- 14 Dec, 2014 3 commits
-
-
Artem Bityutskiy authored
commit 052c2807 upstream. Hu (hujianyang@huawei.com) discovered a race condition which may lead to a situation when UBIFS is unable to mount the file-system after an unclean reboot. The problem is theoretical, though. In UBIFS, we have the log, which basically a set of LEBs in a certain area. The log has the tail and the head. Every time user writes data to the file-system, the UBIFS journal grows, and the log grows as well, because we append new reference nodes to the head of the log. So the head moves forward all the time, while the log tail stays at the same position. At any time, the UBIFS master node points to the tail of the log. When we mount the file-system, we scan the log, and we always start from its tail, because this is where the master node points to. The only occasion when the tail of the log changes is the commit operation. The commit operation has 2 phases - "commit start" and "commit end". The former is relatively short, and does not involve much I/O. During this phase we mostly just build various in-memory lists of the things which have to be written to the flash media during "commit end" phase. During the commit start phase, what we do is we "clean" the log. Indeed, the commit operation will index all the data in the journal, so the entire journal "disappears", and therefore the data in the log become unneeded. So we just move the head of the log to the next LEB, and write the CS node there. This LEB will be the tail of the new log when the commit operation finishes. When the "commit start" phase finishes, users may write more data to the file-system, in parallel with the ongoing "commit end" operation. At this point the log tail was not changed yet, it is the same as it had been before we started the commit. The log head keeps moving forward, though. The commit operation now needs to write the new master node, and the new master node should point to the new log tail. After this the LEBs between the old log tail and the new log tail can be unmapped and re-used again. And here is the possible problem. We do 2 operations: (a) We first update the log tail position in memory (see 'ubifs_log_end_commit()'). (b) And then we write the master node (see the big lock of code in 'do_commit()'). But nothing prevents the log head from moving forward between (a) and (b), and the log head may "wrap" now to the old log tail. And when the "wrap" happens, the contends of the log tail gets erased. Now a power cut happens and we are in trouble. We end up with the old master node pointing to the old tail, which was erased. And replay fails because it expects the master node to point to the correct log tail at all times. This patch merges the abovementioned (a) and (b) operations by moving the master node change code to the 'ubifs_log_end_commit()' function, so that it runs with the log mutex locked, which will prevent the log from being changed benween operations (a) and (b). Reported-by: hujianyang <hujianyang@huawei.com> Tested-by: hujianyang <hujianyang@huawei.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Artem Bityutskiy authored
commit 07e19dff upstream. The 'mst_mutex' is not needed since because 'ubifs_write_master()' is only called on the mount path and commit path. The mount path is sequential and there is no parallelism, and the commit path is also serialized - there is only one commit going on at a time. Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Matlack authored
commit 56f17dd3 upstream. The following events can lead to an incorrect KVM_EXIT_MMIO bubbling up to userspace: (1) Guest accesses gpa X without a memory slot. The gfn is cached in struct kvm_vcpu_arch (mmio_gfn). On Intel EPT-enabled hosts, KVM sets the SPTE write-execute-noread so that future accesses cause EPT_MISCONFIGs. (2) Host userspace creates a memory slot via KVM_SET_USER_MEMORY_REGION covering the page just accessed. (3) Guest attempts to read or write to gpa X again. On Intel, this generates an EPT_MISCONFIG. The memory slot generation number that was incremented in (2) would normally take care of this but we fast path mmio faults through quickly_check_mmio_pf(), which only checks the per-vcpu mmio cache. Since we hit the cache, KVM passes a KVM_EXIT_MMIO up to userspace. This patch fixes the issue by using the memslot generation number to validate the mmio cache. Signed-off-by: David Matlack <dmatlack@google.com> [xiaoguangrong: adjust the code to make it simpler for stable-tree fix.] Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Reviewed-by: David Matlack <dmatlack@google.com> Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Tested-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
- 05 Nov, 2014 37 commits
-
-
Ben Hutchings authored
-
Guillaume Nault authored
commit eed4d839 upstream. Use dst_entry held by sk_dst_get() to retrieve tunnel's PMTU. The dst_mtu(__sk_dst_get(tunnel->sock)) call was racy. __sk_dst_get() could return NULL if tunnel->sock->sk_dst_cache was reset just before the call, thus making dst_mtu() dereference a NULL pointer: [ 1937.661598] BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 [ 1937.664005] IP: [<ffffffffa049db88>] pppol2tp_connect+0x33d/0x41e [l2tp_ppp] [ 1937.664005] PGD daf0c067 PUD d9f93067 PMD 0 [ 1937.664005] Oops: 0000 [#1] SMP [ 1937.664005] Modules linked in: l2tp_ppp l2tp_netlink l2tp_core ip6table_filter ip6_tables iptable_filter ip_tables ebtable_nat ebtables x_tables udp_tunnel pppoe pppox ppp_generic slhc deflate ctr twofish_generic twofish_x86_64_3way xts lrw gf128mul glue_helper twofish_x86_64 twofish_common blowfish_generic blowfish_x86_64 blowfish_common des_generic cbc xcbc rmd160 sha512_generic hmac crypto_null af_key xfrm_algo 