threadirqs" in command line, all irq handlers of the DMA controller pl330 will be threaded forcedly. These threads will race for the same list, pl330->req_done. Before the callback, the spinlock was released. And after it, the spinlock was taken. This opened an race window where another threaded irq handler could steal the spinlock and be permitted to delete entries of the list, pl330->req_done. If the later deleted an entry that was still referred to by the former, there would be a kernel panic when the former was scheduled and tried to get the next sibling of the deleted entry. The scenario could be depicted as below: Thread: T1 pl330->req_done Thread: T2 | | | | -A-B-C-D- | Locked | | | | Waiting Del A | | | -B-C-D- | Unlocked | | | | Locked Waiting | | | | Del B | | | | -C-D- Unlocked Waiting | | | Locked | get C via B \ - Kernel panic The kernel panic looked like as below: Unable to handle kernel paging request at virtual address dead000000000108 pgd = ffffff8008c9e000 [dead000000000108] *pgd=000000027fffe003, *pud=000000027fffe003, *pmd=0000000000000000 Internal error: Oops: 96000044 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 85 Comm: irq/59-66330000 Not tainted 4.8.24-WR9.0.0.12_standard #2 Hardware name: Broadcom NS2 SVK (DT) task: ffffffc1f5cc3c00 task.stack: ffffffc1f5ce0000 PC is at pl330_irq_handler+0x27c/0x390 LR is at pl330_irq_handler+0x2a8/0x390 pc : [<ffffff80084cb694>] lr : [<ffffff80084cb6c0>] pstate: 800001c5 sp : ffffffc1f5ce3d00 x29: ffffffc1f5ce3d00 x28: 0000000000000140 x27: ffffffc1f5c530b0 x26: dead000000000100 x25: dead000000000200 x24: 0000000000418958 x23: 0000000000000001 x22: ffffffc1f5ccd668 x21: ffffffc1f5ccd590 x20: ffffffc1f5ccd418 x19: dead000000000060 x18: 0000000000000001 x17: 0000000000000007 x16: 0000000000000001 x15: ffffffffffffffff x14: ffffffffffffffff x13: ffffffffffffffff x12: 0000000000000000 x11: 0000000000000001 x10: 0000000000000840 x9 : ffffffc1f5ce0000 x8 : ffffffc1f5cc3338 x7 : ffffff8008ce2020 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000001 x3 : dead000000000200 x2 : dead000000000100 x1 : 0000000000000140 x0 : ffffffc1f5ccd590 Process irq/59-66330000 (pid: 85, stack limit = 0xffffffc1f5ce0020) Stack: (0xffffffc1f5ce3d00 to 0xffffffc1f5ce4000) 3d00: ffffffc1f5ce3d80 ffffff80080f09d0 ffffffc1f5ca0c00 ffffffc1f6f7c600 3d20: ffffffc1f5ce0000 ffffffc1f6f7c600 ffffffc1f5ca0c00 ffffff80080f0998 3d40: ffffffc1f5ce0000 ffffff80080f0000 0000000000000000 0000000000000000 3d60: ffffff8008ce202c ffffff8008ce2020 ffffffc1f5ccd668 ffffffc1f5c530b0 3d80: ffffffc1f5ce3db0 ffffff80080f0d70 ffffffc1f5ca0c40 0000000000000001 3da0: ffffffc1f5ce0000 ffffff80080f0cfc ffffffc1f5ce3e20 ffffff80080bf4f8 3dc0: ffffffc1f5ca0c80 ffffff8008bf3798 ffffff8008955528 ffffffc1f5ca0c00 3de0: ffffff80080f0c30 0000000000000000 0000000000000000 0000000000000000 3e00: 0000000000000000 0000000000000000 0000000000000000 ffffff80080f0b68 3e20: 0000000000000000 ffffff8008083690 ffffff80080bf420 ffffffc1f5ca0c80 3e40: 0000000000000000 0000000000000000 0000000000000000 ffffff80080cb648 3e60: ffffff8008b1c780 0000000000000000 0000000000000000 ffffffc1f5ca0c00 3e80: ffffffc100000000 ffffff8000000000 ffffffc1f5ce3e90 ffffffc1f5ce3e90 3ea0: 0000000000000000 ffffff8000000000 ffffffc1f5ce3eb0 ffffffc1f5ce3eb0 3ec0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3ee0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3f00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3f20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3f40: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3f60: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3f80: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3fa0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 3fc0: 0000000000000000 0000000000000005 0000000000000000 0000000000000000 3fe0: 0000000000000000 0000000000000000 0000000275ce3ff0 0000000275ce3ff8 Call trace: Exception stack(0xffffffc1f5ce3b30 to 0xffffffc1f5ce3c60) 3b20: dead000000000060 0000008000000000 3b40: ffffffc1f5ce3d00 ffffff80084cb694 0000000000000008 0000000000000e88 