- 08 Apr, 2017 12 commits
-
-
Darrick J. Wong authored
commit 5eda4300 upstream. Christoph Hellwig pointed out that there's a potentially nasty race when performing simultaneous nearby directio cow writes: "Thread 1 writes a range from B to c " B --------- C p "a little later thread 2 writes from A to B " A --------- B p [editor's note: the 'p' denote cowextsize boundaries, which I added to make this more clear] "but the code preallocates beyond B into the range where thread "1 has just written, but ->end_io hasn't been called yet. "But once ->end_io is called thread 2 has already allocated "up to the extent size hint into the write range of thread 1, "so the end_io handler will splice the unintialized blocks from "that preallocation back into the file right after B." We can avoid this race by ensuring that thread 1 cannot accidentally remap the blocks that thread 2 allocated (as part of speculative preallocation) as part of t2's write preparation in t1's end_io handler. The way we make this happen is by taking advantage of the unwritten extent flag as an intermediate step. Recall that when we begin the process of writing data to shared blocks, we create a delayed allocation extent in the CoW fork: D: --RRRRRRSSSRRRRRRRR--- C: ------DDDDDDD--------- When a thread prepares to CoW some dirty data out to disk, it will now convert the delalloc reservation into an /unwritten/ allocated extent in the cow fork. The da conversion code tries to opportunistically allocate as much of a (speculatively prealloc'd) extent as possible, so we may end up allocating a larger extent than we're actually writing out: D: --RRRRRRSSSRRRRRRRR--- U: ------UUUUUUU--------- Next, we convert only the part of the extent that we're actively planning to write to normal (i.e. not unwritten) status: D: --RRRRRRSSSRRRRRRRR--- U: ------UURRUUU--------- If the write succeeds, the end_cow function will now scan the relevant range of the CoW fork for real extents and remap only the real extents into the data fork: D: --RRRRRRRRSRRRRRRRR--- U: ------UU--UUU--------- This ensures that we never obliterate valid data fork extents with unwritten blocks from the CoW fork. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 05a630d7 upstream. In the data fork, we only allow extents to perform the following state transitions: delay -> real <-> unwritten There's no way to move directly from a delalloc reservation to an /unwritten/ allocated extent. However, for the CoW fork we want to be able to do the following to each extent: delalloc -> unwritten -> written -> remapped to data fork This will help us to avoid a race in the speculative CoW preallocation code between a first thread that is allocating a CoW extent and a second thread that is remapping part of a file after a write. In order to do this, however, we need two things: first, we have to be able to transition from da to unwritten, and second the function that converts between real and unwritten has to be made aware of the cow fork. Do both of those things. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit de14c5f5 upstream. Perform basic sanity checking of the directory free block header fields so that we avoid hanging the system on invalid data. (Granted that just means that now we shutdown on directory write, but that seems better than hanging...) Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit b3bf607d upstream. We can't handle a bmbt that's taller than BTREE_MAXLEVELS, and there's no such thing as a zero-level bmbt (for that we have extents format), so if we see this, send back an error code. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit d5a91bae upstream. Don't let anybody load an obviously bad btree pointer. Since the values come from disk, we must return an error, not just ASSERT. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 7a652bbe upstream. When we open a directory, we try to readahead block 0 of the directory on the assumption that we're going to need it soon. If the bmbt is corrupt, the directory will never be usable and the readahead fails immediately, so we might as well prevent the directory from being opened at all. This prevents a subsequent read or modify operation from hitting it and taking the fs offline. NOTE: We're only checking for early failures in the block mapping, not the readahead directory block itself. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Darrick J. Wong authored
