1. 26 Jun, 2017 2 commits
    • Will Deacon's avatar
      Merge branch 'perf/updates' into aarch64/for-next/core · 9ad95c46
      Will Deacon authored
      Merge in arm64 perf updates:
      
        * xgene system PMUv3 support
        * 16-bit events for ARMv8.1
      9ad95c46
    • Luc Van Oostenryck's avatar
      arm64: pass endianness info to sparse · bcde519e
      Luc Van Oostenryck authored
      ARM64 depends on the macro __AARCH64EB__ being defined or not
      to correctly select or define endian-specific macros, structures
      or pieces of code.
      
      This macro is predefined by the compiler but sparse knows nothing
      about it and thus may pre-process files differently from what
      gcc would.
      
      Fix this by passing '-D__AARCH64EL__' or '-D__AARCH64EB__' to
      sparse depending of the endianness of the kernel, like defined
      by GCC.
      
      Note: In most case it won't change anything since most arm64 use
            little-endian (but an allyesconfig would use big-endian!).
      
      CC: Catalin Marinas <catalin.marinas@arm.com>
      CC: Will Deacon <will.deacon@arm.com>
      CC: linux-arm-kernel@lists.infradead.org
      Signed-off-by: default avatarLuc Van Oostenryck <luc.vanoostenryck@gmail.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      bcde519e
  2. 23 Jun, 2017 2 commits
    • Mark Rutland's avatar
      arm64: ftrace: fix !CONFIG_ARM64_MODULE_PLTS kernels · 8486e54d
      Mark Rutland authored
      When a kernel is built without CONFIG_ARM64_MODULE_PLTS, we don't
      generate the expected branch instruction in ftrace_make_nop(). This
      means we pass zero (rather than a valid branch) to ftrace_modify_code()
      as the expected instruction to validate. This causes us to return
      -EINVAL to the core ftrace code for a valid case, resulting in a splat
      at boot time.
      
      This was an unintended effect of commit:
      
        68764420 ("arm64: ftrace: fix building without CONFIG_MODULES")
      
      ... which incorrectly moved the generation of the branch instruction
      into the ifdef for CONFIG_ARM64_MODULE_PLTS.
      
      This patch fixes the issue by moving the ifdef inside of the relevant
      if-else case, and always checking that the branch is in range,
      regardless of CONFIG_ARM64_MODULE_PLTS. This ensures that we generate
      the expected branch instruction, and also improves our sanity checks.
      
      For consistency, both ftrace_make_nop() and ftrace_make_call() are
      updated with this pattern.
      
      Fixes: 68764420 ("arm64: ftrace: fix building without CONFIG_MODULES")
      Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
      Reported-by: default avatarMarc Zyngier <marc.zyngier@arm.com>
      Reviewed-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      8486e54d
    • Dave Martin's avatar
      arm64: signal: Allow expansion of the signal frame · 33f08261
      Dave Martin authored
      This patch defines an extra_context signal frame record that can be
      used to describe an expanded signal frame, and modifies the context
      block allocator and signal frame setup and parsing code to create,
      populate, parse and decode this block as necessary.
      
      To avoid abuse by userspace, parse_user_sigframe() attempts to
      ensure that:
      
       * no more than one extra_context is accepted;
       * the extra context data is a sensible size, and properly placed
         and aligned.
      
      The extra_context data is required to start at the first 16-byte
      aligned address immediately after the dummy terminator record
      following extra_context in rt_sigframe.__reserved[] (as ensured
      during signal delivery).  This serves as a sanity-check that the
      signal frame has not been moved or copied without taking the extra
      data into account.
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
      [will: add __force annotation when casting extra_datap to __user pointer]
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      33f08261
  3. 22 Jun, 2017 7 commits
    • Hoan Tran's avatar
      perf: xgene: Add support for SoC PMU version 3 · c0f7f7ac
      Hoan Tran authored
      This patch adds support for SoC-wide (AKA uncore) Performance Monitoring
      Unit version 3.
      