3b60: ffffffc1f5ce3bb0 ffffff80080dac68 ffffffc1f5ce3b90 ffffff8008826fe4 3b80: 00000000000001c0 00000000000001c0 ffffffc1f5ce3bb0 ffffff800848dfcc 3ba0: 0000000000020000 ffffff8008b15ae4 ffffffc1f5ce3c00 ffffff800808f000 3bc0: 0000000000000010 ffffff80088377f0 ffffffc1f5ccd590 0000000000000140 3be0: dead000000000100 dead000000000200 0000000000000001 0000000000000000 3c00: 0000000000000000 ffffff8008ce2020 ffffffc1f5cc3338 ffffffc1f5ce0000 3c20: 0000000000000840 0000000000000001 0000000000000000 ffffffffffffffff 3c40: ffffffffffffffff ffffffffffffffff 0000000000000001 0000000000000007 [<ffffff80084cb694>] pl330_irq_handler+0x27c/0x390 [<ffffff80080f09d0>] irq_forced_thread_fn+0x38/0x88 [<ffffff80080f0d70>] irq_thread+0x140/0x200 [<ffffff80080bf4f8>] kthread+0xd8/0xf0 [<ffffff8008083690>] ret_from_fork+0x10/0x40 Code: f2a00838 f9405763 aa1c03e1 aa1503e0 (f9000443) ---[ end trace f50005726d31199c ]--- Kernel panic - not syncing: Fatal exception in interrupt SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 0-1 Kernel Offset: disabled Memory Limit: none ---[ end Kernel panic - not syncing: Fatal exception in interrupt To fix this, re-start with the list-head after dropping the lock then re-takeing it. Reviewed-by: Frank Mori Hess <fmh6jj@gmail.com> Tested-by: Frank Mori Hess <fmh6jj@gmail.com> Signed-off-by: Qi Hou <qi.hou@windriver.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ming Lei authored
[ Upstream commit 66231ad3 ] On ARM64, the default page size has been 64K on some distributions, and we should allow ARM64 people to play null_blk. This patch fixes the issue by extend page bitmap size for supporting other non-4KB PAGE_SIZE. Cc: Bart Van Assche <Bart.VanAssche@wdc.com> Cc: Shaohua Li <shli@kernel.org> Cc: Kyungchan Koh <kkc6196@fb.com>, Cc: weiping zhang <zhangweiping@didichuxing.com> Cc: Yi Zhang <yi.zhang@redhat.com> Reported-by: Yi Zhang <yi.zhang@redhat.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dexuan Cui authored
[ Upstream commit 1330fc35 ] This patch fixes the below warnings with new glibc and gcc: hv_vss_daemon.c:100:13: warning: In the GNU C Library, "major" is defined by <sys/sysmacros.h>. For historical compatibility, it is currently defined by <sys/types.h> as well, but we plan to remove this soon. To use "major", include <sys/sysmacros.h> directly. hv_fcopy_daemon.c:42:2: note: 'snprintf' output between 2 and 1040 bytes into a destination of size 260 Signed-off-by: Dexuan Cui <decui@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Linus Walleij authored
[ Upstream commit 2e7a66a8 ] The following happens when connection a DVI output driven from the SiI9022 using a DVI-to-VGA adapter plug: i2c i2c-0: sendbytes: NAK bailout. i2c i2c-0: sendbytes: NAK bailout. Then no picture. Apparently the I2C engine inside the SiI9022 is not smart enough to try to fall back to DDC I2C. Or the vendor have not integrated the electronics properly. I don't know which one it is. After this, the I2C bus seems stalled and the first attempt to read the status register fails, and the code returns with negative return value, and the display fails to initialized. Instead, retry status readout five times and continue even if this fails. Tested on the ARM Versatile Express with a DVI-to-VGA connector, it now gives picture. Introduce a helper struct device *dev variable to make the code more readable. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Link: https://patchwork.freedesktop.org/patch/msgid/20180305101702.13441-1-linus.walleij@linaro.orgSigned-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vivek Gautam authored