commit 4b5bd5bf upstream. We use di_format and if_flags to decide whether we're grabbing the ilock in btree mode (btree extents not loaded) or shared mode (anything else), but the state of those fields can be changed by other threads that are also trying to load the btree extents -- IFEXTENTS gets set before the _bmap_read_extents call and cleared if it fails. We don't actually need to have IFEXTENTS set until after the bmbt records are successfully loaded and validated, which will fix the race between multiple threads trying to read the same directory. The next patch strengthens directory bmbt validation by refusing to open the directory if reading the bmbt to start directory readahead fails. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit e4229d6b upstream. It's possible for post-eof blocks to end up being used for direct I/O writes. dio write performs an upfront unwritten extent allocation, sends the dio and then updates the inode size (if necessary) on write completion. If a file release occurs while a file extending dio write is in flight, it is possible to mistake the post-eof blocks for speculative preallocation and incorrectly truncate them from the inode. This means that the resulting dio write completion can discover a hole and allocate new blocks rather than perform unwritten extent conversion. This requires a strange mix of I/O and is thus not likely to reproduce in real world workloads. It is intermittently reproduced by generic/299. The error manifests as an assert failure due to transaction overrun because the aforementioned write completion transaction has only reserved enough blocks for btree operations: XFS: Assertion failed: tp->t_blk_res_used <= tp->t_blk_res, \ file: fs/xfs//xfs_trans.c, line: 309 The root cause is that xfs_free_eofblocks() uses i_size to truncate post-eof blocks from the inode, but async, file extending direct writes do not update i_size until write completion, long after inode locks are dropped. Therefore, xfs_free_eofblocks() effectively truncates the inode to the incorrect size. Update xfs_free_eofblocks() to serialize against dio similar to how extending writes are serialized against i_size updates before post-eof block zeroing. Specifically, wait on dio while under the iolock. This ensures that dio write completions have updated i_size before post-eof blocks are processed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit c3155097 upstream. The xfs_eofblocks.eof_scan_owner field is an internal field to facilitate invoking eofb scans from the kernel while under the iolock. This is necessary because the eofb scan acquires the iolock of each inode. Synchronous scans are invoked on certain buffered write failures while under iolock. In such cases, the scan owner indicates that the context for the scan already owns the particular iolock and prevents a double lock deadlock. eofblocks scans while under iolock are still livelock prone in the event of multiple parallel scans, however. If multiple buffered writes to different inodes fail and invoke eofblocks scans at the same time, each scan avoids a deadlock with its own inode by virtue of the eof_scan_owner field, but will never be able to acquire the iolock of the inode from the parallel scan. Because the low free space scans are invoked with SYNC_WAIT, the scan will not return until it has processed every tagged inode and thus both scans will spin indefinitely on the iolock being held across the opposite scan. This problem can be reproduced reliably by generic/224 on systems with higher cpu counts (x16). To avoid this problem, simplify the semantics of eofblocks scans to never invoke a scan while under iolock. This means that the buffered write context must drop the iolock before the scan. It must reacquire the lock before the write retry and also repeat the initial write checks, as the original state might no longer be valid once the iolock was dropped. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Brian Foster authored
commit a36b9261 upstream. xfs_free_eofblocks() requires the IOLOCK_EXCL lock, but is called from different contexts where the lock may or may not be held. The need_iolock parameter exists for this reason, to indicate whether xfs_free_eofblocks() must acquire the iolock itself before it can proceed. This is ugly and confusing. Simplify the semantics of xfs_free_eofblocks() to require the caller to acquire the iolock appropriately and kill the need_iolock parameter. While here, the mp param can be removed as well as the xfs_mount is accessible from the xfs_inode structure. This patch does not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ladi Prosek authored