8021q garp bridge stp llc tun atmtcp clip atm ext3 mbcache jbd iTCO_wdt coretemp kvm_intel iTCO_vendor_support kvm pcspkr evdev ehci_pci lpc_ich mfd_core i5400_edac edac_core i5k_amb shpchp button processor thermal_sys xfs crc32c_generic libcrc32c dm_mod usbhid sg hid sr_mod sd_mod cdrom crc_t10dif crct10dif_common ata_generic ahci ata_piix tg3 libahci libata uhci_hcd ptp ehci_hcd pps_core usbcore scsi_mod libphy usb_common [last unloaded: l2tp_core] [ 1937.664005] CPU: 0 PID: 10022 Comm: l2tpstress Tainted: G O 3.17.0-rc1 #1 [ 1937.664005] Hardware name: HP ProLiant DL160 G5, BIOS O12 08/22/2008 [ 1937.664005] task: ffff8800d8fda790 ti: ffff8800c43c4000 task.ti: ffff8800c43c4000 [ 1937.664005] RIP: 0010:[<ffffffffa049db88>] [<ffffffffa049db88>] pppol2tp_connect+0x33d/0x41e [l2tp_ppp] [ 1937.664005] RSP: 0018:ffff8800c43c7de8 EFLAGS: 00010282 [ 1937.664005] RAX: ffff8800da8a7240 RBX: ffff8800d8c64600 RCX: 000001c325a137b5 [ 1937.664005] RDX: 8c6318c6318c6320 RSI: 000000000000010c RDI: 0000000000000000 [ 1937.664005] RBP: ffff8800c43c7ea8 R08: 0000000000000000 R09: 0000000000000000 [ 1937.664005] R10: ffffffffa048e2c0 R11: ffff8800d8c64600 R12: ffff8800ca7a5000 [ 1937.664005] R13: ffff8800c439bf40 R14: 000000000000000c R15: 0000000000000009 [ 1937.664005] FS: 00007fd7f610f700(0000) GS:ffff88011a600000(0000) knlGS:0000000000000000 [ 1937.664005] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 1937.664005] CR2: 0000000000000020 CR3: 00000000d9d75000 CR4: 00000000000027e0 [ 1937.664005] Stack: [ 1937.664005] ffffffffa049da80 ffff8800d8fda790 000000000000005b ffff880000000009 [ 1937.664005] ffff8800daf3f200 0000000000000003 ffff8800c43c7e48 ffffffff81109b57 [ 1937.664005] ffffffff81109b0e ffffffff8114c566 0000000000000000 0000000000000000 [ 1937.664005] Call Trace: [ 1937.664005] [<ffffffffa049da80>] ? pppol2tp_connect+0x235/0x41e [l2tp_ppp] [ 1937.664005] [<ffffffff81109b57>] ? might_fault+0x9e/0xa5 [ 1937.664005] [<ffffffff81109b0e>] ? might_fault+0x55/0xa5 [ 1937.664005] [<ffffffff8114c566>] ? rcu_read_unlock+0x1c/0x26 [ 1937.664005] [<ffffffff81309196>] SYSC_connect+0x87/0xb1 [ 1937.664005] [<ffffffff813e56f7>] ? sysret_check+0x1b/0x56 [ 1937.664005] [<ffffffff8107590d>] ? trace_hardirqs_on_caller+0x145/0x1a1 [ 1937.664005] [<ffffffff81213dee>] ? trace_hardirqs_on_thunk+0x3a/0x3f [ 1937.664005] [<ffffffff8114c262>] ? spin_lock+0x9/0xb [ 1937.664005] [<ffffffff813092b4>] SyS_connect+0x9/0xb [ 1937.664005] [<ffffffff813e56d2>] system_call_fastpath+0x16/0x1b [ 1937.664005] Code: 10 2a 84 81 e8 65 76 bd e0 65 ff 0c 25 10 bb 00 00 4d 85 ed 74 37 48 8b 85 60 ff ff ff 48 8b 80 88 01 00 00 48 8b b8 10 02 00 00 <48> 8b 47 20 ff 50 20 85 c0 74 0f 83 e8 28 89 83 10 01 00 00 89 [ 1937.664005] RIP [<ffffffffa049db88>] pppol2tp_connect+0x33d/0x41e [l2tp_ppp] [ 1937.664005] RSP <ffff8800c43c7de8> [ 1937.664005] CR2: 0000000000000020 [ 1939.559375] ---[ end trace 82d44500f28f8708 ]--- Fixes: f34c4a35 ("l2tp: take PMTU from tunnel UDP socket") Signed-off-by: Guillaume Nault <g.nault@alphalink.fr> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Amit authored
commit 7e46dddd upstream. Commit d1442d85 ("KVM: x86: Handle errors when RIP is set during far jumps") introduced a bug that caused the fix to be incomplete. Due to incorrect evaluation, far jump to segment with L bit cleared (i.e., 32-bit segment) and RIP with any of the high bits set (i.e, RIP[63:32] != 0) set may not trigger #GP. As we know, this imposes a security problem. In addition, the condition for two warnings was incorrect. Fixes: d1442d85Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> [Add #ifdef CONFIG_X86_64 to avoid complaints of undefined behavior. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jens Axboe authored
commit 46f341ff upstream. Commit 2da78092 changed the locking from a mutex to a spinlock, so we now longer sleep in this context. But there was a leftover might_sleep() in there, which now triggers since we do the final free from an RCU callback. Get rid of it. Reported-by: Pontus Fuchs <pontus.fuchs@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Steven Rostedt (Red Hat) authored
commit 24607f11 upstream. Commit 651e22f2 "ring-buffer: Always reset iterator to reader page" fixed one bug but in the process caused another one. The reset is to update the header page, but that fix also changed the way the cached reads were updated. The cache reads are used to test if an iterator needs to be updated or not. A ring buffer iterator, when created, disables writes to the ring buffer but does not stop other readers or consuming reads from happening. Although all readers are synchronized via a lock, they are only synchronized when in the ring buffer functions. Those functions may be called by any number of readers. The iterator continues down when its not interrupted by a consuming reader. If a consuming read occurs, the iterator starts from the beginning of the buffer. The way the iterator sees that a consuming read has happened since its last read is by checking the reader "cache". The cache holds the last counts of the read and the reader page itself. Commit 651e22f2 changed what was saved by the cache_read when the rb_iter_reset() occurred, making the iterator never match the cache. Then if the iterator calls rb_iter_reset(), it will go into an infinite loop by checking if the cache doesn't match, doing the reset and retrying, just to see that the cache still doesn't match! Which should never happen as the reset is suppose to set the cache to the current value and there's locks that keep a consuming reader from having access to the data. Fixes: 651e22f2 "ring-buffer: Always reset iterator to reader page" Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Julian Anastasov authored
