- 26 Nov, 2021 11 commits
-
-
Marco Chiappero authored
Move the reading and parsing of a PF2VF message from the bottom half function in adf_vf_isr.c, adf_pf2vf_bh_handler(), to the PFVF protocol file adf_vf2pf_msg.c, for better code organization. The receive and handle logic has been moved to a new function called adf_recv_and_handle_pf2vf_msg() which returns a boolean indicating if interrupts need to be re-enabled or not. A slight refactoring has been done to avoid calculating the PF2VF CSR offset twice and repeating the clearing of the PF2VFINT bit. The "PF restarting" logic, now defined in the function adf_pf2vf_handle_pf_restaring(), has been kept in adf_vf_isr.c due to the dependencies with the adf_vf_stop_wq workqueue. Signed-off-by: Marco Chiappero <marco.chiappero@intel.com> Co-developed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Giovanni Cabiddu authored
Move vf2pf interrupt enable and disable functions from adf_pf2vf_msg.c to adf_isr.c This it to separate the interrupt related code from the PFVF protocol logic. With this change, the function adf_disable_vf2pf_interrupts_irq() is only called from adf_isr.c and it has been marked as static. Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Reviewed-by: Marco Chiappero <marco.chiappero@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Marco Chiappero authored
Move logic associated to handling VF2PF interrupt to its own function. This will simplify the handling of multiple interrupt sources in the function adf_msix_isr_ae() in the future. Signed-off-by: Marco Chiappero <marco.chiappero@intel.com> Co-developed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Giovanni Cabiddu authored
If the remote function did not ACK the reception of a message, the function __adf_iov_putmsg() could detect it as a collision. This was due to the fact that the collision and the timeout checks after the ACK loop were in the wrong order. The timeout must be checked at the end of the loop, so fix by swapping the order of the two checks. Fixes: 9b768e8a ("crypto: qat - detect PFVF collision after ACK") Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Co-developed-by: Marco Chiappero <marco.chiappero@intel.com> Signed-off-by: Marco Chiappero <marco.chiappero@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Giovanni Cabiddu authored
The QAT driver does not have support for PFVF interrupts for GEN4 devices, therefore report the vf2pf sources as 0. This prevents a NULL pointer dereference in the function adf_msix_isr_ae() if the device triggers a spurious interrupt. Fixes: 993161d3 ("crypto: qat - fix handling of VF to PF interrupts") Reported-by: Adam Guerin <adam.guerin@intel.com> Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
In contrast to the fully prediction resistant 'pr' DRBGs, the 'nopr' variants get seeded once at boot and reseeded only rarely thereafter, namely only after 2^20 requests have been served each. AFAICT, this reseeding based on the number of requests served is primarily motivated by information theoretic considerations, c.f. NIST SP800-90Ar1, sec. 8.6.8 ("Reseeding"). However, given the relatively large seed lifetime of 2^20 requests, the 'nopr' DRBGs can hardly be considered to provide any prediction resistance whatsoever, i.e. to protect against threats like side channel leaks of the internal DRBG state (think e.g. leaked VM snapshots). This is expected and completely in line with the 'nopr' naming, but as e.g. the "drbg_nopr_hmac_sha512" implementation is potentially being used for providing the "stdrng" and thus, the crypto_default_rng serving the in-kernel crypto, it would certainly be desirable to achieve at least the same level of prediction resistance as get_random_bytes() does. Note that the chacha20 rngs underlying get_random_bytes() get reseeded every CRNG_RESEED_INTERVAL == 5min: the secondary, per-NUMA node rngs from the primary one and the primary rng in turn from the entropy pool, provided sufficient entropy is available. The 'nopr' DRBGs do draw randomness from get_random_bytes() for their initial seed already, so making them to reseed themselves periodically from get_random_bytes() in order to let them benefit from the latter's prediction resistance is not such a big change conceptually. In principle, it would have been also possible to make the 'nopr' DRBGs to periodically invoke a full reseeding operation, i.e. to also consider the jitterentropy source (if enabled) in addition to get_random_bytes() for the seed value. However, get_random_bytes() is relatively lightweight as compared to the jitterentropy generation process and thus, even though the 'nopr' reseeding is supposed to get invoked infrequently, it's IMO still worthwhile to avoid occasional latency spikes for drbg_generate() and stick to get_random_bytes() only. As an additional remark, note that drawing randomness from the non-SP800-90B-conforming get_random_bytes() only won't adversely affect SP800-90A conformance either: the very same is being done during boot via drbg_seed_from_random() already once rng_is_initialized() flips to true and it follows that if the DRBG implementation does conform to SP800-90A now, it will continue to do so. Make the 'nopr' DRBGs to reseed themselves periodically from get_random_bytes() every CRNG_RESEED_INTERVAL == 5min. More specifically, introduce a new member ->last_seed_time to struct drbg_state for recording in units of jiffies when the last seeding operation had taken place. Make __drbg_seed() maintain it and let drbg_generate() invoke a reseed from get_random_bytes() via drbg_seed_from_random() if more than 5min have passed by since the last seeding operation. Be careful to not to reseed if in testing mode though, or otherwise the drbg related tests in crypto/testmgr.c would fail to reproduce the expected output. In order to keep the formatting clean in drbg_generate() wrap the logic for deciding whether or not a reseed is due in a new helper, drbg_nopr_reseed_interval_elapsed(). Signed-off-by: Nicolai Stange <nstange@suse.de> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