commit 7ad658b6 upstream. The nested_ept_enabled flag introduced in commit 7ca29de2 was not computed correctly. We are interested only in L1's EPT state, not the the combined L0+L1 value. In particular, if L0 uses EPT but L1 does not, nested_ept_enabled must be false to make sure that PDPSTRs are loaded based on CR3 as usual, because the special case described in 26.3.2.4 Loading Page-Directory- Pointer-Table Entries does not apply. Fixes: 7ca29de2 ("KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT") Cc: qemu-stable@nongnu.org Reported-by: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilya Dryomov authored
commit 633ee407 upstream. sock_alloc_inode() allocates socket+inode and socket_wq with GFP_KERNEL, which is not allowed on the writeback path: Workqueue: ceph-msgr con_work [libceph] ffff8810871cb018 0000000000000046 0000000000000000 ffff881085d40000 0000000000012b00 ffff881025cad428 ffff8810871cbfd8 0000000000012b00 ffff880102fc1000 ffff881085d40000 ffff8810871cb038 ffff8810871cb148 Call Trace: [<ffffffff816dd629>] schedule+0x29/0x70 [<ffffffff816e066d>] schedule_timeout+0x1bd/0x200 [<ffffffff81093ffc>] ? ttwu_do_wakeup+0x2c/0x120 [<ffffffff81094266>] ? ttwu_do_activate.constprop.135+0x66/0x70 [<ffffffff816deb5f>] wait_for_completion+0xbf/0x180 [<ffffffff81097cd0>] ? try_to_wake_up+0x390/0x390 [<ffffffff81086335>] flush_work+0x165/0x250 [<ffffffff81082940>] ? worker_detach_from_pool+0xd0/0xd0 [<ffffffffa03b65b1>] xlog_cil_force_lsn+0x81/0x200 [xfs] [<ffffffff816d6b42>] ? __slab_free+0xee/0x234 [<ffffffffa03b4b1d>] _xfs_log_force_lsn+0x4d/0x2c0 [xfs] [<ffffffff811adc1e>] ? lookup_page_cgroup_used+0xe/0x30 [<ffffffffa039a723>] ? xfs_reclaim_inode+0xa3/0x330 [xfs] [<ffffffffa03b4dcf>] xfs_log_force_lsn+0x3f/0xf0 [xfs] [<ffffffffa039a723>] ? xfs_reclaim_inode+0xa3/0x330 [xfs] [<ffffffffa03a62c6>] xfs_iunpin_wait+0xc6/0x1a0 [xfs] [<ffffffff810aa250>] ? wake_atomic_t_function+0x40/0x40 [<ffffffffa039a723>] xfs_reclaim_inode+0xa3/0x330 [xfs] [<ffffffffa039ac07>] xfs_reclaim_inodes_ag+0x257/0x3d0 [xfs] [<ffffffffa039bb13>] xfs_reclaim_inodes_nr+0x33/0x40 [xfs] [<ffffffffa03ab745>] xfs_fs_free_cached_objects+0x15/0x20 [xfs] [<ffffffff811c0c18>] super_cache_scan+0x178/0x180 [<ffffffff8115912e>] shrink_slab_node+0x14e/0x340 [<ffffffff811afc3b>] ? mem_cgroup_iter+0x16b/0x450 [<ffffffff8115af70>] shrink_slab+0x100/0x140 [<ffffffff8115e425>] do_try_to_free_pages+0x335/0x490 [<ffffffff8115e7f9>] try_to_free_pages+0xb9/0x1f0 [<ffffffff816d56e4>] ? __alloc_pages_direct_compact+0x69/0x1be [<ffffffff81150cba>] __alloc_pages_nodemask+0x69a/0xb40 [<ffffffff8119743e>] alloc_pages_current+0x9e/0x110 [<ffffffff811a0ac5>] new_slab+0x2c5/0x390 [<ffffffff816d71c4>] __slab_alloc+0x33b/0x459 [<ffffffff815b906d>] ? sock_alloc_inode+0x2d/0xd0 [<ffffffff8164bda1>] ? inet_sendmsg+0x71/0xc0 [<ffffffff815b906d>] ? sock_alloc_inode+0x2d/0xd0 [<ffffffff811a21f2>] kmem_cache_alloc+0x1a2/0x1b0 [<ffffffff815b906d>] sock_alloc_inode+0x2d/0xd0 [<ffffffff811d8566>] alloc_inode+0x26/0xa0 [<ffffffff811da04a>] new_inode_pseudo+0x1a/0x70 [<ffffffff815b933e>] sock_alloc+0x1e/0x80 [<ffffffff815ba855>] __sock_create+0x95/0x220 [<ffffffff815baa04>] sock_create_kern+0x24/0x30 [<ffffffffa04794d9>] con_work+0xef9/0x2050 [libceph] [<ffffffffa04aa9ec>] ? rbd_img_request_submit+0x4c/0x60 [rbd] [<ffffffff81084c19>] process_one_work+0x159/0x4f0 [<ffffffff8108561b>] worker_thread+0x11b/0x530 [<ffffffff81085500>] ? create_worker+0x1d0/0x1d0 [<ffffffff8108b6f9>] kthread+0xc9/0xe0 [<ffffffff8108b630>] ? flush_kthread_worker+0x90/0x90 [<ffffffff816e1b98>] ret_from_fork+0x58/0x90 [<ffffffff8108b630>] ? flush_kthread_worker+0x90/0x90 Use memalloc_noio_{save,restore}() to temporarily force GFP_NOIO here. Link: http://tracker.ceph.com/issues/19309Reported-by: Sergey Jerusalimov <wintchester@gmail.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 Mar, 2017 18 commits
-
-
Greg Kroah-Hartman authored
-
Bin Liu authored