      It can support up to
       - 2 IOB PMU instances
       - 8 L3C PMU instances
       - 2 MCB PMU instances
       - 8 MCU PMU instances
      and these PMUs support 64 bit counter
      Signed-off-by: default avatarHoan Tran <hotran@apm.com>
      [Mark: stop counters in _xgene_pmu_isr()]
      Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
      [will: make xgene_pmu_v3_ops static]
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      c0f7f7ac
    • Hoan Tran's avatar
      perf: xgene: Move PMU leaf functions into function pointer structure · e35e0a04
      Hoan Tran authored
      This patch moves PMU leaf functions into a function pointer structure.
      It helps code maintain and expasion easier.
      Signed-off-by: default avatarHoan Tran <hotran@apm.com>
      [Mark: remove redundant cast]
      Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
      [will: make xgene_pmu_ops static]
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      e35e0a04
    • Hoan Tran's avatar
      perf: xgene: Parse PMU subnode from the match table · 838955e2
      Hoan Tran authored
      This patch parses PMU Subnode from a match table.
      Signed-off-by: default avatarHoan Tran <hotran@apm.com>
      Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      838955e2
    • Mark Rutland's avatar
      arm64: dump cpu_hwcaps at panic time · 8effeaaf
      Mark Rutland authored
      When debugging a kernel panic(), it can be useful to know which CPU
      features have been detected by the kernel, as some code paths can depend
      on these (and may have been patched at runtime).
      
      This patch adds a notifier to dump the detected CPU caps (as a hex
      string) at panic(), when we log other information useful for debugging.
      On a Juno R1 system running v4.12-rc5, this looks like:
      
      [  615.431249] Kernel panic - not syncing: Fatal exception in interrupt
      [  615.437609] SMP: stopping secondary CPUs
      [  615.441872] Kernel Offset: disabled
      [  615.445372] CPU features: 0x02086
      [  615.448522] Memory Limit: none
      
      A developer can decode this by looking at the corresponding
      <asm/cpucaps.h> bits. For example, the above decodes as:
      
      * bit  1: ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
      * bit  2: ARM64_WORKAROUND_845719
      * bit  7: ARM64_WORKAROUND_834220
      * bit 13: ARM64_HAS_32BIT_EL0
      Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
      Acked-by: default avatarSteve Capper <steve.capper@arm.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      8effeaaf
    • Dave Martin's avatar
      arm64: ptrace: Flush user-RW TLS reg to thread_struct before reading · 936eb65c
      Dave Martin authored
      When reading current's user-writable TLS register (which occurs
      when dumping core for native tasks), it is possible that userspace
      has modified it since the time the task was last scheduled out.
      The new TLS register value is not guaranteed to have been written
      immediately back to thread_struct in this case.
      
      As a result, a coredump can capture stale data for this register.
      Reading the register for a stopped task via ptrace is unaffected.
      
      For native tasks, this patch explicitly flushes the TPIDR_EL0
      register back to thread_struct before dumping when operating on
      current, thus ensuring that coredump contents are up to date.  For
      compat tasks, the TLS register is not user-writable and so cannot
      be out of sync, so no flush is required in compat_tls_get().
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      936eb65c
    • Dave Martin's avatar
      arm64: ptrace: Flush FPSIMD regs back to thread_struct before reading · e1d5a8fb
      Dave Martin authored
      When reading the FPSIMD state of current (which occurs when dumping
      core), it is possible that userspace has modified the FPSIMD
      registers since the time the task was last scheduled out.  Such
      changes are not guaranteed to be reflected immedately in
      thread_struct.
      
      As a result, a coredump can contain stale values for these
      registers.  Reading the registers of a stopped task via ptrace is
      unaffected.
      