[ Upstream commit f8ba22a3 ] Pipe clock comes out of the phy and is available as long as the phy is turned on. Clock controller fails to gate this clock after the phy is turned off and generates a warning. / # [ 33.048561] gcc_usb3_phy_pipe_clk status stuck at 'on' [ 33.048585] ------------[ cut here ]------------ [ 33.052621] WARNING: CPU: 1 PID: 18 at ../drivers/clk/qcom/clk-branch.c:97 clk_branch_wait+0xf0/0x108 [ 33.057384] Modules linked in: [ 33.066497] CPU: 1 PID: 18 Comm: kworker/1:0 Tainted: G W 4.12.0-rc7-00024-gfe926e34c36d-dirty #96 [ 33.069451] Hardware name: Qualcomm Technologies, Inc. DB820c (DT) ... [ 33.278565] [<ffff00000849b27c>] clk_branch_wait+0xf0/0x108 [ 33.286375] [<ffff00000849b2f4>] clk_branch2_disable+0x28/0x34 [ 33.291761] [<ffff0000084868dc>] clk_core_disable+0x5c/0x88 [ 33.297660] [<ffff000008487d68>] clk_core_disable_lock+0x20/0x34 [ 33.303129] [<ffff000008487d98>] clk_disable+0x1c/0x24 [ 33.309384] [<ffff0000083ccd78>] qcom_qmp_phy_poweroff+0x20/0x48 [ 33.314328] [<ffff0000083c53f4>] phy_power_off+0x80/0xdc [ 33.320492] [<ffff00000875c950>] dwc3_core_exit+0x94/0xa0 [ 33.325784] [<ffff00000875c9ac>] dwc3_suspend_common+0x50/0x60 [ 33.331080] [<ffff00000875ca04>] dwc3_runtime_suspend+0x48/0x6c [ 33.336810] [<ffff0000085b82f4>] pm_generic_runtime_suspend+0x28/0x38 [ 33.342627] [<ffff0000085bace0>] __rpm_callback+0x150/0x254 [ 33.349222] [<ffff0000085bae08>] rpm_callback+0x24/0x78 [ 33.354604] [<ffff0000085b9fd8>] rpm_suspend+0xe0/0x4e4 [ 33.359813] [<ffff0000085bb784>] pm_runtime_work+0xdc/0xf0 [ 33.365028] [<ffff0000080d7b30>] process_one_work+0x12c/0x28c [ 33.370576] [<ffff0000080d7ce8>] worker_thread+0x58/0x3b8 [ 33.376393] [<ffff0000080dd4a8>] kthread+0x100/0x12c [ 33.381776] [<ffff0000080836c0>] ret_from_fork+0x10/0x50 Fix this by disabling it as the first thing in phy_exit(). Fixes: e78f3d15 ("phy: qcom-qmp: new qmp phy driver for qcom-chipsets") Signed-off-by: Vivek Gautam <vivek.gautam@codeaurora.org> Signed-off-by: Manu Gautam <mgautam@codeaurora.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Takashi Iwai authored
[ Upstream commit 2e2c177c ] In slave_update() of vmaster code ignores the error from the slave get() callback and copies the values. It's not only about the missing error code but also that this may potentially lead to a leak of uninitialized variables when the slave get() don't clear them. This patch fixes slave_update() not to copy the potentially uninitialized values when an error is returned from the slave get() callback, and to propagate the error value properly. Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Shawn Lin authored
[ Upstream commit a4781c2a ] It turns out that 5us isn't enough for all cases, so let's retry some more times to wait for caldone. Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com> Tested-by: Ziyuan Xu <xzy.xu@rock-chips.com> Signed-off-by: Caesar Wang <wxt@rock-chips.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ivan Gorinov authored
[ Upstream commit 0a5169ad ] IRQ parameters for the SoC devices connected directly to I/O APIC lines (without PCI IRQ routing) may be specified in the Device Tree. Called from DT IRQ parser, irq_create_fwspec_mapping() calls irq_domain_alloc_irqs() with a pointer to irq_fwspec structure as @arg. But x86-specific DT IRQ allocation code casts @arg to of_phandle_args structure pointer and crashes trying to read the IRQ parameters. The function was not converted when the mapping descriptor was changed to irq_fwspec in the generic irqdomain code. Fixes: 11e4438e ("irqdomain: Introduce a firmware-specific IRQ specifier structure") Signed-off-by: Ivan Gorinov <ivan.gorinov@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh+dt@kernel.org> Link: https://lkml.kernel.org/r/a234dee27ea60ce76141872da0d6bdb378b2a9ee.1520450752.git.ivan.gorinov@intel.comSigned-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ivan Gorinov authored
[ Upstream commit 628df9dc ] Commit 08d53aa5 added CRC32 calculation in early_init_dt_verify() and checking in late initcall of_fdt_raw_init(), making early_init_dt_verify() mandatory. The required call to early_init_dt_verify() was not added to the x86-specific implementation, causing failure to create the sysfs entry in of_fdt_raw_init(). Fixes: 08d53aa5 ("of/fdt: export fdt blob as /sys/firmware/fdt") Signed-off-by: Ivan Gorinov <ivan.gorinov@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh+dt@kernel.org> Link: https://lkml.kernel.org/r/c8c7e941efc63b5d25ebf9b6350b0f3df38f6098.1520450752.git.ivan.gorinov@intel.comSigned-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andreas Gruenbacher authored