commit bc1e2154 upstream. The DSPS glue calls del_timer_sync() in its musb_platform_disable() implementation, which requires the caller to not hold a lock. But musb_remove() calls musb_platform_disable() will musb->lock held. This could causes spinlock deadlock. So change musb_remove() to call musb_platform_disable() without holds musb->lock. This doesn't impact the musb_platform_disable implementation in other glue drivers. root@am335x-evm:~# modprobe -r musb-dsps [ 126.134879] musb-hdrc musb-hdrc.1: remove, state 1 [ 126.140465] usb usb2: USB disconnect, device number 1 [ 126.146178] usb 2-1: USB disconnect, device number 2 [ 126.416985] musb-hdrc musb-hdrc.1: USB bus 2 deregistered [ 126.423943] [ 126.425525] ====================================================== [ 126.431997] [ INFO: possible circular locking dependency detected ] [ 126.438564] 4.11.0-rc1-00003-g1557f13bca04-dirty #77 Not tainted [ 126.444852] ------------------------------------------------------- [ 126.451414] modprobe/778 is trying to acquire lock: [ 126.456523] (((&glue->timer))){+.-...}, at: [<c01b8788>] del_timer_sync+0x0/0xd0 [ 126.464403] [ 126.464403] but task is already holding lock: [ 126.470511] (&(&musb->lock)->rlock){-.-...}, at: [<bf30b7f8>] musb_remove+0x50/0x1 30 [musb_hdrc] [ 126.479965] [ 126.479965] which lock already depends on the new lock. [ 126.479965] [ 126.488531] [ 126.488531] the existing dependency chain (in reverse order) is: [ 126.496368] [ 126.496368] -> #1 (&(&musb->lock)->rlock){-.-...}: [ 126.502968] otg_timer+0x80/0xec [musb_dsps] [ 126.507990] call_timer_fn+0xb4/0x390 [ 126.512372] expire_timers+0xf0/0x1fc [ 126.516754] run_timer_softirq+0x80/0x178 [ 126.521511] __do_softirq+0xc4/0x554 [ 126.525802] irq_exit+0xe8/0x158 [ 126.529735] __handle_domain_irq+0x58/0xb8 [ 126.534583] __irq_usr+0x54/0x80 [ 126.538507] [ 126.538507] -> #0 (((&glue->timer))){+.-...}: [ 126.544636] del_timer_sync+0x40/0xd0 [ 126.549066] musb_remove+0x6c/0x130 [musb_hdrc] [ 126.554370] platform_drv_remove+0x24/0x3c [ 126.559206] device_release_driver_internal+0x14c/0x1e0 [ 126.565225] bus_remove_device+0xd8/0x108 [ 126.569970] device_del+0x1e4/0x308 [ 126.574170] platform_device_del+0x24/0x8c [ 126.579006] platform_device_unregister+0xc/0x20 [ 126.584394] dsps_remove+0x14/0x30 [musb_dsps] [ 126.589595] platform_drv_remove+0x24/0x3c [ 126.594432] device_release_driver_internal+0x14c/0x1e0 [ 126.600450] driver_detach+0x38/0x6c [ 126.604740] bus_remove_driver+0x4c/0xa0 [ 126.609407] SyS_delete_module+0x11c/0x1e4 [ 126.614252] __sys_trace_return+0x0/0x10 Fixes: ea2f35c0 ("usb: musb: Fix sleeping function called from invalid context for hdrc glue") Acked-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Bin Liu <b-liu@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sebastian Andrzej Siewior authored
commit 619bd4a7 upstream. Since the change in commit: fd7a4bed ("sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks") ... we don't reschedule a task under certain circumstances: Lets say task-A, SCHED_OTHER, is running on CPU0 (and it may run only on CPU0) and holds a PI lock. This task is removed from the CPU because it used up its time slice and another SCHED_OTHER task is running. Task-B on CPU1 runs at RT priority and asks for the lock owned by task-A. This results in a priority boost for task-A. Task-B goes to sleep until the lock has been made available. Task-A is already runnable (but not active), so it receives no wake up. The reality now is that task-A gets on the CPU once the scheduler decides to remove the current task despite the fact that a high priority task is enqueued and waiting. This may take a long time. The desired behaviour is that CPU0 immediately reschedules after the priority boost which made task-A the task with the lowest priority. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: fd7a4bed ("sched, rt: Convert switched_{from, to}_rt() prio_changed_rt() to balance callbacks") Link: http://lkml.kernel.org/r/20170124144006.29821-1-bigeasy@linutronix.deSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joe Carnuccio authored
commit c4a9b538 upstream. Signed-off-by: Joe Carnuccio <joe.carnuccio@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit 7195ee31 upstream. It's not clear what behaviour is sensible when doing partial write of NT_METAG_RPIPE, so just don't bother. This patch assumes that userspace will never rely on a partial SETREGSET in this case, since it's not clear what should happen anyway. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Acked-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit 5fe81fe9 upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill TXSTATUS, a well-defined default value is used, based on the task's current value. Suggested-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit a78ce80d upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill all the registers, the thread's old registers are preserved. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Acked-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit d3805c54 upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill all the registers, the thread's old registers are preserved. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit d614fd58 upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill all the registers, the thread's old registers are preserved. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit 502585c7 upstream. regs_set() and regs_get() are vulnerable to an off-by-1 buffer overrun if CONFIG_CPU_H8S is set, since this adds an extra entry to register_offset[] but not to user_regs_struct. So, iterate over user_regs_struct based on its actual size, not based on the length of register_offset[]. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Martin authored