      This patch explicitly flushes the CPU state back to thread_struct
      before dumping when operating on current, thus ensuring that
      coredump contents are up to date.
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      e1d5a8fb
    • Dave Martin's avatar
      arm64: ptrace: Fix VFP register dumping in compat coredumps · af66b2d8
      Dave Martin authored
      Currently, VFP registers are omitted from coredumps for compat
      processes, due to a bug in the REGSET_COMPAT_VFP regset
      implementation.
      
      compat_vfp_get() needs to transfer non-contiguous data from
      thread_struct.fpsimd_state, and uses put_user() to handle the
      offending trailing word (FPSCR).  This fails when copying to a
      kernel address (i.e., kbuf && !ubuf), which is what happens when
      dumping core.  As a result, the ELF coredump core code silently
      omits the NT_ARM_VFP note from the dump.
      
      It would be possible to work around this with additional special
      case code for the put_user(), but since user_regset_copyout() is
      explicitly designed to handle this scenario it is cleaner to port
      the put_user() to a user_regset_copyout() call, which this patch
      does.
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      af66b2d8
  4. 20 Jun, 2017 8 commits
    • Luc Van Oostenryck's avatar
      arm64: pass machine size to sparse · f5d28490
      Luc Van Oostenryck authored
      When using sparse on the arm64 tree we get many thousands of
      warnings like 'constant ... is so big it is unsigned long long'
      or 'shift too big (32) for type unsigned long'. This happens
      because by default sparse considers the machine as 32bit and
      defines the size of the types accordingly.
      
      Fix this by passing the '-m64' flag to sparse so that
      sparse can correctly define longs as being 64bit.
      
      CC: Catalin Marinas <catalin.marinas@arm.com>
      CC: Will Deacon <will.deacon@arm.com>
      CC: linux-arm-kernel@lists.infradead.org
      Signed-off-by: default avatarLuc Van Oostenryck <luc.vanoostenryck@gmail.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      f5d28490
    • Dave Martin's avatar
      arm64: signal: factor out signal frame record allocation · bb4322f7
      Dave Martin authored
      This patch factors out the allocator for signal frame optional
      records into a separate function, to ensure consistency and
      facilitate later expansion.
      
      No overrun checking is currently done, because the allocation is in
      user memory and anyway the kernel never tries to allocate enough
      space in the signal frame yet for an overrun to occur.  This
      behaviour will be refined in future patches.
      
      The approach taken in this patch to allocation of the terminator
      record is not very clean: this will also be replaced in subsequent
      patches.
      
      For future extension, a comment is added in sigcontext.h
      documenting the current static allocations in __reserved[].  This
      will be important for determining under what circumstances
      userspace may or may not see an expanded signal frame.
      Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      bb4322f7
    • Dave Martin's avatar
      arm64: signal: factor frame layout and population into separate passes · bb4891a6
      Dave Martin authored
      In preparation for expanding the signal frame, this patch refactors
      the signal frame setup code in setup_sigframe() into two separate
      passes.
      
      The first pass, setup_sigframe_layout(), determines the size of the
      signal frame and its internal layout, including the presence and
      location of optional records.  The resulting knowledge is used to
      allocate and locate the user stack space required for the signal
      frame and to determine which optional records to include.
      
      The second pass, setup_sigframe(), is called once the stack frame
      is allocated in order to populate it with the necessary context
      information.
      
      As a result of these changes, it becomes more natural to represent
      locations in the signal frame by a base pointer and an offset,
      since the absolute address of each location is not known during the
      layout pass.  To be more consistent with this logic,
      parse_user_sigframe() is refactored to describe signal frame
      locations in a similar way.
      
      This change has no effect on the signal ABI, but will make it
      easier to expand the signal frame in future patches.
      Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      bb4891a6
    • Dave Martin's avatar
      arm64: signal: Refactor sigcontext parsing in rt_sigreturn · 47ccb028
      Dave Martin authored
      Currently, rt_sigreturn does very limited checking on the
      sigcontext coming from userspace.
      
      Future additions to the sigcontext data will increase the potential
      for surprises.  Also, it is not clear whether the sigcontext
      extension records are supposed to occur in a particular order.
      