[ Upstream commit 174d1232 ] The chunk size of allocations in __gfs2_fallocate is calculated incorrectly. The size can collapse, causing __gfs2_fallocate to allocate one block at a time, which is very inefficient. This needs fixing in two places: In gfs2_quota_lock_check, always set ap->allowed to UINT_MAX to indicate that there is no quota limit. This fixes callers that rely on ap->allowed to be set even when quotas are off. In __gfs2_fallocate, reset max_blks to UINT_MAX in each iteration of the loop to make sure that allocation limits from one resource group won't spill over into another resource group. Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com> Signed-off-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Bjorn Andersson authored
[ Upstream commit 90c29ed7 ] hdr.len includes both the size of the header and the fragment, so using this when stepping through the firmware causes us to skip 16 bytes every chunk of 3072 bytes; causing only the first fragment to actually be valid data. Instead use fragment size steps through the firmware blob. Fixes: ea7a1f27 ("soc: qcom: Introduce WCNSS_CTRL SMD client") Reported-by: Will Newton <will.newton@gmail.com> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilia Lin authored
[ Upstream commit e723795c ] Set correct clocks and interrupt values. Fixes the incorrect SPI master configuration. This is mandatory to make the SPI5 interface functional. Signed-off-by: Ilia Lin <ilialin@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kan Liang authored
[ Upstream commit d31fc13f ] There is a bug when reading event->count with large PEBS enabled. Here is an example: # ./read_count 0x71f0 0x122c0 0x1000000001c54 0x100000001257d 0x200000000bdc5 In fixed period mode, the auto-reload mechanism could be enabled for PEBS events, but the calculation of event->count does not take the auto-reload values into account. Anyone who reads event->count will get the wrong result, e.g x86_pmu_read(). This bug was introduced with the auto-reload mechanism enabled since commit: 851559e3 ("perf/x86/intel: Use the PEBS auto reload mechanism when possible") Introduce intel_pmu_save_and_restart_reload() to calculate the event->count only for auto-reload. Since the counter increments a negative counter value and overflows on the sign switch, giving the interval: [-period, 0] the difference between two consequtive reads is: A) value2 - value1; when no overflows have happened in between, B) (0 - value1) + (value2 - (-period)); when one overflow happened in between, C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); when @n overflows happened in between. Here A) is the obvious difference, B) is the extension to the discrete interval, where the first term is to the top of the interval and the second term is from the bottom of the next interval and C) the extension to multiple intervals, where the middle term is the whole intervals covered. The equation for all cases is: value2 - value1 + n * period Previously the event->count is updated right before the sample output. But for case A, there is no PEBS record ready. It needs to be specially handled. Remove the auto-reload code from x86_perf_event_set_period() since we'll not longer call that function in this case. Based-on-code-from: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Fixes: 851559e3 ("perf/x86/intel: Use the PEBS auto reload mechanism when possible") Link: http://lkml.kernel.org/r/1518474035-21006-2-git-send-email-kan.liang@linux.intel.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kan Liang authored