commit fb411b83 upstream. gpr_set won't work correctly and can never have been tested, and the correct behaviour is not clear due to the endianness-dependent task layout. So, just remove it. The core code will now return -EOPNOTSUPPORT when trying to set NT_PRSTATUS on this architecture until/unless a correct implementation is supplied. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Bjorn Andersson authored
commit a6566710 upstream. Clearing the status bit on irq_unmask will discard any pending interrupt that did arrive after the irq_ack, i.e. while the IRQ handler function was executing. Fixes: f365be09 ("pinctrl: Add Qualcomm TLMM driver") Cc: Stephen Boyd <sboyd@codeaurora.org> Reported-by: Timur Tabi <timur@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ladi Prosek authored
commit fc865322 upstream. When init_vqs runs, virtio_balloon.stats is either uninitialized or contains stale values. The host updates its state with garbage data because it has no way of knowing that this is just a marker buffer used for signaling. This patch updates the stats before pushing the initial buffer. Alternative fixes: * Push an empty buffer in init_vqs. Not easily done with the current virtio implementation and violates the spec "Driver MUST supply the same subset of statistics in all buffers submitted to the statsq". * Push a buffer with invalid tags in init_vqs. Violates the same spec clause, plus "invalid tag" is not really defined. Note: the spec says: When using the legacy interface, the device SHOULD ignore all values in the first buffer in the statsq supplied by the driver after device initialization. Note: Historically, drivers supplied an uninitialized buffer in the first buffer. Unfortunately QEMU does not seem to implement the recommendation even for the legacy interface. Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paolo Bonzini authored
commit 2beb6dad upstream. SRCU uses a delayed work item. Skip cleaning it up, and the result is use-after-free in the work item callbacks. Reported-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Fixes: 0eb05bf2Reviewed-by: Xiao Guangrong <xiaoguangrong.eric@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Wanpeng Li authored
commit 63cb6d5f upstream. This can be reproduced by running kvm-unit-tests/vmx.flat on L0 w/ vpid disabled. Test suite: VPID Unhandled exception 6 #UD at ip 00000000004051a6 error_code=0000 rflags=00010047 cs=00000008 rax=0000000000000000 rcx=0000000000000001 rdx=0000000000000047 rbx=0000000000402f79 rbp=0000000000456240 rsi=0000000000000001 rdi=0000000000000000 r8=000000000000000a r9=00000000000003f8 r10=0000000080010011 r11=0000000000000000 r12=0000000000000003 r13=0000000000000708 r14=0000000000000000 r15=0000000000000000 cr0=0000000080010031 cr2=0000000000000000 cr3=0000000007fff000 cr4=0000000000002020 cr8=0000000000000000 STACK: @4051a6 40523e 400f7f 402059 40028f We should hide and forbid VPID in L1 if it is disabled on L0. However, nested VPID enable bit is set unconditionally during setup nested vmx exec controls though VPID is not exposed through nested VMX capablity. This patch fixes it by don't set nested VPID enable bit if it is disabled on L0. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Fixes: 5c614b35 (KVM: nVMX: nested VPID emulation) Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Whitcroft authored
commit f843ee6d upstream. Kees Cook has pointed out that xfrm_replay_state_esn_len() is subject to wrapping issues. To ensure we are correctly ensuring that the two ESN structures are the same size compare both the overall size as reported by xfrm_replay_state_esn_len() and the internal length are the same. CVE-2017-7184 Signed-off-by: Andy Whitcroft <apw@canonical.com> Acked-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Whitcroft authored