Now that drbg_prepare_hrng() doesn't do anything but to instantiate a jitterentropy crypto_rng instance, it looks a little odd to have the related error handling at its only caller, drbg_instantiate(). Move the handling of jitterentropy allocation failures from drbg_instantiate() close to the allocation itself in drbg_prepare_hrng(). There is no change in behaviour. Signed-off-by: Nicolai Stange <nstange@suse.de> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
get_random_bytes() usually hasn't full entropy available by the time DRBG instances are first getting seeded from it during boot. Thus, the DRBG implementation registers random_ready_callbacks which would in turn schedule some work for reseeding the DRBGs once get_random_bytes() has sufficient entropy available. For reference, the relevant history around handling DRBG (re)seeding in the context of a not yet fully seeded get_random_bytes() is: commit 16b369a9 ("random: Blocking API for accessing nonblocking_pool") commit 4c787990 ("crypto: drbg - add async seeding operation") commit 205a525c ("random: Add callback API for random pool readiness") commit 57225e67 ("crypto: drbg - Use callback API for random readiness") commit c2719503 ("random: Remove kernel blocking API") However, some time later, the initialization state of get_random_bytes() has been made queryable via rng_is_initialized() introduced with commit 9a47249d ("random: Make crng state queryable"). This primitive now allows for streamlining the DRBG reseeding from get_random_bytes() by replacing that aforementioned asynchronous work scheduling from random_ready_callbacks with some simpler, synchronous code in drbg_generate() next to the related logic already present therein. Apart from improving overall code readability, this change will also enable DRBG users to rely on wait_for_random_bytes() for ensuring that the initial seeding has completed, if desired. The previous patches already laid the grounds by making drbg_seed() to record at each DRBG instance whether it was being seeded at a time when rng_is_initialized() still had been false as indicated by ->seeded == DRBG_SEED_STATE_PARTIAL. All that remains to be done now is to make drbg_generate() check for this condition, determine whether rng_is_initialized() has flipped to true in the meanwhile and invoke a reseed from get_random_bytes() if so. Make this move: - rename the former drbg_async_seed() work handler, i.e. the one in charge of reseeding a DRBG instance from get_random_bytes(), to "drbg_seed_from_random()", - change its signature as appropriate, i.e. make it take a struct drbg_state rather than a work_struct and change its return type from "void" to "int" in order to allow for passing error information from e.g. its __drbg_seed() invocation onwards to callers, - make drbg_generate() invoke this drbg_seed_from_random() once it encounters a DRBG instance with ->seeded == DRBG_SEED_STATE_PARTIAL by the time rng_is_initialized() has flipped to true and - prune everything related to the former, random_ready_callback based mechanism. As drbg_seed_from_random() is now getting invoked from drbg_generate() with the ->drbg_mutex being held, it must not attempt to recursively grab it once again. Remove the corresponding mutex operations from what is now drbg_seed_from_random(). Furthermore, as drbg_seed_from_random() can now report errors directly to its caller, there's no need for it to temporarily switch the DRBG's ->seeded state to DRBG_SEED_STATE_UNSEEDED so that a failure of the subsequently invoked __drbg_seed() will get signaled to drbg_generate(). Don't do it then. Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
Since commit 42ea507f ("crypto: drbg - reseed often if seedsource is degraded"), the maximum seed lifetime represented by ->reseed_threshold gets temporarily lowered if the get_random_bytes() source cannot provide sufficient entropy yet, as is common during boot, and restored back to the original value again once that has changed. More specifically, if the add_random_ready_callback() invoked from drbg_prepare_hrng() in the course of DRBG instantiation does not return -EALREADY, that is, if get_random_bytes() has not been fully initialized at this point yet, drbg_prepare_hrng() will lower ->reseed_threshold to a value of 50. The drbg_async_seed() scheduled from said random_ready_callback will eventually restore the original value. A future patch will replace the random_ready_callback based notification mechanism and thus, there will be no add_random_ready_callback() return value anymore which could get compared to -EALREADY. However, there's __drbg_seed() which gets invoked in the course of both, the DRBG instantiation as well as the eventual reseeding from get_random_bytes() in aforementioned drbg_async_seed(), if any. Moreover, it knows about the get_random_bytes() initialization state by the time the seed data had been obtained from it: the new_seed_state argument introduced with the previous patch would get set to DRBG_SEED_STATE_PARTIAL in case get_random_bytes() had not been fully initialized yet and to DRBG_SEED_STATE_FULL otherwise. Thus, __drbg_seed() provides a convenient alternative for managing that ->reseed_threshold lowering and restoring at a central place. Move all ->reseed_threshold adjustment code from drbg_prepare_hrng() and drbg_async_seed() respectively to __drbg_seed(). Make __drbg_seed() lower the ->reseed_threshold to 50 in case its new_seed_state argument equals DRBG_SEED_STATE_PARTIAL and let it restore the original value otherwise. There is no change in behaviour. Signed-off-by: Nicolai Stange <nstange@suse.de> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