[ Upstream commit f605cfca ] Large fixed period values could be truncated on Broadwell, for example: perf record -e cycles -c 10000000000 Here the fixed period is 0x2540BE400, but the period which finally applied is 0x540BE400 - which is wrong. The reason is that x86_pmu::limit_period() uses an u32 parameter, so the high 32 bits of 'period' get truncated. This bug was introduced in: commit 294fe0f5 ("perf/x86/intel: Add INST_RETIRED.ALL workarounds") It's safe to use u64 instead of u32: - Although the 'left' is s64, the value of 'left' must be positive when calling limit_period(). - bdw_limit_period() only modifies the lowest 6 bits, it doesn't touch the higher 32 bits. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 294fe0f5 ("perf/x86/intel: Add INST_RETIRED.ALL workarounds") Link: http://lkml.kernel.org/r/1519926894-3520-1-git-send-email-kan.liang@linux.intel.com [ Rewrote unacceptably bad changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mark Rutland authored
[ Upstream commit 6b31a2fa ] Currently the arm/arm64 runtime code registers the runtime servies pagetables with ptdump regardless of whether runtime services page tables have been created. As efi_mm.pgd is NULL in these cases, attempting to dump the efi page tables results in a NULL pointer dereference in the ptdump code: /sys/kernel/debug# cat efi_page_tables [ 479.522600] Unable to handle kernel NULL pointer dereference at virtual address 00000000 [ 479.522715] Mem abort info: [ 479.522764] ESR = 0x96000006 [ 479.522850] Exception class = DABT (current EL), IL = 32 bits [ 479.522899] SET = 0, FnV = 0 [ 479.522937] EA = 0, S1PTW = 0 [ 479.528200] Data abort info: [ 479.528230] ISV = 0, ISS = 0x00000006 [ 479.528317] CM = 0, WnR = 0 [ 479.528317] user pgtable: 4k pages, 48-bit VAs, pgd = 0000000064ab0cb0 [ 479.528449] [0000000000000000] *pgd=00000000fbbe4003, *pud=00000000fb66e003, *pmd=0000000000000000 [ 479.528600] Internal error: Oops: 96000006 [#1] PREEMPT SMP [ 479.528664] Modules linked in: [ 479.528699] CPU: 0 PID: 2457 Comm: cat Not tainted 4.15.0-rc3-00065-g2ad2ee7ecb5c-dirty #7 [ 479.528799] Hardware name: FVP Base (DT) [ 479.528899] pstate: 00400009 (nzcv daif +PAN -UAO) [ 479.528941] pc : walk_pgd.isra.1+0x20/0x1d0 [ 479.529011] lr : ptdump_walk_pgd+0x30/0x50 [ 479.529105] sp : ffff00000bf4bc20 [ 479.529185] x29: ffff00000bf4bc20 x28: 0000ffff9d22e000 [ 479.529271] x27: 0000000000020000 x26: ffff80007b4c63c0 [ 479.529358] x25: 00000000014000c0 x24: ffff80007c098900 [ 479.529445] x23: ffff00000bf4beb8 x22: 0000000000000000 [ 479.529532] x21: ffff00000bf4bd70 x20: 0000000000000001 [ 479.529618] x19: ffff00000bf4bcb0 x18: 0000000000000000 [ 479.529760] x17: 000000000041a1c8 x16: ffff0000082139d8 [ 479.529800] x15: 0000ffff9d3c6030 x14: 0000ffff9d2527f4 [ 479.529924] x13: 00000000000003f3 x12: 0000000000000038 [ 479.530000] x11: 0000000000000003 x10: 0101010101010101 [ 479.530099] x9 : 0000000017e94050 x8 : 000000000000003f [ 479.530226] x7 : 0000000000000000 x6 : 0000000000000000 [ 479.530313] x5 : 0000000000000001 x4 : 0000000000000000 [ 479.530416] x3 : ffff000009069fd8 x2 : 0000000000000000 [ 479.530500] x1 : 0000000000000000 x0 : 0000000000000000 [ 479.530599] Process cat (pid: 2457, stack limit = 0x000000005d1b0e6f) [ 479.530660] Call trace: [ 479.530746] walk_pgd.isra.1+0x20/0x1d0 [ 479.530833] ptdump_walk_pgd+0x30/0x50 [ 479.530907] ptdump_show+0x10/0x20 [ 479.530920] seq_read+0xc8/0x470 [ 479.531023] full_proxy_read+0x60/0x90 [ 479.531100] __vfs_read+0x18/0x100 [ 479.531180] vfs_read+0x88/0x160 [ 479.531267] SyS_read+0x48/0xb0 [ 479.531299] el0_svc_naked+0x20/0x24 [ 479.531400] Code: 91400420 f90033a0 a90707a2 f9403fa0 (f9400000) [ 479.531499] ---[ end trace bfe8e28d8acb2b67 ]--- Segmentation fault Let's avoid this problem by only registering the tables after their successful creation, which is also less confusing when EFI runtime services are not in use. Reported-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20180308080020.22828-2-ard.biesheuvel@linaro.orgSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Maurizio Lombardi authored