commit 677e806d upstream. When a new xfrm state is created during an XFRM_MSG_NEWSA call we validate the user supplied replay_esn to ensure that the size is valid and to ensure that the replay_window size is within the allocated buffer. However later it is possible to update this replay_esn via a XFRM_MSG_NEWAE call. There we again validate the size of the supplied buffer matches the existing state and if so inject the contents. We do not at this point check that the replay_window is within the allocated memory. This leads to out-of-bounds reads and writes triggered by netlink packets. This leads to memory corruption and the potential for priviledge escalation. We already attempt to validate the incoming replay information in xfrm_new_ae() via xfrm_replay_verify_len(). This confirms that the user is not trying to change the size of the replay state buffer which includes the replay_esn. It however does not check the replay_window remains within that buffer. Add validation of the contained replay_window. CVE-2017-7184 Signed-off-by: Andy Whitcroft <apw@canonical.com> Acked-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Florian Westphal authored
commit c282222a upstream. Dmitry reports following splat: INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 0 PID: 13059 Comm: syz-executor1 Not tainted 4.10.0-rc7-next-20170207 #1 [..] spin_lock_bh include/linux/spinlock.h:304 [inline] xfrm_policy_flush+0x32/0x470 net/xfrm/xfrm_policy.c:963 xfrm_policy_fini+0xbf/0x560 net/xfrm/xfrm_policy.c:3041 xfrm_net_init+0x79f/0x9e0 net/xfrm/xfrm_policy.c:3091 ops_init+0x10a/0x530 net/core/net_namespace.c:115 setup_net+0x2ed/0x690 net/core/net_namespace.c:291 copy_net_ns+0x26c/0x530 net/core/net_namespace.c:396 create_new_namespaces+0x409/0x860 kernel/nsproxy.c:106 unshare_nsproxy_namespaces+0xae/0x1e0 kernel/nsproxy.c:205 SYSC_unshare kernel/fork.c:2281 [inline] Problem is that when we get error during xfrm_net_init we will call xfrm_policy_fini which will acquire xfrm_policy_lock before it was initialized. Just move it around so locks get set up first. Reported-by: Dmitry Vyukov <dvyukov@google.com> Fixes: 283bc9f3 ("xfrm: Namespacify xfrm state/policy locks") Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 30 Mar, 2017 10 commits
-
-
Greg Kroah-Hartman authored
-
Jiri Slaby authored
commit 62071194 upstream. With this reproducer: struct sockaddr_alg alg = { .salg_family = 0x26, .salg_type = "hash", .salg_feat = 0xf, .salg_mask = 0x5, .salg_name = "digest_null", }; int sock, sock2; sock = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(sock, (struct sockaddr *)&alg, sizeof(alg)); sock2 = accept(sock, NULL, NULL); setsockopt(sock, SOL_ALG, ALG_SET_KEY, "\x9b\xca", 2); accept(sock2, NULL, NULL); ==== 8< ======== 8< ======== 8< ======== 8< ==== one can immediatelly see an UBSAN warning: UBSAN: Undefined behaviour in crypto/algif_hash.c:187:7 variable length array bound value 0 <= 0 CPU: 0 PID: 15949 Comm: syz-executor Tainted: G E 4.4.30-0-default #1 ... Call Trace: ... [<ffffffff81d598fd>] ? __ubsan_handle_vla_bound_not_positive+0x13d/0x188 [<ffffffff81d597c0>] ? __ubsan_handle_out_of_bounds+0x1bc/0x1bc [<ffffffffa0e2204d>] ? hash_accept+0x5bd/0x7d0 [algif_hash] [<ffffffffa0e2293f>] ? hash_accept_nokey+0x3f/0x51 [algif_hash] [<ffffffffa0e206b0>] ? hash_accept_parent_nokey+0x4a0/0x4a0 [algif_hash] [<ffffffff8235c42b>] ? SyS_accept+0x2b/0x40 It is a correct warning, as hash state is propagated to accept as zero, but creating a zero-length variable array is not allowed in C. Fix this as proposed by Herbert -- do "?: 1" on that site. No sizeof or similar happens in the code there, so we just allocate one byte even though we do not use the array. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> (maintainer:CRYPTO API) Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Takashi Iwai authored
commit 8aac7f34 upstream. fbcon can deal with vc_hi_font_mask (the upper 256 chars) and adjust the vc attrs dynamically when vc_hi_font_mask is changed at fbcon_init(). When the vc_hi_font_mask is set, it remaps the attrs in the existing console buffer with one bit shift up (for 9 bits), while it remaps with one bit shift down (for 8 bits) when the value is cleared. It works fine as long as the font gets updated after fbcon was initialized. However, we hit a bizarre problem when the console is switched to another fb driver (typically from vesafb or efifb to drmfb). At switching to the new fb driver, we temporarily rebind the console to the dummy console, then rebind to the new driver. During the switching, we leave the modified attrs as is. Thus, the new fbcon takes over the old buffer as if it were to contain 8 bits chars (although the attrs are still shifted for 9 bits), and effectively this results in the yellow color texts instead of the original white color, as found in the bugzilla entry below. An easy fix for this is to re-adjust the attrs before leaving the fbcon at con_deinit callback. Since the code to adjust the attrs is already present in the current fbcon code, in this patch, we simply factor out the relevant code, and call it from fbcon_deinit(). Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1000619Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Vetter authored