Currently, the DRBG implementation schedules asynchronous works from random_ready_callbacks for reseeding the DRBG instances with output from get_random_bytes() once the latter has sufficient entropy available. However, as the get_random_bytes() initialization state can get queried by means of rng_is_initialized() now, there is no real need for this asynchronous reseeding logic anymore and it's better to keep things simple by doing it synchronously when needed instead, i.e. from drbg_generate() once rng_is_initialized() has flipped to true. Of course, for this to work, drbg_generate() would need some means by which it can tell whether or not rng_is_initialized() has flipped to true since the last seeding from get_random_bytes(). Or equivalently, whether or not the last seed from get_random_bytes() has happened when rng_is_initialized() was still evaluating to false. As it currently stands, enum drbg_seed_state allows for the representation of two different DRBG seeding states: DRBG_SEED_STATE_UNSEEDED and DRBG_SEED_STATE_FULL. The former makes drbg_generate() to invoke a full reseeding operation involving both, the rather expensive jitterentropy as well as the get_random_bytes() randomness sources. The DRBG_SEED_STATE_FULL state on the other hand implies that no reseeding at all is required for a !->pr DRBG variant. Introduce the new DRBG_SEED_STATE_PARTIAL state to enum drbg_seed_state for representing the condition that a DRBG was being seeded when rng_is_initialized() had still been false. In particular, this new state implies that - the given DRBG instance has been fully seeded from the jitterentropy source (if enabled) - and drbg_generate() is supposed to reseed from get_random_bytes() *only* once rng_is_initialized() turns to true. Up to now, the __drbg_seed() helper used to set the given DRBG instance's ->seeded state to constant DRBG_SEED_STATE_FULL. Introduce a new argument allowing for the specification of the to be written ->seeded value instead. Make the first of its two callers, drbg_seed(), determine the appropriate value based on rng_is_initialized(). The remaining caller, drbg_async_seed(), is known to get invoked only once rng_is_initialized() is true, hence let it pass constant DRBG_SEED_STATE_FULL for the new argument to __drbg_seed(). There is no change in behaviour, except for that the pr_devel() in drbg_generate() would now report "unseeded" for ->pr DRBG instances which had last been seeded when rng_is_initialized() was still evaluating to false. Signed-off-by: Nicolai Stange <nstange@suse.de> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Nicolai Stange authored
There are two different randomness sources the DRBGs are getting seeded from, namely the jitterentropy source (if enabled) and get_random_bytes(). At initial DRBG seeding time during boot, the latter might not have collected sufficient entropy for seeding itself yet and thus, the DRBG implementation schedules a reseed work from a random_ready_callback once that has happened. This is particularly important for the !->pr DRBG instances, for which (almost) no further reseeds are getting triggered during their lifetime. Because collecting data from the jitterentropy source is a rather expensive operation, the aforementioned asynchronously scheduled reseed work restricts itself to get_random_bytes() only. That is, it in some sense amends the initial DRBG seed derived from jitterentropy output at full (estimated) entropy with fresh randomness obtained from get_random_bytes() once that has been seeded with sufficient entropy itself. With the advent of rng_is_initialized(), there is no real need for doing the reseed operation from an asynchronously scheduled work anymore and a subsequent patch will make it synchronous by moving it next to related logic already present in drbg_generate(). However, for tracking whether a full reseed including the jitterentropy source is required or a "partial" reseed involving only get_random_bytes() would be sufficient already, the boolean struct drbg_state's ->seeded member must become a tristate value. Prepare for this by introducing the new enum drbg_seed_state and change struct drbg_state's ->seeded member's type from bool to that type. For facilitating review, enum drbg_seed_state is made to only contain two members corresponding to the former ->seeded values of false and true resp. at this point: DRBG_SEED_STATE_UNSEEDED and DRBG_SEED_STATE_FULL. A third one for tracking the intermediate state of "seeded from jitterentropy only" will be introduced with a subsequent patch. There is no change in behaviour at this point. Signed-off-by: Nicolai Stange <nstange@suse.de> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 20 Nov, 2021 13 commits
-
-
Jason Wang authored
Static variables do not need to be initialized to 0. Signed-off-by: Jason Wang <wangborong@cdjrlc.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Christophe JAILLET authored
'destroy_workqueue()' already drains the queue before destroying it, so there is no need to flush it explicitly. Remove the redundant 'flush_workqueue()' calls. This was generated with coccinelle: @@ expression E; @@ - flush_workqueue(E); destroy_workqueue(E); Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: Cristian Marussi <cristian.marussi@arm.com> Acked-by: Gilad Ben-Yossef <gilad@benyossef.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