commit 2627b7e1 upstream. commit 8f4e0a18 ("IPVS netns exit causes crash in conntrack") added second ip_vs_conn_drop_conntrack call instead of just adding the needed check. As result, the first call still can cause crash on netns exit. Remove it. Signed-off-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Hans Schillstrom <hans@schillstrom.com> Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Sergio Gelato authored
BugLink: http://bugs.launchpad.net/bugs/1348670 Fix regression introduced in pre-3.14 kernels by cherry-picking aa07c713 (NFSD: Call ->set_acl with a NULL ACL structure if no entries). The affected code was removed in 3.14 by commit 4ac7249e (nfsd: use get_acl and ->set_acl). The ->set_acl methods are already able to cope with a NULL argument. Signed-off-by: Sergio Gelato <Sergio.Gelato@astro.su.se> [bwh: Rewrite the subject] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jan Kara authored
commit 7ba3ec57 upstream. Commit 8e3dffc6 "Ext2: mark inode dirty after the function dquot_free_block_nodirty is called" unveiled a bug in __ext2_get_block() called from ext2_get_xip_mem(). That function called ext2_get_block() mistakenly asking it to map 0 blocks while 1 was intended. Before the above mentioned commit things worked out fine by luck but after that commit we started returning that we allocated 0 blocks while we in fact allocated 1 block and thus allocation was looping until all blocks in the filesystem were exhausted. Fix the problem by properly asking for one block and also add assertion in ext2_get_blocks() to catch similar problems. Reported-and-tested-by: Andiry Xu <andiry.xu@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Mikulas Patocka authored
commit d49ec52f upstream. The DM crypt target accesses memory beyond allocated space resulting in a crash on 32 bit x86 systems. This bug is very old (it dates back to 2.6.25 commit 3a7f6c99 "dm crypt: use async crypto"). However, this bug was masked by the fact that kmalloc rounds the size up to the next power of two. This bug wasn't exposed until 3.17-rc1 commit 298a9fa0 ("dm crypt: use per-bio data"). By switching to using per-bio data there was no longer any padding beyond the end of a dm-crypt allocated memory block. To minimize allocation overhead dm-crypt puts several structures into one block allocated with kmalloc. The block holds struct ablkcipher_request, cipher-specific scratch pad (crypto_ablkcipher_reqsize(any_tfm(cc))), struct dm_crypt_request and an initialization vector. The variable dmreq_start is set to offset of struct dm_crypt_request within this memory block. dm-crypt allocates the block with this size: cc->dmreq_start + sizeof(struct dm_crypt_request) + cc->iv_size. When accessing the initialization vector, dm-crypt uses the function iv_of_dmreq, which performs this calculation: ALIGN((unsigned long)(dmreq + 1), crypto_ablkcipher_alignmask(any_tfm(cc)) + 1). dm-crypt allocated "cc->iv_size" bytes beyond the end of dm_crypt_request structure. However, when dm-crypt accesses the initialization vector, it takes a pointer to the end of dm_crypt_request, aligns it, and then uses it as the initialization vector. If the end of dm_crypt_request is not aligned on a crypto_ablkcipher_alignmask(any_tfm(cc)) boundary the alignment causes the initialization vector to point beyond the allocated space. Fix this bug by calculating the variable iv_size_padding and adding it to the allocated size. Also correct the alignment of dm_crypt_request. struct dm_crypt_request is specific to dm-crypt (it isn't used by the crypto subsystem at all), so it is aligned on __alignof__(struct dm_crypt_request). Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Andy Lutomirski authored
commit d974baa3 upstream. CR4 isn't constant; at least the TSD and PCE bits can vary. TBH, treating CR0 and CR3 as constant scares me a bit, too, but it looks like it's correct. This adds a branch and a read from cr4 to each vm entry. Because it is extremely likely that consecutive entries into the same vcpu will have the same host cr4 value, this fixes up the vmcs instead of restoring cr4 after the fact. A subsequent patch will add a kernel-wide cr4 shadow, reducing the overhead in the common case to just two memory reads and a branch. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org Cc: Petr Matousek <pmatouse@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Add struct vcpu_vmx *vmx parameter to vmx_set_constant_host_state(), done upstream in commit a547c6db ("KVM: VMX: Enable acknowledge interupt on vmexit")] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daniel Borkmann authored
commit 26b87c78 upstream. This scenario is not limited to ASCONF, just taken as one example triggering the issue. When receiving ASCONF probes in the form of ... -------------- INIT[ASCONF; ASCONF_ACK] -------------> <----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------ -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- ---- ASCONF_a; [ASCONF_b; ...; ASCONF_n;] JUNK ------> [...] ---- ASCONF_m; [ASCONF_o; ...; ASCONF_z;] JUNK ------> ... where ASCONF_a, ASCONF_b, ..., ASCONF_z are good-formed ASCONFs and have increasing serial numbers, we process such ASCONF chunk(s) marked with !end_of_packet and !singleton, since we have not yet reached the SCTP packet end. SCTP does only do verification on a chunk by chunk basis, as an SCTP packet is nothing more than just a container of a stream of chunks which it eats up one by one. We could run into the case that we receive a packet with a malformed tail, above marked as trailing JUNK. All previous chunks are here goodformed, so the stack will eat up all previous chunks up to this point. In case JUNK does not fit into a chunk header and there are