commit 24835e44 upstream. When writing the generic nonblocking commit code I assumed that through clever lifetime management I can assure that the completion (stored in drm_crtc_commit) only gets freed after it is completed. And that worked. I also wanted to make nonblocking helpers resilient against driver bugs, by having timeouts everywhere. And that worked too. Unfortunately taking boths things together results in oopses :( Well, at least sometimes: What seems to happen is that the drm event hangs around forever stuck in limbo land. The nonblocking helpers eventually time out, move on and release it. Now the bug I tested all this against is drivers that just entirely fail to deliver the vblank events like they should, and in those cases the event is simply leaked. But what seems to happen, at least sometimes, on i915 is that the event is set up correctly, but somohow the vblank fails to fire in time. Which means the event isn't leaked, it's still there waiting for eventually a vblank to fire. That tends to happen when re-enabling the pipe, and then the trap springs and the kernel oopses. The correct fix here is simply to refcount the crtc commit to make sure that the event sticks around even for drivers which only sometimes fail to deliver vblanks for some arbitrary reasons. Since crtc commits are already refcounted that's easy to do. References: https://bugs.freedesktop.org/show_bug.cgi?id=96781 Cc: Jim Rees <rees@umich.edu> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161221102331.31033-1-daniel.vetter@ffwll.ch Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dan Streetman authored
commit c74fd80f upstream. Revert the main part of commit: af42b8d1 ("xen: fix MSI setup and teardown for PV on HVM guests") That commit introduced reading the pci device's msi message data to see if a pirq was previously configured for the device's msi/msix, and re-use that pirq. At the time, that was the correct behavior. However, a later change to Qemu caused it to call into the Xen hypervisor to unmap all pirqs for a pci device, when the pci device disables its MSI/MSIX vectors; specifically the Qemu commit: c976437c7dba9c7444fb41df45468968aaa326ad ("qemu-xen: free all the pirqs for msi/msix when driver unload") Once Qemu added this pirq unmapping, it was no longer correct for the kernel to re-use the pirq number cached in the pci device msi message data. All Qemu releases since 2.1.0 contain the patch that unmaps the pirqs when the pci device disables its MSI/MSIX vectors. This bug is causing failures to initialize multiple NVMe controllers under Xen, because the NVMe driver sets up a single MSIX vector for each controller (concurrently), and then after using that to talk to the controller for some configuration data, it disables the single MSIX vector and re-configures all the MSIX vectors it needs. So the MSIX setup code tries to re-use the cached pirq from the first vector for each controller, but the hypervisor has already given away that pirq to another controller, and its initialization fails. This is discussed in more detail at: https://lists.xen.org/archives/html/xen-devel/2017-01/msg00447.html Fixes: af42b8d1 ("xen: fix MSI setup and teardown for PV on HVM guests") Signed-off-by: Dan Streetman <dan.streetman@canonical.com> Reviewed-by: Stefano Stabellini <sstabellini@kernel.org> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vaidyanathan Srinivasan authored