chiminghao authored
Fix the following coccicheck REVIEW: ./drivers/crypto/marvell/octeontx2/otx2_cptvf_algs.c:1688:16-17 use swap() to make code cleaner Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: chiminghao <chi.minghao@zte.com.cn> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Lei He authored
According to the BER encoding rules, integer value should be encoded as two's complement, and if the highest bit of a positive integer is 1, should add a leading zero-octet. The kernel's built-in RSA algorithm cannot recognize negative numbers when parsing keys, so it can pass this test case. Export the key to file and run the following command to verify the fix result: openssl asn1parse -inform DER -in /path/to/key/file Signed-off-by: Lei He <helei.sig11@bytedance.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Chengfeng Ye authored
Pointer alg points to sub field of tmpl, it is dereferenced after tmpl is freed. Fix this by accessing alg before free tmpl. Fixes: ec8f5d8f ("crypto: qce - Qualcomm crypto engine driver") Signed-off-by: Chengfeng Ye <cyeaa@connect.ust.hk> Acked-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Chengfeng Ye authored
Pointer base points to sub field of tmpl, it is dereferenced after tmpl is freed. Fix this by accessing base before free tmpl. Fixes: ec8f5d8f ("crypto: qce - Qualcomm crypto engine driver") Signed-off-by: Chengfeng Ye <cyeaa@connect.ust.hk> Acked-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Chengfeng Ye authored
Pointer alg points to sub field of tmpl, it is dereferenced after tmpl is freed. Fix this by accessing alg before free tmpl. Fixes: 9363efb4 ("crypto: qce - Add support for AEAD algorithms") Signed-off-by: Chengfeng Ye <cyeaa@connect.ust.hk> Acked-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Yang Guang authored
Use the macro 'swap()' defined in 'include/linux/minmax.h' to avoid opencoding it. Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: Yang Guang <yang.guang5@zte.com.cn> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Lukas Bulwahn authored
Commit c9f608c3 ("crypto: keembay-ocs-ecc - Add Keem Bay OCS ECC Driver") only adds drivers/crypto/keembay/keembay-ocs-ecc.c, but adds a file entry drivers/crypto/keembay/ocs-ecc-curve-defs.h in MAINTAINERS. Hence, ./scripts/get_maintainer.pl --self-test=patterns warns: warning: no file matches F: drivers/crypto/keembay/ocs-ecc-curve-defs.h Assuming that this header is obsolete and will not be included in the repository, remove the unneeded file entry from MAINTAINERS. Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Reviewed-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Wei Yongjun authored
Fix to return negative error code -ENOMEM from the error handling case instead of 0, as done elsewhere in this function. Fixes: c9f608c3 ("crypto: keembay-ocs-ecc - Add Keem Bay OCS ECC Driver") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Reviewed-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Meng Li authored
When enable the kernel debug config, there is below calltrace detected: BUG: using smp_processor_id() in preemptible [00000000] code: cryptomgr_test/339 caller is debug_smp_processor_id+0x20/0x30 CPU: 9 PID: 339 Comm: cryptomgr_test Not tainted 5.10.63-yocto-standard #1 Hardware name: NXP Layerscape LX2160ARDB (DT) Call trace: dump_backtrace+0x0/0x1a0 show_stack+0x24/0x30 dump_stack+0xf0/0x13c check_preemption_disabled+0x100/0x110 debug_smp_processor_id+0x20/0x30 dpaa2_caam_enqueue+0x10c/0x25c ...... cryptomgr_test+0x38/0x60 kthread+0x158/0x164 ret_from_fork+0x10/0x38 According to the comment in commit ac5d15b4("crypto: caam/qi2 - use affine DPIOs "), because preemption is no longer disabled while trying to enqueue an FQID, it might be possible to run the enqueue on a different CPU(due to migration, when in process context), however this wouldn't be a functionality issue. But there will be above calltrace when enable kernel debug config. So, replace this_cpu_ptr with raw_cpu_ptr to avoid above call trace. Fixes: ac5d15b4 ("crypto: caam/qi2 - use affine DPIOs") Cc: stable@vger.kernel.org Signed-off-by: Meng Li <Meng.Li@windriver.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Sunil Goutham authored
This RNG device is present on Marvell OcteonTx2 silicons as well and also provides entropy health status. HW continuously checks health condition of entropy and reports faults. Fault is in terms of co-processor cycles since last fault detected. This doesn't get cleared and only updated when new fault is detected. Also there are chances of detecting false positives. So to detect a entropy failure SW has to check if failures are persistent ie cycles elapsed is frequently updated by HW. This patch adds support to detect health failures using below algo. 1. Consider any fault detected before 10ms as a false positive and ignore. 10ms is chosen randomly, no significance. 2. Upon first failure detection make a note of cycles elapsed and when this error happened in realtime (cntvct). 3. Upon subsequent failure, check if this is new or a old one by comparing current cycles with the ones since last failure. cycles or time since last failure is calculated using cycles and time info captured at (2). HEALTH_CHECK status register is not available to VF, hence had to map PF registers. Also since cycles are in terms of co-processor cycles, had to retrieve co-processor clock rate from RST device. Signed-off-by: Sunil Goutham <sgoutham@marvell.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
Tudor Ambarus authored