[ Upstream commit 2bbea6e1 ] when mounting an ISO filesystem sometimes (very rarely) the system hangs because of a race condition between two tasks. PID: 6766 TASK: ffff88007b2a6dd0 CPU: 0 COMMAND: "mount" #0 [ffff880078447ae0] __schedule at ffffffff8168d605 #1 [ffff880078447b48] schedule_preempt_disabled at ffffffff8168ed49 #2 [ffff880078447b58] __mutex_lock_slowpath at ffffffff8168c995 #3 [ffff880078447bb8] mutex_lock at ffffffff8168bdef #4 [ffff880078447bd0] sr_block_ioctl at ffffffffa00b6818 [sr_mod] #5 [ffff880078447c10] blkdev_ioctl at ffffffff812fea50 #6 [ffff880078447c70] ioctl_by_bdev at ffffffff8123a8b3 #7 [ffff880078447c90] isofs_fill_super at ffffffffa04fb1e1 [isofs] #8 [ffff880078447da8] mount_bdev at ffffffff81202570 #9 [ffff880078447e18] isofs_mount at ffffffffa04f9828 [isofs] #10 [ffff880078447e28] mount_fs at ffffffff81202d09 #11 [ffff880078447e70] vfs_kern_mount at ffffffff8121ea8f #12 [ffff880078447ea8] do_mount at ffffffff81220fee #13 [ffff880078447f28] sys_mount at ffffffff812218d6 #14 [ffff880078447f80] system_call_fastpath at ffffffff81698c49 RIP: 00007fd9ea914e9a RSP: 00007ffd5d9bf648 RFLAGS: 00010246 RAX: 00000000000000a5 RBX: ffffffff81698c49 RCX: 0000000000000010 RDX: 00007fd9ec2bc210 RSI: 00007fd9ec2bc290 RDI: 00007fd9ec2bcf30 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000010 R10: 00000000c0ed0001 R11: 0000000000000206 R12: 00007fd9ec2bc040 R13: 00007fd9eb6b2380 R14: 00007fd9ec2bc210 R15: 00007fd9ec2bcf30 ORIG_RAX: 00000000000000a5 CS: 0033 SS: 002b This task was trying to mount the cdrom. It allocated and configured a super_block struct and owned the write-lock for the super_block->s_umount rwsem. While exclusively owning the s_umount lock, it called sr_block_ioctl and waited to acquire the global sr_mutex lock. PID: 6785 TASK: ffff880078720fb0 CPU: 0 COMMAND: "systemd-udevd" #0 [ffff880078417898] __schedule at ffffffff8168d605 #1 [ffff880078417900] schedule at ffffffff8168dc59 #2 [ffff880078417910] rwsem_down_read_failed at ffffffff8168f605 #3 [ffff880078417980] call_rwsem_down_read_failed at ffffffff81328838 #4 [ffff8800784179d0] down_read at ffffffff8168cde0 #5 [ffff8800784179e8] get_super at ffffffff81201cc7 #6 [ffff880078417a10] __invalidate_device at ffffffff8123a8de #7 [ffff880078417a40] flush_disk at ffffffff8123a94b #8 [ffff880078417a88] check_disk_change at ffffffff8123ab50 #9 [ffff880078417ab0] cdrom_open at ffffffffa00a29e1 [cdrom] #10 [ffff880078417b68] sr_block_open at ffffffffa00b6f9b [sr_mod] #11 [ffff880078417b98] __blkdev_get at ffffffff8123ba86 #12 [ffff880078417bf0] blkdev_get at ffffffff8123bd65 #13 [ffff880078417c78] blkdev_open at ffffffff8123bf9b #14 [ffff880078417c90] do_dentry_open at ffffffff811fc7f7 #15 [ffff880078417cd8] vfs_open at ffffffff811fc9cf #16 [ffff880078417d00] do_last at ffffffff8120d53d #17 [ffff880078417db0] path_openat at ffffffff8120e6b2 #18 [ffff880078417e48] do_filp_open at ffffffff8121082b #19 [ffff880078417f18] do_sys_open at ffffffff811fdd33 #20 [ffff880078417f70] sys_open at ffffffff811fde4e #21 [ffff880078417f80] system_call_fastpath at ffffffff81698c49 RIP: 00007f29438b0c20 RSP: 00007ffc76624b78 RFLAGS: 00010246 RAX: 0000000000000002 RBX: ffffffff81698c49 RCX: 0000000000000000 RDX: 00007f2944a5fa70 RSI: 00000000000a0800 RDI: 00007f2944a5fa70 RBP: 00007f2944a5f540 R8: 0000000000000000 R9: 0000000000000020 R10: 00007f2943614c40 R11: 0000000000000246 R12: ffffffff811fde4e R13: ffff880078417f78 R14: 000000000000000c R15: 00007f2944a4b010 ORIG_RAX: 0000000000000002 CS: 0033 SS: 002b This task tried to open the cdrom device, the sr_block_open function acquired the global sr_mutex lock. The call to check_disk_change() then saw an event flag indicating a possible media change and tried to flush any cached data for the device. As part of the flush, it tried to acquire the super_block->s_umount lock associated with the cdrom device. This was the same super_block as created and locked by the previous task. The first task acquires the s_umount lock and then the sr_mutex_lock; the second task acquires the sr_mutex_lock and then the s_umount lock. This patch fixes the issue by moving check_disk_change() out of cdrom_open() and let the caller take care of it. Signed-off-by: Maurizio Lombardi <mlombard@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kan Liang authored