no more other chunks in the input queue, or in case JUNK contains a garbage chunk header, but the encoded chunk length would exceed the skb tail, or we came here from an entirely different scenario and the chunk has pdiscard=1 mark (without having had a flush point), it will happen, that we will excessively queue up the association's output queue (a correct final chunk may then turn it into a response flood when flushing the queue ;)): I ran a simple script with incremental ASCONF serial numbers and could see the server side consuming excessive amount of RAM [before/after: up to 2GB and more]. The issue at heart is that the chunk train basically ends with !end_of_packet and !singleton markers and since commit 2e3216cd ("sctp: Follow security requirement of responding with 1 packet") therefore preventing an output queue flush point in sctp_do_sm() -> sctp_cmd_interpreter() on the input chunk (chunk = event_arg) even though local_cork is set, but its precedence has changed since then. In the normal case, the last chunk with end_of_packet=1 would trigger the queue flush to accommodate possible outgoing bundling. In the input queue, sctp_inq_pop() seems to do the right thing in terms of discarding invalid chunks. So, above JUNK will not enter the state machine and instead be released and exit the sctp_assoc_bh_rcv() chunk processing loop. It's simply the flush point being missing at loop exit. Adding a try-flush approach on the output queue might not work as the underlying infrastructure might be long gone at this point due to the side-effect interpreter run. One possibility, albeit a bit of a kludge, would be to defer invalid chunk freeing into the state machine in order to possibly trigger packet discards and thus indirectly a queue flush on error. It would surely be better to discard chunks as in the current, perhaps better controlled environment, but going back and forth, it's simply architecturally not possible. I tried various trailing JUNK attack cases and it seems to look good now. Joint work with Vlad Yasevich. Fixes: 2e3216cd ("sctp: Follow security requirement of responding with 1 packet") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daniel Borkmann authored
commit b69040d8 upstream. When receiving a e.g. semi-good formed connection scan in the form of ... -------------- INIT[ASCONF; ASCONF_ACK] -------------> <----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------ -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- ---------------- ASCONF_a; ASCONF_b -----------------> ... where ASCONF_a equals ASCONF_b chunk (at least both serials need to be equal), we panic an SCTP server! The problem is that good-formed ASCONF chunks that we reply with ASCONF_ACK chunks are cached per serial. Thus, when we receive a same ASCONF chunk twice (e.g. through a lost ASCONF_ACK), we do not need to process them again on the server side (that was the idea, also proposed in the RFC). Instead, we know it was cached and we just resend the cached chunk instead. So far, so good. Where things get nasty is in SCTP's side effect interpreter, that is, sctp_cmd_interpreter(): While incoming ASCONF_a (chunk = event_arg) is being marked !end_of_packet and !singleton, and we have an association context, we do not flush the outqueue the first time after processing the ASCONF_ACK singleton chunk via SCTP_CMD_REPLY. Instead, we keep it queued up, although we set local_cork to 1. Commit 2e3216cd changed the precedence, so that as long as we get bundled, incoming chunks we try possible bundling on outgoing queue as well. Before this commit, we would just flush the output queue. Now, while ASCONF_a's ASCONF_ACK sits in the corked outq, we continue to process the same ASCONF_b chunk from the packet. As we have cached the previous ASCONF_ACK, we find it, grab it and do another SCTP_CMD_REPLY command on it. So, effectively, we rip the chunk->list pointers and requeue the same ASCONF_ACK chunk another time. Since we process ASCONF_b, it's correctly marked with end_of_packet and we enforce an uncork, and thus flush, thus crashing the kernel. Fix it by testing if the ASCONF_ACK is currently pending and if that is the case, do not requeue it. When flushing the output queue we may relink the chunk for preparing an outgoing packet, but eventually unlink it when it's copied into the skb right before transmission. Joint work with Vlad Yasevich. Fixes: 2e3216cd ("sctp: Follow security requirement of responding with 1 packet") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daniel Borkmann authored
commit 9de7922b upstream. Commit 6f4c618d ("SCTP : Add paramters validity check for ASCONF chunk") added basic verification of ASCONF chunks, however, it is still possible to remotely crash a server by sending a special crafted ASCONF chunk, even up to pre 2.6.12 kernels: skb_over_panic: text:ffffffffa01ea1c3 len:31056 put:30768 head:ffff88011bd81800 data:ffff88011bd81800 tail:0x7950 end:0x440 dev:<NULL> ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:129! [...] Call Trace: <IRQ> [<ffffffff8144fb1c>] skb_put+0x5c/0x70 [<ffffffffa01ea1c3>] sctp_addto_chunk+0x63/0xd0 [sctp] [<ffffffffa01eadaf>] sctp_process_asconf+0x1af/0x540 [sctp] [<ffffffff8152d025>] ? _read_unlock_bh+0x15/0x20 [<ffffffffa01e0038>] sctp_sf_do_asconf+0x168/0x240 [sctp] [<ffffffffa01e3751>] sctp_do_sm+0x71/0x1210 [sctp] [<ffffffff8147645d>] ? fib_rules_lookup+0xad/0xf0 [<ffffffffa01e6b22>] ? sctp_cmp_addr_exact+0x32/0x40 [sctp] [<ffffffffa01e8393>] sctp_assoc_bh_rcv+0xd3/0x180 [sctp] [<ffffffffa01ee986>] sctp_inq_push+0x56/0x80 [sctp] [<ffffffffa01fcc42>] sctp_rcv+0x982/0xa10 [sctp] [<ffffffffa01d5123>] ? ipt_local_in_hook+0x23/0x28 [iptable_filter] [<ffffffff8148bdc9>] ? nf_iterate+0x69/0xb0 [<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0 [<ffffffff8148bf86>] ? nf_hook_slow+0x76/0x120 [<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0 [<ffffffff81496ded>] ip_local_deliver_finish+0xdd/0x2d0 [<ffffffff81497078>] ip_local_deliver+0x98/0xa0 [<ffffffff8149653d>] ip_rcv_finish+0x12d/0x440 [<ffffffff81496ac5>] ip_rcv+0x275/0x350 [<ffffffff8145c88b>] __netif_receive_skb+0x4ab/0x750 [<ffffffff81460588>] netif_receive_skb+0x58/0x60 This can be triggered e.g., through a simple scripted nmap connection scan injecting the chunk after the handshake, for example, ... -------------- INIT[ASCONF; ASCONF_ACK] -------------> <----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------ -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- ------------------ ASCONF; UNKNOWN ------------------> ... where ASCONF chunk of length 280 contains 2 parameters ... 1) Add IP address parameter (param length: 16) 2) Add/del IP address parameter (param length: 255) ... followed by an UNKNOWN chunk of e.g. 4 bytes. Here, the Address Parameter in the ASCONF chunk is even missing, too. This is just an example and similarly-crafted ASCONF chunks could be used just as well. The ASCONF chunk passes through sctp_verify_asconf() as all parameters passed sanity checks, and after walking, we ended up successfully at the chunk end boundary, and thus may invoke sctp_process_asconf(). Parameter walking is done with WORD_ROUND() to take padding into account. In sctp_process_asconf()'s TLV processing, we may fail in sctp_process_asconf_param() e.g., due to removal of the IP address that is also the source address of the packet containing the ASCONF chunk, and thus we need to add all TLVs after the failure to our ASCONF response to remote via helper function sctp_add_asconf_response(), which basically invokes a sctp_addto_chunk() adding the error parameters to the given skb. When walking to the next parameter this time, we proceed with ... length = ntohs(asconf_param->param_hdr.length); asconf_param = (void *)asconf_param + length; ... instead of the WORD_ROUND()'ed length, thus resulting here in an off-by-one that leads to reading the follow-up garbage parameter length of 12336, and thus throwing an skb_over_panic for the reply when trying to sctp_addto_chunk() next time, which implicitly calls the skb_put() with that length. Fix it by using sctp_walk_params() [ which is also used in INIT parameter processing ] macro in the verification *and* in ASCONF processing: it will make sure we don't spill over, that we walk parameters WORD_ROUND()'ed. Moreover, we're being more defensive and guard against unknown parameter types and missized addresses. Joint work with Vlad Yasevich. Fixes: b896b82b ("[SCTP] ADDIP: Support for processing incoming ASCONF_ACK chunks.") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: - Adjust context - sctp_sf_violation_paramlen() doesn't take a struct net * parameter] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Amit authored
commit d1442d85 upstream. Far jmp/call/ret may fault while loading a new RIP. Currently KVM does not handle this case, and may result in failed vm-entry once the assignment is done. The tricky part of doing so is that loading the new CS affects the VMCS/VMCB state, so if we fail during loading the new RIP, we are left in unconsistent state. Therefore, this patch saves on 64-bit the old CS descriptor and restores it if loading RIP failed. This fixes CVE-2014-3647. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Adjust context - __load_segment_descriptor() does not take an in_task_switch parameter] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Paolo Bonzini authored
commit 2356aaeb upstream. During task switch, all of CS.DPL, CS.RPL, SS.DPL must match (in addition to all the other requirements) and will be the new CPL. So far this worked by carefully setting the CS selector and flag before doing the task switch; setting CS.selector will already change the CPL. However, this will not work once we get the CPL from SS.DPL, because then you will have to set the full segment descriptor cache to change the CPL. ctxt->ops->cpl(ctxt) will then return the old CPL during the task switch, and the check that SS.DPL == CPL will fail. Temporarily assume that the CPL comes from CS.RPL during task switch to a protected-mode task. This is the same approach used in QEMU's emulation code, which (until version 2.0) manually tracks the CPL. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Adjust context - load_state_from_tss32() does not support VM86 mode] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Amit authored
commit 234f3ce4 upstream. Before changing rip (during jmp, call, ret, etc.) the target should be asserted to be canonical one, as real CPUs do. During sysret, both target rsp and rip should be canonical. If any of these values is noncanonical, a #GP exception should occur. The exception to this rule are syscall and sysenter instructions in which the assigned rip is checked during the assignment to the relevant MSRs. This patch fixes the emulator to behave as real CPUs do for near branches. Far branches are handled by the next patch. This fixes CVE-2014-3647. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Adjust context - Use ctxt->regs[] instead of reg_read(), reg_write(), reg_rmw()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Amit authored
commit 05c83ec9 upstream. Relative jumps and calls do the masking according to the operand size, and not according to the address size as the KVM emulator does today. This patch fixes KVM behavior. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takuya Yoshikawa authored
commit d4ddafcd upstream. CALL: E8 Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Petr Matousek authored