In case there were more requests from different tfms in the crypto queue, only the context of the last initialized tfm was considered. Fixes: ec2088b6 ("crypto: atmel-aes - Allocate aes dev at tfm init time") Reported-by: Wolfgang Ocker <weo@reccoware.de> Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-
- 14 Nov, 2021 15 commits
-
-
Linus Torvalds authored
-
Gustavo A. R. Silva authored
Add Kconfig support for -Wimplicit-fallthrough for both GCC and Clang. The compiler option is under configuration CC_IMPLICIT_FALLTHROUGH, which is enabled by default. Special thanks to Nathan Chancellor who fixed the Clang bug[1][2]. This bugfix only appears in Clang 14.0.0, so older versions still contain the bug and -Wimplicit-fallthrough won't be enabled for them, for now. This concludes a long journey and now we are finally getting rid of the unintentional fallthrough bug-class in the kernel, entirely. :) Link: https://github.com/llvm/llvm-project/commit/9ed4a94d6451046a51ef393cd62f00710820a7e8 [1] Link: https://bugs.llvm.org/show_bug.cgi?id=51094 [2] Link: https://github.com/KSPP/linux/issues/115 Link: https://github.com/ClangBuiltLinux/linux/issues/236Co-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds authored
Pull xfs cleanups from Darrick Wong: "The most 'exciting' aspect of this branch is that the xfsprogs maintainer and I have worked through the last of the code discrepancies between kernel and userspace libxfs such that there are no code differences between the two except for #includes. IOWs, diff suffices to demonstrate that the userspace tools behave the same as the kernel, and kernel-only bits are clearly marked in the /kernel/ source code instead of just the userspace source. Summary: - Clean up open-coded swap() calls. - A little bit of #ifdef golf to complete the reunification of the kernel and userspace libxfs source code" * tag 'xfs-5.16-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: sync xfs_btree_split macros with userspace libxfs xfs: #ifdef out perag code for userspace xfs: use swap() to make dabtree code cleaner
-
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linuxLinus Torvalds authored
Pull more parisc fixes from Helge Deller: "Fix a build error in stracktrace.c, fix resolving of addresses to function names in backtraces, fix single-stepping in assembly code and flush userspace pte's when using set_pte_at()" * tag 'for-5.16/parisc-3' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc/entry: fix trace test in syscall exit path parisc: Flush kernel data mapping in set_pte_at() when installing pte for user page parisc: Fix implicit declaration of function '__kernel_text_address' parisc: Fix backtrace to always include init funtion names
-
git://git.libc.org/linux-shLinus Torvalds authored
Pull arch/sh updates from Rich Felker. * tag 'sh-for-5.16' of git://git.libc.org/linux-sh: sh: pgtable-3level: Fix cast to pointer from integer of different size sh: fix READ/WRITE redefinition warnings sh: define __BIG_ENDIAN for math-emu sh: math-emu: drop unused functions sh: fix kconfig unmet dependency warning for FRAME_POINTER sh: Cleanup about SPARSE_IRQ sh: kdump: add some attribute to function maple: fix wrong return value of maple_bus_init(). sh: boot: avoid unneeded rebuilds under arch/sh/boot/compressed/ sh: boot: add intermediate vmlinux.bin* to targets instead of extra-y sh: boards: Fix the cacography in irq.c sh: check return code of request_irq sh: fix trivial misannotations
-
git://git.armlinux.org.uk/~rmk/linux-armLinus Torvalds authored
Pull ARM fixes from Russell King: - Fix early_iounmap - Drop cc-option fallbacks for architecture selection * tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: ARM: 9156/1: drop cc-option fallbacks for architecture selection ARM: 9155/1: fix early early_iounmap()
-
git://git.kernel.org/pub/scm/linux/kernel/git/robh/linuxLinus Torvalds authored
Pull devicetree fixes from Rob Herring: - Two fixes due to DT node name changes on Arm, Ltd. boards - Treewide rename of Ingenic CGU headers - Update ST email addresses - Remove Netlogic DT bindings - Dropping few more cases of redundant 'maxItems' in schemas - Convert toshiba,tc358767 bridge binding to schema * tag 'devicetree-fixes-for-5.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: dt-bindings: watchdog: sunxi: fix error in schema bindings: media: venus: Drop redundant maxItems for power-domain-names dt-bindings: Remove Netlogic bindings clk: versatile: clk-icst: Ensure clock names are unique of: Support using 'mask' in making device bus id dt-bindings: treewide: Update @st.com email address to @foss.st.com dt-bindings: media: Update maintainers for st,stm32-hwspinlock.yaml dt-bindings: media: Update maintainers for st,stm32-cec.yaml dt-bindings: mfd: timers: Update maintainers for st,stm32-timers dt-bindings: timer: Update maintainers for st,stm32-timer dt-bindings: i2c: imx: hardware do not restrict clock-frequency to only 100 and 400 kHz dt-bindings: display: bridge: Convert toshiba,tc358767.txt to yaml dt-bindings: Rename Ingenic CGU headers to ingenic,*.h
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull timer fix from Thomas Gleixner: "A single fix for POSIX CPU timers to address a problem where POSIX CPU timer delivery stops working for a new child task because copy_process() copies state information which is only valid for the parent task" * tag 'timers-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: posix-cpu-timers: Clear task::posix_cputimers_work in copy_process()