      To allow the parsing code to be extended more easily, this patch
      factors out the sigcontext parsing into a separate function, and
      adds extra checks to validate the well-formedness of the sigcontext
      structure.
      Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      47ccb028
    • Dave Martin's avatar
      arm64: signal: split frame link record from sigcontext structure · 20987de3
      Dave Martin authored
      In order to be able to increase the amount of the data currently
      written to the __reserved[] array in the signal frame, it is
      necessary to overwrite the locations currently occupied by the
      {fp,lr} frame link record pushed at the top of the signal stack.
      
      In order for this to work, this patch detaches the frame link
      record from struct rt_sigframe and places it separately at the top
      of the signal stack.  This will allow subsequent patches to insert
      data between it and __reserved[].
      
      This change relies on the non-ABI status of the placement of the
      frame record with respect to struct sigframe: this status is
      undocumented, but the placement is not declared or described in the
      user headers, and known unwinder implementations (libgcc,
      libunwind, gdb) appear not to rely on it.
      Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: default avatarDave Martin <Dave.Martin@arm.com>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      20987de3
    • Ard Biesheuvel's avatar
      arm64: mm: select CONFIG_ARCH_PROC_KCORE_TEXT · 8f360948
      Ard Biesheuvel authored
      To avoid issues with the /proc/kcore code getting confused about the
      kernels block mappings in the VMALLOC region, enable the existing
      facility that describes the [_text, _end) interval as a separate
      KCORE_TEXT region, which supersedes the KCORE_VMALLOC region that
      it intersects with on arm64.
      Reported-by: default avatarTan Xiaojun <tanxiaojun@huawei.com>
      Tested-by: default avatarTan Xiaojun <tanxiaojun@huawei.com>
      Tested-by: default avatarMark Rutland <mark.rutland@arm.com>
      Acked-by: default avatarMark Rutland <mark.rutland@arm.com>
      Reviewed-by: default avatarLaura Abbott <labbott@redhat.com>
      Reviewed-by: default avatarJiri Olsa <jolsa@kernel.org>
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      8f360948
    • Ard Biesheuvel's avatar
      fs/proc: kcore: use kcore_list type to check for vmalloc/module address · 737326aa
      Ard Biesheuvel authored
      Instead of passing each start address into is_vmalloc_or_module_addr()
      to decide whether it falls into either the VMALLOC or the MODULES region,
      we can simply check the type field of the current kcore_list entry, since
      it will be set to KCORE_VMALLOC based on exactly the same conditions.
      
      As a bonus, when reading the KCORE_TEXT region on architectures that have
      one, this will avoid using vread() on the region if it happens to intersect
      with a KCORE_VMALLOC region. This is due the fact that the KCORE_TEXT
      region is the first one to be added to the kcore region list.
      Reported-by: default avatarTan Xiaojun <tanxiaojun@huawei.com>
      Tested-by: default avatarTan Xiaojun <tanxiaojun@huawei.com>
      Tested-by: default avatarMark Rutland <mark.rutland@arm.com>
      Acked-by: default avatarMark Rutland <mark.rutland@arm.com>
      Reviewed-by: default avatarLaura Abbott <labbott@redhat.com>
      Reviewed-by: default avatarJiri Olsa <jolsa@kernel.org>
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      737326aa
    • Ard Biesheuvel's avatar
      drivers/char: kmem: disable on arm64 · 06c35ef1
      Ard Biesheuvel authored
      As it turns out, arm64 deviates from other architectures in the way it
      maps the VMALLOC region: on most (all?) other architectures, it resides
      strictly above the kernel's direct mapping of DRAM, but on arm64, this
      is the other way around. For instance, for a 48-bit VA configuration,
      we have
      
        modules : 0xffff000000000000 - 0xffff000008000000   (   128 MB)
        vmalloc : 0xffff000008000000 - 0xffff7dffbfff0000   (129022 GB)
        ...
        vmemmap : 0xffff7e0000000000 - 0xffff800000000000   (  2048 GB maximum)
                  0xffff7e0000000000 - 0xffff7e0003ff0000   (    63 MB actual)
        memory  : 0xffff800000000000 - 0xffff8000ffc00000   (  4092 MB)
      