commit a642fc30 upstream. On systems with invvpid instruction support (corresponding bit in IA32_VMX_EPT_VPID_CAP MSR is set) guest invocation of invvpid causes vm exit, which is currently not handled and results in propagation of unknown exit to userspace. Fix this by installing an invvpid vm exit handler. This is CVE-2014-3646. Signed-off-by: Petr Matousek <pmatouse@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Adjust filename - Drop inapplicable change to exit reason string array] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Har'El authored
commit bfd0a56b upstream. If we let L1 use EPT, we should probably also support the INVEPT instruction. In our current nested EPT implementation, when L1 changes its EPT table for L2 (i.e., EPT12), L0 modifies the shadow EPT table (EPT02), and in the course of this modification already calls INVEPT. But if last level of shadow page is unsync not all L1's changes to EPT12 are intercepted, which means roots need to be synced when L1 calls INVEPT. Global INVEPT should not be different since roots are synced by kvm_mmu_load() each time EPTP02 changes. Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Nadav Har'El <nyh@il.ibm.com> Signed-off-by: Jun Nakajima <jun.nakajima@intel.com> Signed-off-by: Xinhao Xu <xinhao.xu@intel.com> Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com> Signed-off-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Adjust context, filename - Simplify handle_invept() as recommended by Paolo - nEPT is not supported so we always raise #UD] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Andy Honig authored
commit 2febc839 upstream. There's a race condition in the PIT emulation code in KVM. In __kvm_migrate_pit_timer the pit_timer object is accessed without synchronization. If the race condition occurs at the wrong time this can crash the host kernel. This fixes CVE-2014-3611. Signed-off-by: Andrew Honig <ahonig@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Nadav Amit authored
commit 854e8bb1 upstream. Upon WRMSR, the CPU should inject #GP if a non-canonical value (address) is written to certain MSRs. The behavior is "almost" identical for AMD and Intel (ignoring MSRs that are not implemented in either architecture since they would anyhow #GP). However, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if non-canonical address is written on Intel but not on AMD (which ignores the top 32-bits). Accordingly, this patch injects a #GP on the MSRs which behave identically on Intel and AMD. To eliminate the differences between the architecutres, the value which is written to IA32_SYSENTER_ESP and IA32_SYSENTER_EIP is turned to canonical value before writing instead of injecting a #GP. Some references from Intel and AMD manuals: According to Intel SDM description of WRMSR instruction #GP is expected on WRMSR "If the source register contains a non-canonical address and ECX specifies one of the following MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP." According to AMD manual instruction manual: LSTAR/CSTAR (SYSCALL): "The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If an RIP written by WRMSR is not in canonical form, a general-protection exception (#GP) occurs." IA32_GS_BASE and IA32_FS_BASE (WRFSBASE/WRGSBASE): "The address written to the base field must be in canonical form or a #GP fault will occur." IA32_KERNEL_GS_BASE (SWAPGS): "The address stored in the KernelGSbase MSR must be in canonical form." This patch fixes CVE-2014-3610. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - The various set_msr() functions all separate msr_index and data parameters] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Hannes Frederic Sowa authored
commit 916e4cf4 upstream. Currently we generate a new fragmentation id on UFO segmentation. It is pretty hairy to identify the correct net namespace and dst there. Especially tunnels use IFF_XMIT_DST_RELEASE and thus have no skb_dst available at all. This causes unreliable or very predictable ipv6 fragmentation id generation while segmentation. Luckily we already have pregenerated the ip6_frag_id in ip6_ufo_append_data and can use it here. Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: adjust filename, indentation] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Theodore Ts'o authored
commit c99d1e6e upstream. If we suffer a block allocation failure (for example due to a memory allocation failure), it's possible that we will call ext4_discard_allocated_blocks() before we've actually allocated any blocks. In that case, fe_len and fe_start in ac->ac_f_ex will still be zero, and this will result in mb_free_blocks(inode, e4b, 0, 0) triggering the BUG_ON on mb_free_blocks(): BUG_ON(last >= (sb->s_blocksize << 3)); Fix this by bailing out of ext4_discard_allocated_blocks() if fs_len is zero. Also fix a missing ext4_mb_unload_buddy() call in ext4_discard_allocated_blocks(). Google-Bug-Id: 16844242 Fixes: 86f0afd4Signed-off-by: Theodore Ts'o <tytso@mit.edu> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
chenweilong authored
It fix the bug 67951 on bugzilla https://bugzilla.kernel.org/show_bug.cgi?id=67951 The patch can't be applied directly, as it' used the function introduced by "commit 94e187c0" ip6_rt_put(), that patch can't be applied directly either. ==================== From: Gao feng <gaofeng@cn.fujitsu.com> commit 33d99113 upstream. This commit don't have a stable tag, but it fix the bug no reply after loopback down-up.It's very worthy to be applied to stable 3.4 kernels. The bug is 67951 on bugzilla https://bugzilla.kernel.org/show_bug.cgi?id=67951 CC: Sabrina Dubroca <sd@queasysnail.net> CC: Hannes Frederic Sowa <hannes@stressinduktion.org> Reported-by: Weilong Chen <chenweilong@huawei.com> Signed-off-by: Weilong Chen <chenweilong@huawei.com> Signed-off-by: Gao feng <gaofeng@cn.fujitsu.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> [weilong: s/ip6_rt_put/dst_release] Signed-off-by: Chen Weilong <chenweilong@huawei.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marcelo Ricardo Leitner authored