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull irq fixes from Thomas Gleixner: "A set of fixes for the interrupt subsystem Core code: - A regression fix for the Open Firmware interrupt mapping code where a interrupt controller property in a node caused a map property in the same node to be ignored. Interrupt chip drivers: - Workaround a limitation in SiFive PLIC interrupt chip which silently ignores an EOI when the interrupt line is masked. - Provide the missing mask/unmask implementation for the CSKY MP interrupt controller. PCI/MSI: - Prevent a use after free when PCI/MSI interrupts are released by destroying the sysfs entries before freeing the memory which is accessed in the sysfs show() function. - Implement a mask quirk for the Nvidia ION AHCI chip which does not advertise masking capability despite implementing it. Even worse the chip comes out of reset with all MSI entries masked, which due to the missing masking capability never get unmasked. - Move the check which prevents accessing the MSI[X] masking for XEN back into the low level accessors. The recent consolidation missed that these accessors can be invoked from places which do not have that check which broke XEN. Move them back to he original place instead of sprinkling tons of these checks all over the code" * tag 'irq-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: of/irq: Don't ignore interrupt-controller when interrupt-map failed irqchip/sifive-plic: Fixup EOI failed when masked irqchip/csky-mpintc: Fixup mask/unmask implementation PCI/MSI: Destroy sysfs before freeing entries PCI: Add MSI masking quirk for Nvidia ION AHCI PCI/MSI: Deal with devices lying about their MSI mask capability PCI/MSI: Move non-mask check back into low level accessors
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull x86 static call update from Thomas Gleixner: "A single fix for static calls to make the trampoline patching more robust by placing explicit signature bytes after the call trampoline to prevent patching random other jumps like the CFI jump table entries" * tag 'locking-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: static_call,x86: Robustify trampoline patching
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull scheduler fixes from Borislav Petkov: - Avoid touching ~100 config files in order to be able to select the preemption model - clear cluster CPU masks too, on the CPU unplug path - prevent use-after-free in cfs - Prevent a race condition when updating CPU cache domains - Factor out common shared part of smp_prepare_cpus() into a common helper which can be called by both baremetal and Xen, in order to fix a booting of Xen PV guests * tag 'sched_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: preempt: Restore preemption model selection configs arch_topology: Fix missing clear cluster_cpumask in remove_cpu_topology() sched/fair: Prevent dead task groups from regaining cfs_rq's sched/core: Mitigate race cpus_share_cache()/update_top_cache_domain() x86/smp: Factor out parts of native_smp_prepare_cpus()
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull perf fixes from Borislav Petkov: - Prevent unintentional page sharing by checking whether a page reference to a PMU samples page has been acquired properly before that - Make sure the LBR_SELECT MSR is saved/restored too - Reset the LBR_SELECT MSR when resetting the LBR PMU to clear any residual data left * tag 'perf_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/core: Avoid put_page() when GUP fails perf/x86/vlbr: Add c->flags to vlbr event constraints perf/x86/lbr: Reset LBR_SELECT during vlbr reset
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull x86 fixes from Borislav Petkov: - Add the model number of a new, Raptor Lake CPU, to intel-family.h - Do not log spurious corrected MCEs on SKL too, due to an erratum - Clarify the path of paravirt ops patches upstream - Add an optimization to avoid writing out AMX components to sigframes when former are in init state * tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Add Raptor Lake to Intel family x86/mce: Add errata workaround for Skylake SKX37 MAINTAINERS: Add some information to PARAVIRT_OPS entry x86/fpu: Optimize out sigframe xfeatures when in init state
-
Linus Torvalds authored
Merge tag 'perf-tools-for-v5.16-2021-11-13' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux Pull more perf tools updates from Arnaldo Carvalho de Melo: "Hardware tracing: - ARM: * Print the size of the buffer size consistently in hexadecimal in ARM Coresight. * Add Coresight snapshot mode support. * Update --switch-events docs in 'perf record'. * Support hardware-based PID tracing. * Track task context switch for cpu-mode events. - Vendor events: * Add metric events JSON file for power10 platform perf test: - Get 'perf test' unit tests closer to kunit. - Topology tests improvements. - Remove bashisms from some tests. perf bench: - Fix memory leak of perf_cpu_map__new() in the futex benchmarks. libbpf: - Add some more weak libbpf functions o allow building with the libbpf versions, old ones, present in distros. libbeauty: - Translate [gs]setsockopt 'level' argument integer values to strings. tools headers UAPI: - Sync futex_waitv, arch prctl, sound, i195_drm and msr-index files with the kernel sources. Documentation: - Add documentation to 'struct symbol'. - Synchronize the definition of enum perf_hw_id with code in tools/perf/design.txt" * tag 'perf-tools-for-v5.16-2021-11-13' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux: (67 commits) perf tests: Remove bash constructs from stat_all_pmu.sh perf tests: Remove bash construct from record+zstd_comp_decomp.sh perf test: Remove bash construct from stat_bpf_counters.sh test perf bench futex: Fix memory leak of perf_cpu_map__new() tools arch x86: Sync the msr-index.h copy with the kernel sources tools headers