[ Upstream commit 82d71ed0 ] The PMU is disabled in intel_pmu_handle_irq(), but cpuc->enabled is not updated accordingly. This is fine in current usage because no-one checks it - but fix it for future code: for example, the drain_pebs() will be modified to fix an auto-reload bug. Properly save/restore the old PMU state. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: kernel test robot <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/6f44ee84-56f8-79f1-559b-08e371eaeb78@linux.intel.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Guenter Roeck authored
[ Upstream commit ecb29abd ] A negative page register value means that no page needs to be selected. This is used by status register read operations and needs to be accepted. The failure to do so so results in missed status and limit registers. Fixes: da8e48ab ("hwmon: (pmbus) Always call _pmbus_read_byte in core driver") Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Guenter Roeck authored
[ Upstream commit a46f8cd6 ] A negative page register value means that no page needs to be selected. This is used by status register evaluations and needs to be accepted. Fixes: da8e48ab ("hwmon: (pmbus) Always call _pmbus_read_byte in core driver") Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Anholt authored
[ Upstream commit 5651e5e0 ] This fixes bad color output. When I was first testing the device I had the DPI hardware set to 666 mode, but apparently in the refactor to use the bus_format information from the panel driver, I failed to actually update the panel. Signed-off-by: Eric Anholt <eric@anholt.net> Fixes: e8b6f561 ("drm/panel: simple: Add the 7" DPI panel from Adafruit") Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Thierry Reding <treding@nvidia.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180309233332.1769-1-eric@anholt.netSigned-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Peter Zijlstra authored
[ Upstream commit 9e5b127d ] Mark reported his arm64 perf fuzzer runs sometimes splat like: armv8pmu_read_counter+0x1e8/0x2d8 armpmu_event_update+0x8c/0x188 armpmu_read+0xc/0x18 perf_output_read+0x550/0x11e8 perf_event_read_event+0x1d0/0x248 perf_event_exit_task+0x468/0xbb8 do_exit+0x690/0x1310 do_group_exit+0xd0/0x2b0 get_signal+0x2e8/0x17a8 do_signal+0x144/0x4f8 do_notify_resume+0x148/0x1e8 work_pending+0x8/0x14 which asserts that we only call pmu::read() on ACTIVE events. The above callchain does: perf_event_exit_task() perf_event_exit_task_context() task_ctx_sched_out() // INACTIVE perf_event_exit_event() perf_event_set_state(EXIT) // EXIT sync_child_event() perf_event_read_event() perf_output_read() perf_output_read_group() leader->pmu->read() Which results in doing a pmu::read() on an !ACTIVE event. I _think_ this is 'new' since we added attr.inherit_stat, which added the perf_event_read_event() to the exit path, without that perf_event_read_output() would only trigger from samples and for @event to trigger a sample, it's leader _must_ be ACTIVE too. Still, adding this check makes it consistent with the @sub case for the siblings. Reported-and-Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pierre Bourdon authored
[ Upstream commit 66ec32fc ] max17042_get_status uses the core power_supply_am_i_supplied. That function relies on DT properties to figure out the power supply topology, and will error out without DT. Fixes max17042 battery status being reported as "unknown". Signed-off-by: Pierre Bourdon <delroth@google.com> Signed-off-by: Andre Heider <a.heider@gmail.com> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
leilei.lin authored
[ Upstream commit 33801b94 ] There's two problems when installing cgroup events on CPUs: firstly list_update_cgroup_event() only tries to set cpuctx->cgrp for the first event, if that mismatches on @cgrp we'll not try again for later additions. Secondly, when we install a cgroup event into an active context, only issue an event reprogram when the event matches the current cgroup context. This avoids a pointless event reprogramming. Signed-off-by: leilei.lin <leilei.lin@alibaba-inc.com> [ Improved the changelog and comments. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: brendan.d.gregg@gmail.com Cc: eranian@gmail.com Cc: linux-kernel@vger.kernel.org Cc: yang_oliver@hotmail.com Link: http://lkml.kernel.org/r/20180306093637.28247-1-linxiulei@gmail.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chao Yu authored