Further tests revealed that after moving the garbage collector to a work queue and protecting it with a spinlock may leave the system prone to soft lockups if bottom half gets very busy. It was reproced with a set of firewall rules that REJECTed packets. If the NIC bottom half handler ends up running on the same CPU that is running the garbage collector on a very large cache, the garbage collector will not be able to do its job due to the amount of work needed for handling the REJECTs and also won't reschedule. The fix is to disable bottom half during the garbage collecting, as it already was in the first place (most calls to it came from softirqs). Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marcelo Ricardo Leitner authored
When rt_intern_hash() has to deal with neighbour cache overflowing, it triggers the route cache garbage collector in an attempt to free some references on neighbour entries. Such call cannot be done async but should also not run in parallel with an already-running one, so that they don't collapse fighting over the hash lock entries. This patch thus blocks parallel executions with spinlocks: - A call from worker and from rt_intern_hash() are not the same, and cannot be merged, thus they will wait each other on rt_gc_lock. - Calls to gc from rt_intern_hash() may happen in parallel but we must wait for it to finish in order to try again. This dedup and synchrinozation is then performed by the locking just before calling __do_rt_garbage_collect(). Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marcelo Ricardo Leitner authored
Currently the route garbage collector gets called by dst_alloc() if it have more entries than the threshold. But it's an expensive call, that don't really need to be done by then. Another issue with current way is that it allows running the garbage collector with the same start parameters on multiple CPUs at once, which is not optimal. A system may even soft lockup if the cache is big enough as the garbage collectors will be fighting over the hash lock entries. This patch thus moves the garbage collector to run asynchronously on a work queue, much similar to how rt_expire_check runs. There is one condition left that allows multiple executions, which is handled by the next patch. Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Yoichi Yuasa authored
commit 5596b0b2 upstream. [ 1.904000] BUG: scheduling while atomic: swapper/1/0x00000002 [ 1.908000] Modules linked in: [ 1.916000] CPU: 0 PID: 1 Comm: swapper Not tainted 3.12.0-rc2-lemote-los.git-5318619-dirty #1 [ 1.920000] Stack : 0000000031aac000 ffffffff810d0000 0000000000000052 ffffffff802730a4 0000000000000000 0000000000000001 ffffffff810cdf90 ffffffff810d0000 ffffffff8068b968 ffffffff806f5537 ffffffff810cdf90 980000009f0782e8 0000000000000001 ffffffff80720000 ffffffff806b0000 980000009f078000 980000009f290000 ffffffff805f312c 980000009f05b5d8 ffffffff80233518 980000009f05b5e8 ffffffff80274b7c 980000009f078000 ffffffff8068b968 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 980000009f05b520 0000000000000000 ffffffff805f2f6c 0000000000000000 ffffffff80700000 ffffffff80700000 ffffffff806fc758 ffffffff80700000 ffffffff8020be98 ffffffff806fceb0 ffffffff805f2f6c ... [ 2.028000] Call Trace: [ 2.032000] [<ffffffff8020be98>] show_stack+0x80/0x98 [ 2.036000] [<ffffffff805f2f6c>] __schedule_bug+0x44/0x6c [ 2.040000] [<ffffffff805fac58>] __schedule+0x518/0x5b0 [ 2.044000] [<ffffffff805f8a58>] schedule_timeout+0x128/0x1f0 [ 2.048000] [<ffffffff80240314>] msleep+0x3c/0x60 [ 2.052000] [<ffffffff80495400>] do_probe+0x238/0x3a8 [ 2.056000] [<ffffffff804958b0>] ide_probe_port+0x340/0x7e8 [ 2.060000] [<ffffffff80496028>] ide_host_register+0x2d0/0x7a8 [ 2.064000] [<ffffffff8049c65c>] ide_pci_init_two+0x4e4/0x790 [ 2.068000] [<ffffffff8049f9b8>] amd74xx_probe+0x148/0x2c8 [ 2.072000] [<ffffffff803f571c>] pci_device_probe+0xc4/0x130 [ 2.076000] [<ffffffff80478f60>] driver_probe_device+0x98/0x270 [ 2.080000] [<ffffffff80479298>] __driver_attach+0xe0/0xe8 [ 2.084000] [<ffffffff80476ab0>] bus_for_each_dev+0x78/0xe0 [ 2.088000] [<ffffffff80478468>] bus_add_driver+0x230/0x310 [ 2.092000] [<ffffffff80479b44>] driver_register+0x84/0x158 [ 2.096000] [<ffffffff80200504>] do_one_initcall+0x104/0x160 Signed-off-by: Yoichi Yuasa <yuasa@linux-mips.org> Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi> Tested-by: Aaro Koskinen <aaro.koskinen@iki.fi> Cc: linux-mips@linux-mips.org Cc: Linux Kernel Mailing List <linux-kernel@vger.kernel.org> Patchwork: https://patchwork.linux-mips.org/patch/5941/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Josh Triplett authored
commit 361e9dfb upstream. The buffers sized by CONFIG_LOG_BUF_SHIFT and CONFIG_LOG_CPU_MAX_BUF_SHIFT do not exist if CONFIG_PRINTK=n, so don't ask about their size at all. Signed-off-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Randy Dunlap <rdunlap@infradead.org> [bwh: Backported to 3.2: drop change to CONFIG_LOG_CPU_MAX_BUF_SHIFT] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Peter Zijlstra authored
commit 6c72e350 upstream. Oleg noticed that a cleanup by Sylvain actually uncovered a bug; by calling perf_event_free_task() when failing sched_fork() we will not yet have done the memset() on ->perf_event_ctxp[] and will therefore try and 'free' the inherited contexts, which are still in use by the parent process. This is bad.. Suggested-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Mel Gorman authored