UAPI: Sync drm/i915_drm.h with the kernel sources tools headers UAPI: Sync sound/asound.h with the kernel sources tools headers UAPI: Sync linux/prctl.h with the kernel sources tools headers UAPI: Sync arch prctl headers with the kernel sources perf tools: Add more weak libbpf functions perf bpf: Avoid memory leak from perf_env__insert_btf() perf symbols: Factor out annotation init/exit perf symbols: Bit pack to save a byte perf symbols: Add documentation to 'struct symbol' tools headers UAPI: Sync files changed by new futex_waitv syscall perf test bpf: Use ARRAY_CHECK() instead of ad-hoc equivalent, addressing array_size.cocci warning perf arm-spe: Support hardware-based PID tracing perf arm-spe: Save context ID in record perf arm-spe: Update --switch-events docs in 'perf record' perf arm-spe: Track task context switch for cpu-mode events ...
-
Thomas Gleixner authored
Merge tag 'irqchip-fixes-5.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/urgent Pull irqchip fixes from Marc Zyngier: - Address an issue with the SiFive PLIC being unable to EOI a masked interrupt - Move the disable/enable methods in the CSky mpintc to mask/unmask - Fix a regression in the OF irq code where an interrupt-controller property in the same node as an interrupt-map property would get ignored Link: https://lore.kernel.org/all/20211112173459.4015233-1-maz@kernel.org
-
- 13 Nov, 2021 1 commit
-
-
git://github.com/terrelln/linuxLinus Torvalds authored
Pull zstd update from Nick Terrell: "Update to zstd-1.4.10. Add myself as the maintainer of zstd and update the zstd version in the kernel, which is now 4 years out of date, to a much more recent zstd release. This includes bug fixes, much more extensive fuzzing, and performance improvements. And generates the kernel zstd automatically from upstream zstd, so it is easier to keep the zstd verison up to date, and we don't fall so far out of date again. This includes 5 commits that update the zstd library version: - Adds a new kernel-style wrapper around zstd. This wrapper API is functionally equivalent to the subset of the current zstd API that is currently used. The wrapper API changes to be kernel style so that the symbols don't collide with zstd's symbols. The update to zstd-1.4.10 maintains the same API and preserves the semantics, so that none of the callers need to be updated. All callers are updated in the commit, because there are zero functional changes. - Adds an indirection for `lib/decompress_unzstd.c` so it doesn't depend on the layout of `lib/zstd/` to include every source file. This allows the next patch to be automatically generated. - Imports the zstd-1.4.10 source code. This commit is automatically generated from upstream zstd (https://github.com/facebook/zstd). - Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`. - Fixes a newly added build warning for clang. The discussion around this patchset has been pretty long, so I've included a FAQ-style summary of the history of the patchset, and why we are taking this approach. Why do we need to update? ------------------------- The zstd version in the kernel is based off of zstd-1.3.1, which is was released August 20, 2017. Since then zstd has seen many bug fixes and performance improvements. And, importantly, upstream zstd is continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to older versions. So the only way to sanely get these fixes is to keep up to date with upstream zstd. There are no known security issues that affect the kernel, but we need to be able to update in case there are. And while there are no known security issues, there are relevant bug fixes. For example the problem with large kernel decompression has been fixed upstream for over 2 years [1] Additionally the performance improvements for kernel use cases are significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz: - BtrFS zstd compression at levels 1 and 3 is 5% faster - BtrFS zstd decompression+read is 15% faster - SquashFS zstd decompression+read is 15% faster - F2FS zstd compression+write at level 3 is 8% faster - F2FS zstd decompression+read is 20% faster - ZRAM decompression+read is 30% faster - Kernel zstd decompression is 35% faster - Initramfs zstd decompression+build is 5% faster On top of this, there are significant performance improvements coming down the line in the next zstd release, and the new automated update patch generation will allow us to pull them easily. How is the update patch generated? ---------------------------------- The first two patches are preparation for updating the zstd version. Then the 3rd patch in the series imports upstream zstd into the kernel. This patch is automatically generated from upstream. A script makes the necessary changes and imports it into the kernel. The changes are: - Replace all libc dependencies with kernel replacements and rewrite includes. - Remove unncessary portability macros like: #if defined(_MSC_VER). - Use the kernel xxhash instead of bundling it. This automation gets tested every commit by upstream's continuous integration. When we cut a new zstd release, we will submit a patch to the kernel to update the zstd version in the kernel. The automated process makes it easy to keep the kernel version of zstd up to date. The current zstd in the kernel shares the guts of the code, but has a lot of API and minor changes to work in the kernel. This is because at the time upstream zstd was not ready to be used in the kernel envrionment as-is. But, since then upstream zstd has evolved to support being used in the kernel as-is. Why are we updating in one big patch? ------------------------------------- The 3rd patch in the series is very large. This is because