commit ad0a45fd upstream. If a given cpu is not in cpu_present and cpu hotplug is disabled, arch can skip setting up the cpu_dev. Arch cpuidle driver should pass correct cpu mask for registration, but failing to do so by the driver causes error to propagate and crash like this: [ 30.076045] Unable to handle kernel paging request for data at address 0x00000048 [ 30.076100] Faulting instruction address: 0xc0000000007b2f30 cpu 0x4d: Vector: 300 (Data Access) at [c000003feb18b670] pc: c0000000007b2f30: kobject_get+0x20/0x70 lr: c0000000007b3c94: kobject_add_internal+0x54/0x3f0 sp: c000003feb18b8f0 msr: 9000000000009033 dar: 48 dsisr: 40000000 current = 0xc000003fd2ed8300 paca = 0xc00000000fbab500 softe: 0 irq_happened: 0x01 pid = 1, comm = swapper/0 Linux version 4.11.0-rc2-svaidy+ (sv@sagarika) (gcc version 6.2.0 20161005 (Ubuntu 6.2.0-5ubuntu12) ) #10 SMP Sun Mar 19 00:08:09 IST 2017 enter ? for help [c000003feb18b960] c0000000007b3c94 kobject_add_internal+0x54/0x3f0 [c000003feb18b9f0] c0000000007b43a4 kobject_init_and_add+0x64/0xa0 [c000003feb18ba70] c000000000e284f4 cpuidle_add_sysfs+0xb4/0x130 [c000003feb18baf0] c000000000e26038 cpuidle_register_device+0x118/0x1c0 [c000003feb18bb30] c000000000e26c48 cpuidle_register+0x78/0x120 [c000003feb18bbc0] c00000000168fd9c powernv_processor_idle_init+0x110/0x1c4 [c000003feb18bc40] c00000000000cff8 do_one_initcall+0x68/0x1d0 [c000003feb18bd00] c0000000016242f4 kernel_init_freeable+0x280/0x360 [c000003feb18bdc0] c00000000000d864 kernel_init+0x24/0x160 [c000003feb18be30] c00000000000b4e8 ret_from_kernel_thread+0x5c/0x74 Validating cpu_dev fixes the crash and reports correct error message like: [ 30.163506] Failed to register cpuidle device for cpu136 [ 30.173329] Registration of powernv driver failed. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> [ rjw: Comment massage ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Damien Le Moal authored
commit c46f0917 upstream. Commit <f2e767bb> ("mpt3sas: Force request partial completion alignment") was not considering the case of commands not operating on logical block size units (e.g. REQ_OP_ZONE_REPORT and its 64B aligned partial replies). In this case, forcing alignment of resid to the device logical block size can break the command result, e.g. in the case of REQ_OP_ZONE_REPORT, the exact number of zone reported by the device. Move the partial completion alignement check of mpt3sas to a generic implementation in sd_done(). The check is added within the default section of the initial req_op() switch case so that the report and reset zone commands are ignored. In addition, as sd_done() is not called for passthrough requests, resid corrections are not done as intended by the initial mpt3sas patch. Fixes: f2e767bb ("mpt3sas: Force request partial completion alignment") Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Acked-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Jiang authored
commit 0134ed4f upstream. Jeff Moyer reports: With a device dax alignment of 4KB or 2MB, I get sigbus when running the attached fio job file for the current kernel (4.11.0-rc1+). If I specify an alignment of 1GB, it works. I turned on debug output, and saw that it was failing in the huge fault code. dax dax1.0: dax_open dax dax1.0: dax_mmap dax dax1.0: dax_dev_huge_fault: fio: write (0x7f08f0a00000 - dax dax1.0: __dax_dev_pud_fault: phys_to_pgoff(0xffffffffcf60 dax dax1.0: dax_release fio config for reproduce: [global] ioengine=dev-dax direct=0 filename=/dev/dax0.0 bs=2m [write] rw=write [read] stonewall rw=read The driver fails to fallback when taking a fault that is larger than the device alignment, or handling a larger fault when a smaller mapping is already established. While we could support larger mappings for a device with a smaller alignment, that change is too large for the immediate fix. The simplest change is to force fallback until the fault size matches the alignment. Fixes: dee41079 ("/dev/dax, core: file operations and dax-mmap") Cc: <stable@vger.kernel.org> Reported-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilya Dryomov authored
commit b581a585 upstream. Since ceph.git commit 4e28f9e63644 ("osd/OSDMap: clear osd_info, osd_xinfo on osd deletion"), weight is set to IN when OSD is deleted. This changes the result of applying an incremental for clients, not just OSDs. Because CRUSH computations are obviously affected, pre-4e28f9e63644 servers disagree with post-4e28f9e63644 clients on object placement, resulting in misdirected requests. Mirrors ceph.git commit a6009d1039a55e2c77f431662b3d6cc5a8e8e63f. Fixes: 930c5328 ("libceph: apply new_state before new_up_client on incrementals") Link: http://tracker.ceph.com/issues/19122Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Adrian Hunter authored
commit 2602b740 upstream. Commit 15520111 ("mmc: core: Further fix thread wake-up") allowed a queue to release the host with is_waiting_last_req set to true. A queue waiting to claim the host will not reset it, which can result in the queue getting stuck in a loop. Fixes: 15520111 ("mmc: core: Further fix thread wake-up") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-