commit d3cb8bf6 upstream. A migration entry is marked as write if pte_write was true at the time the entry was created. The VMA protections are not double checked when migration entries are being removed as mprotect marks write-migration-entries as read. It means that potentially we take a spurious fault to mark PTEs write again but it's straight-forward. However, there is a race between write migrations being marked read and migrations finishing. This potentially allows a PTE to be write that should have been read. Close this race by double checking the VMA permissions using maybe_mkwrite when migration completes. [torvalds@linux-foundation.org: use maybe_mkwrite] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Miklos Szeredi authored
commit b928095b upstream. If overwriting an empty directory with rename, then need to drop the extra nlink. Test prog: #include <stdio.h> #include <fcntl.h> #include <err.h> #include <sys/stat.h> int main(void) { const char *test_dir1 = "test-dir1"; const char *test_dir2 = "test-dir2"; int res; int fd; struct stat statbuf; res = mkdir(test_dir1, 0777); if (res == -1) err(1, "mkdir(\"%s\")", test_dir1); res = mkdir(test_dir2, 0777); if (res == -1) err(1, "mkdir(\"%s\")", test_dir2); fd = open(test_dir2, O_RDONLY); if (fd == -1) err(1, "open(\"%s\")", test_dir2); res = rename(test_dir1, test_dir2); if (res == -1) err(1, "rename(\"%s\", \"%s\")", test_dir1, test_dir2); res = fstat(fd, &statbuf); if (res == -1) err(1, "fstat(%i)", fd); if (statbuf.st_nlink != 0) { fprintf(stderr, "nlink is %lu, should be 0\n", statbuf.st_nlink); return 1; } return 0; } Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Joseph Qi authored
commit 5760a97c upstream. There is a deadlock case which reported by Guozhonghua: https://oss.oracle.com/pipermail/ocfs2-devel/2014-September/010079.html This case is caused by &res->spinlock and &dlm->master_lock misordering in different threads. It was introduced by commit 8d400b81 ("ocfs2/dlm: Clean up refmap helpers"). Since lockres is new, it doesn't not require the &res->spinlock. So remove it. Fixes: 8d400b81 ("ocfs2/dlm: Clean up refmap helpers") Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reviewed-by: joyce.xue <xuejiufei@huawei.com> Reported-by: Guozhonghua <guozhonghua@h3c.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Andreas Rohner authored
commit 56d7acc7 upstream. This bug leads to reproducible silent data loss, despite the use of msync(), sync() and a clean unmount of the file system. It is easily reproducible with the following script: ----------------[BEGIN SCRIPT]-------------------- mkfs.nilfs2 -f /dev/sdb mount /dev/sdb /mnt dd if=/dev/zero bs=1M count=30 of=/mnt/testfile umount /mnt mount /dev/sdb /mnt CHECKSUM_BEFORE="$(md5sum /mnt/testfile)" /root/mmaptest/mmaptest /mnt/testfile 30 10 5 sync CHECKSUM_AFTER="$(md5sum /mnt/testfile)" umount /mnt mount /dev/sdb /mnt CHECKSUM_AFTER_REMOUNT="$(md5sum /mnt/testfile)" umount /mnt echo "BEFORE MMAP:\t$CHECKSUM_BEFORE" echo "AFTER MMAP:\t$CHECKSUM_AFTER" echo "AFTER REMOUNT:\t$CHECKSUM_AFTER_REMOUNT" ----------------[END SCRIPT]-------------------- The mmaptest tool looks something like this (very simplified, with error checking removed): ----------------[BEGIN mmaptest]-------------------- data = mmap(NULL, file_size - file_offset, PROT_READ | PROT_WRITE, MAP_SHARED, fd, file_offset); for (i = 0; i < write_count; ++i) { memcpy(data + i * 4096, buf, sizeof(buf)); msync(data, file_size - file_offset, MS_SYNC)) } ----------------[END mmaptest]-------------------- The output of the script looks something like this: BEFORE MMAP: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile AFTER MMAP: 6604a1c31f10780331a6850371b3a313 /mnt/testfile AFTER REMOUNT: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile So it is clear, that the changes done using mmap() do not survive a remount. This can be reproduced a 100% of the time. The problem was introduced in commit 136e8770 ("nilfs2: fix issue of nilfs_set_page_dirty() for page at EOF boundary"). If the page was read with mpage_readpage() or mpage_readpages() for example, then it has no buffers attached to it. In that case page_has_buffers(page) in nilfs_set_page_dirty() will be false. Therefore nilfs_set_file_dirty() is never called and the pages are never collected and never written to disk. This patch fixes the problem by also calling nilfs_set_file_dirty() if the page has no buffers attached to it. [akpm@linux-foundation.org: s/PAGE_SHIFT/PAGE_CACHE_SHIFT/] Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net> Tested-by: Andreas Rohner <andreas.rohner@gmx.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Markos Chandras authored
commit 8a574cfa upstream. Every mcount() call in the MIPS 32-bit kernel is done as follows: [...] move at, ra jal _mcount addiu sp, sp, -8 [...] but upon returning from the mcount() function, the stack pointer is not adjusted properly. This is explained in details in 58b69401 (MIPS: Function tracer: Fix broken function tracing). Commit ad8c3969 ("MIPS: Unbreak function tracer for 64-bit kernel.) fixed the stack manipulation for 64-bit but it didn't fix it completely for MIPS32. Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/7792/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Robin Murphy authored
commit 5ca918e5 upstream. The alignment fixup incorrectly decodes faulting ARM VLDn/VSTn instructions (where the optional alignment hint is given but incorrect) as LDR/STR, leading to register corruption. Detect these and correctly treat them as unhandled, so that userspace gets the fault it expects. Reported-by: Simon Hosie <simon.hosie@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-