it is restructuring the code, so it both deletes the existing zstd, and re-adds the new structure. Future updates will be directly proportional to the changes in upstream zstd since the last import. They will admittidly be large, as zstd is an actively developed project, and has hundreds of commits between every release. However, there is no other great alternative. One option ruled out is to replay every upstream zstd commit. This is not feasible for several reasons: - There are over 3500 upstream commits since the zstd version in the kernel. - The automation to automatically generate the kernel update was only added recently, so older commits cannot easily be imported. - Not every upstream zstd commit builds. - Only zstd releases are "supported", and individual commits may have bugs that were fixed before a release. Another option to reduce the patch size would be to first reorganize to the new file structure, and then apply the patch. However, the current kernel zstd is formatted with clang-format to be more "kernel-like". But, the new method imports zstd as-is, without additional formatting, to allow for closer correlation with upstream, and easier debugging. So the patch wouldn't be any smaller. It also doesn't make sense to import upstream zstd commit by commit going forward. Upstream zstd doesn't support production use cases running of the development branch. We have a lot of post-commit fuzzing that catches many bugs, so indiviudal commits may be buggy, but fixed before a release. So going forward, I intend to import every (important) zstd release into the Kernel. So, while it isn't ideal, updating in one big patch is the only patch I see forward. Who is responsible for this code? --------------------------------- I am. This patchset adds me as the maintainer for zstd. Previously, there was no tree for zstd patches. Because of that, there were several patches that either got ignored, or took a long time to merge, since it wasn't clear which tree should pick them up. I'm officially stepping up as maintainer, and setting up my tree as the path through which zstd patches get merged. I'll make sure that patches to the kernel zstd get ported upstream, so they aren't erased when the next version update happens. How is this code tested? ------------------------ I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS, Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and aarch64. I checked both performance and correctness. Also, thanks to many people in the community who have tested these patches locally. Lastly, this code will bake in linux-next before being merged into v5.16. Why update to zstd-1.4.10 when zstd-1.5.0 has been released? ------------------------------------------------------------ This patchset has been outstanding since 2020, and zstd-1.4.10 was the latest release when it was created. Since the update patch is automatically generated from upstream, I could generate it from zstd-1.5.0. However, there were some large stack usage regressions in zstd-1.5.0, and are only fixed in the latest development branch. And the latest development branch contains some new code that needs to bake in the fuzzer before I would feel comfortable releasing to the kernel. Once this patchset has been merged, and we've released zstd-1.5.1, we can update the kernel to zstd-1.5.1, and exercise the update process. You may notice that zstd-1.4.10 doesn't exist upstream. This release is an artifical release based off of zstd-1.4.9, with some fixes for the kernel backported from the development branch. I will tag the zstd-1.4.10 release after this patchset is merged, so the Linux Kernel is running a known version of zstd that can be debugged upstream. Why was a wrapper API added? ---------------------------- The first versions of this patchset migrated the kernel to the upstream zstd API. It first added a shim API that supported the new upstream API with the old code, then updated callers to use the new shim API, then transitioned to the new code and deleted the shim API. However, Cristoph Hellwig suggested that we transition to a kernel style API, and hide zstd's upstream API behind that. This is because zstd's upstream API is supports many other use cases, and does not follow the kernel style guide, while the kernel API is focused on the kernel's use cases, and follows the kernel style guide. Where is the previous discussion? --------------------------------- Links for the discussions of the previous versions of the patch set below. The largest changes in the design of the patchset are driven by the discussions in v11, v5, and v1. Sorry for the mix of links, I couldn't find most of the the threads on lkml.org" Link: https://lkml.org/lkml/2020/9/29/27 [1] Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12] Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11] Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10] Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9] Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8] Link: https://lkml.org/lkml/2020/12/3/1195 [v7] Link: https://lkml.org/lkml/2020/12/2/1245 [v6] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5] Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4] Link: https://lkml.org/lkml/2020/9/23/1074 [v3] Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1] Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf> * tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux: lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical MAINTAINERS: Add maintainer entry for zstd lib: zstd: Upgrade to latest upstream zstd version 1.4.10 lib: zstd: Add decompress_sources.h for decompress_unzstd lib: zstd: Add kernel-specific API
-