[ Upstream commit bf617f7a ] If noextent_cache mount option is on, we will never initialize extent tree in inode, but still we're going to access it in f2fs_drop_extent_tree, result in kernel panic as below: BUG: unable to handle kernel NULL pointer dereference at 0000000000000038 IP: _raw_write_lock+0xc/0x30 Call Trace: ? f2fs_drop_extent_tree+0x41/0x70 [f2fs] f2fs_fallocate+0x5a0/0xdd0 [f2fs] ? common_file_perm+0x47/0xc0 ? apparmor_file_permission+0x1a/0x20 vfs_fallocate+0x15b/0x290 SyS_fallocate+0x44/0x70 do_syscall_64+0x6e/0x160 entry_SYSCALL64_slow_path+0x25/0x25 This patch fixes to check extent cache status before using in f2fs_drop_extent_tree. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chao Yu authored
[ Upstream commit cd36d7a1 ] Once CP_TRIMMED_FLAG is set, after a reboot, we will never issue discard before LBA becomes invalid again, fix it by clearing the flag in checkpoint without CP_TRIMMED reason. Fixes: 1f43e2ad ("f2fs: introduce CP_TRIMMED_FLAG to avoid unneeded discard") Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chao Yu authored
[ Upstream commit 17cd07ae ] As Jayashree Mohan reported: A simple workload to reproduce this would be : 1. create foo 2. Write (8K - 16K) // foo size = 16K now 3. fsync() 4. falloc zero_range , keep_size (4202496 - 4210688) // foo size must be 16K 5. fdatasync() Crash now On recovery, we see that the file size is 4210688 and not 16K, which violates the semantics of keep_size flag. We have a test case to reproduce this using CrashMonkey on 4.15 kernel. Try this out by simply running : ./c_harness -f /dev/sda -d /dev/cow_ram0 -t f2fs -e 102400 -P -v tests/generic_468_zero.so The root cause is that we miss to set KEEP_SIZE bit correctly in zero_range when zeroing block cross EOF with FALLOC_FL_KEEP_SIZE, let's fix this missing case. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vaibhav Jain authored
[ Upstream commit 94322ed8 ] PSL9D doesn't have a data-cache that needs to be flushed before resetting the card. However when cxl tries to flush data-cache on such a card, it times-out as PSL_Control register never indicates flush operation complete due to missing data-cache. This is usually indicated in the kernel logs with this message: "WARNING: cache flush timed out" To fix this the patch checks PSL_Debug register CDC-Field(BIT:27) which indicates the absence of a data-cache and sets a flag 'no_data_cache' in 'struct cxl_native' to indicate this. When cxl_data_cache_flush() is called it checks the flag and if set bails out early without requesting a data-cache flush operation to the PSL. Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com> Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alistair Popple authored
[ Upstream commit 2b74e2a9 ] When sending TLB invalidates to the NPU we need to send extra flushes due to a hardware issue. The original implementation would lock the all the ATSD MMIO registers sequentially before unlocking and relocking each of them sequentially to do the extra flush. This introduced a deadlock as it is possible for one thread to hold one ATSD register whilst waiting for another register to be freed while the other thread is holding that register waiting for the one in the first thread to be freed. For example if there are two threads and two ATSD registers: Thread A Thread B ---------------------- Acquire 1 Acquire 2 Release 1 Acquire 1 Wait 1 Wait 2 Both threads will be stuck waiting to acquire a register resulting in an RCU stall warning or soft lockup. This patch solves the deadlock by refactoring the code to ensure registers are not released between flushes and to ensure all registers are either acquired or released together and in order. Fixes: bbd5ff50 ("powerpc/powernv/npu-dma: Add explicit flush when sending an ATSD") Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-