      This has mostly gone unnoticed until now, but it does appear that it
      breaks an assumption in the kmem read/write code, which does something
      like
      
        if (p < (unsigned long) high_memory) {
          ... use straight copy_[to|from]_user() using p as virtual address ...
        }
        ...
        if (count > 0) {
          ... use vread/vwrite for accesses past high_memory ...
        }
      
      The first condition will inadvertently hold for the VMALLOC region if
      VMALLOC_START < PAGE_OFFSET [which is the case on arm64], but the read
      or write will subsequently fail the virt_addr_valid() check, resulting
      in a -ENXIO return value.
      
      Given how kmem seems to be living in borrowed time anyway, and given
      the fact that nobody noticed that the read/write interface is broken
      on arm64 in the first place, let's not bother trying to fix it, but
      simply disable the /dev/kmem interface entirely for arm64.
      Acked-by: default avatarMark Rutland <mark.rutland@arm.com>
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      06c35ef1
  5. 15 Jun, 2017 6 commits
  6. 12 Jun, 2017 9 commits
  7. 07 Jun, 2017 2 commits
    • Ard Biesheuvel's avatar
      arm64: ftrace: add support for far branches to dynamic ftrace · e71a4e1b
      Ard Biesheuvel authored
      Currently, dynamic ftrace support in the arm64 kernel assumes that all
      core kernel code is within range of ordinary branch instructions that
      occur in module code, which is usually the case, but is no longer
      guaranteed now that we have support for module PLTs and address space
      randomization.
      
      Since on arm64, all patching of branch instructions involves function
      calls to the same entry point [ftrace_caller()], we can emit the modules
      with a trampoline that has unlimited range, and patch both the trampoline
      itself and the branch instruction to redirect the call via the trampoline.
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      [will: minor clarification to smp_wmb() comment]
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      e71a4e1b
    • Ard Biesheuvel's avatar
      arm64: ftrace: don't validate branch via PLT in ftrace_make_nop() · f8af0b36
      Ard Biesheuvel authored
      When turning branch instructions into NOPs, we attempt to validate the
      action by comparing the old value at the call site with the opcode of
      a direct relative branch instruction pointing at the old target.
      
      However, these call sites are statically initialized to call _mcount(),
      and may be redirected via a PLT entry if the module is loaded far away
      from the kernel text, leading to false negatives and spurious errors.
      
      So skip the validation if CONFIG_ARM64_MODULE_PLTS is configured.
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      f8af0b36
  8. 06 Jun, 2017 1 commit
  9. 05 Jun, 2017 1 commit
  10. 01 Jun, 2017 1 commit
    • Ard Biesheuvel's avatar
      arm64: kernel: restrict /dev/mem read() calls to linear region · 1151f838
      Ard Biesheuvel authored
      When running lscpu on an AArch64 system that has SMBIOS version 2.0
      tables, it will segfault in the following way:
      
        Unable to handle kernel paging request at virtual address ffff8000bfff0000
        pgd = ffff8000f9615000
        [ffff8000bfff0000] *pgd=0000000000000000
        Internal error: Oops: 96000007 [#1] PREEMPT SMP
        Modules linked in:
        CPU: 0 PID: 1284 Comm: lscpu Not tainted 4.11.0-rc3+ #103
        Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
        task: ffff8000fa78e800 task.stack: ffff8000f9780000
        PC is at __arch_copy_to_user+0x90/0x220
        LR is at read_mem+0xcc/0x140
      
      This is caused by the fact that lspci issues a read() on /dev/mem at the
      offset where it expects to find the SMBIOS structure array. However, this
      region is classified as EFI_RUNTIME_SERVICE_DATA (as per the UEFI spec),
      and so it is omitted from the linear mapping.
      
      So let's restrict /dev/mem read/write access to those areas that are
      covered by the linear region.
      Reported-by: default avatarAlexander Graf <agraf@suse.de>
      Fixes: 4dffbfc4 ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
      Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
      1151f838
  11. 30 May, 2017 1 commit